

Order this document by:

A N 1 2 8 3 / D

© MOTOROLA INC, 1996

SEMICONDUCTOR

MOTOROLA

APPLICATION NOTE

Transporting M68HC11 Code to M68HC16 Devices

By Michael Greenberg and Harold Roberson

1 INTRODUCTION

Devices in the Motorola M68HC16 modular microcontroller family are built up from standard modules that
interface via a common internal bus. Modularity facilitates rapid development of devices tailored for specific
applications. The standard central processing unit in the M68HC16 family is the 16-bit CPU16 module. Both
the CPU16 programming model and the CPU16 instruction set are designed for compatibility with the
M68HC11 CPU, and M68HC11 applications can be ported to the CPU16 with moderate effort. However,
because the CPU16 has additional capabilities, the functions of certain M68HC11 instructions have been
modified and some M68HC11 CPU instructions have been replaced by instructions specific to the CPU16.
In addition, the M68HC11 CPU and CPU16 manage interrupts differently.

This note is intended to assist programmers who wish to transport code from the M68HC11 CPU to the
CPU16. It compares the capabilities of the two processors, provides information concerning differences in
the respective instruction sets, and discusses cases that need special attention. For more detailed informa-
tion, please refer to the

M68HC11 Reference Manual

 (M68HC11RM/AD) and to the

CPU16 Reference
Manual

 (CPU16RM/AD).

2 M68HC11 CPU

The M68HC11 CPU treats all peripheral, I/O, and memory locations as addresses in its memory map. There
are no special instructions for I/O that are distinct from those used for memory. This architecture also allows
accessing an operand from an external memory location with no execution-time penalty.

2.1 Programming Model

M68HC11 CPU registers are an integral part of the processing unit and are not addressed as memory lo-
cations.

Figure 1

 shows the programming model. The following paragraphs describe the registers.

Figure 1 M68HC11 CPU Programming Model

20 16 15 8 7 0 BIT POSITION

A B ACCUMULATORS A AND B
D ACCUMULATOR D (A : B)

IX INDEX REGISTER X

IY INDEX REGISTER Y

SP STACK POINTER

PC PROGRAM COUNTER

CCR CONDITION CODE REGISTER

MOTOROLA AN1283/D
2

2.1.1 Accumulators

The M68HC11 CPU has two general-purpose 8-bit accumulators (A and B). Accumulators A and B can be
concatenated into a general-purpose 16-bit double accumulator (D). Although most operations can use A
or B interchangeably, the following exceptions apply:

• The ABX and ABY instructions add the contents of B to the contents of IX or IY, but there are no equiv-
alent instructions that use A rather than B.

• The TAP and TPA instructions transfer data from A to the CCR, or from the CCR to A, but there are
no equivalent instructions that use B rather than A.

• The DAA instruction is used to adjust the content of A after BCD arithmetic operations, but there is no
equivalent instruction for B.

• Add, subtract, and compare instructions that operate on both A and B (ABA, SBA, and CBA) only op-
erate in one direction, making it important to place an operand in the correct accumulator.

2.1.2 Index Registers

The M68HC11 CPU has two 16-bit index registers (IX and IY). When an indexed addressing mode is used,
a 16-bit value contained in an index register is added to an 8-bit offset provided by an instruction to create
an effective address. The index registers can also be used as counters or as temporary storage registers.
Because of M68HC11 opcode mapping, most instructions that use IY require an extra byte of machine code
and an extra cycle of execution time.

2.1.3 Stack Pointer

The M68HC11 CPU stack pointer (SP) is 16 bits wide. The stack can be located anywhere in address space
and can be any size up to the amount of memory available in the system. Stack entries are byte-width. The
SP contains the 16-bit address of the next free location in the stack, rather than the address of the latest
stack entry. SP is decremented each time data is pushed on the stack, and incremented each time data is
pulled from the stack. The stack grows downward from high to low memory as it is filled.

2.1.4 Program Counter

The 16-bit program counter (PC) contains the address of the next instruction to be executed. The PC can
be initialized with one of six possible vectors, depending on operating mode and the cause of reset.

2.1.5 Condition Code Register

As

Figure 2

 shows, this 8-bit register contains five condition code indicators (H, N, Z, V and C), two inter-
rupt masking bits (I and X), and a stop disable bit (S). In the M68HC11 CPU, condition codes are automat-
ically updated by most instructions. However, pushes, pulls, Add B to X (ABX), Add B to Y (ABY), and
transfer/exchange instructions do not affect the condition codes.

Figure 2 M68HC11 CPU Condition Code Register

S — STOP Enable
0 = Stop clock when STOP instruction is executed.
1 = Perform NOP when STOP instruction is executed.

X — X Interrupt Mask
Setting X disables interrupts from the XIRQ pin. X can be set only by hardware RESET or XIRQ ac-
knowledge. X can be cleared by a TAP instruction or by an RTI (when bit 6 of the value restored from
the stack to the CCR is cleared).

H — Half Carry Flag
Set when a carry from A3 or B3 occurs during BCD addition.

7 6 5 4 3 2 1 0
S X H I N Z V C

AN1283/D MOTOROLA
3

I — Interrupt Mask
I is a global mask that disables maskable interrupt sources. While I is set, no maskable interrupts are
processed. After reset, I is set and can only be cleared by software. I is normally cleared when CCR
content is restored by the RTI instruction at the end of an interrupt service routine.

N — Negative Flag
Set when the MSB of a result register is set.

Z — Zero Flag
Set when all bits of a result register are zero.

V — Overflow Flag
Set when two's complement overflow occurs as the result of an operation.

C — Carry Flag
Set when carry or borrow occurs during arithmetic operation. Also used during shift and rotate

2.2 Memory Management

All M68HC11 devices have a contiguous 64 Kbyte address space that is accessed by means of a 16-line
address bus. Some devices have the upper eight address lines multiplexed with the data bus lines, while
others have non-multiplexed address and data buses. Some variants also have address extension capabil-
ities — the CPU address space remains 64 Kbytes, but on-chip logic and extra address lines are provided
to implement bank-switching in external memory. Extended memory is accessed by means of two windows
of a pre-defined size and extend.

2.3 Data Types

The M68HC11 CPU supports the following data types:
• Bit data
• 8-bit and 16-bit signed and unsigned integers
• 16-bit unsigned fractions
• 16-bit addresses

A byte is eight bits wide and can be accessed at any byte location. A word is composed of two consecutive
bytes with the most significant byte at the lower value address. Because the M68HC11 CPU is an 8-bit CPU,
there are no special requirements for alignment of instructions or operands.

2.4 Addressing Modes

The M68HC11 CPU uses six basic types of addressing. Each type consists of one or more addressing
modes. All modes except inherent mode use an effective address. The effective address is the memory ad-
dress from which an argument is fetched or stored, or the address from which execution is to proceed. An
effective address can be specified within an instruction, or it can be calculated.

Table 1

 shows the various
M68HC11 CPU addressing modes.

Table 1 M68HC11 CPU Addressing Modes

Mode Mnemonic Description

Direct DIR Low-order byte of effective address follows opcode

Extended EXT Effective address follows opcode

Immediate IMM Argument follows opcode

Indexed IND, X
IND, Y

Effective address formed by adding unsigned 8-bit offset from instruc-
tion to index register content

Inherent INH Opcode contains information necessary for execution

Relative REL
When a branch is taken, effective address formed by adding signed 8-
bit offset from instruction to PC content.

MOTOROLA AN1283/D
4

2.4.1 Direct Mode

In the direct addressing mode, the low-order byte of the operand address is contained in a single byte fol-
lowing the opcode, and the high-order byte of the address is assumed to be $00. Addresses $00–$FF are
thus accessed directly, using two-byte instructions. Execution time is reduced by eliminating the additional
memory access required for the high-order address byte. In most applications, this 256-byte area is re-
served for frequently referenced data. M68HC11 memory can be configured so that combinations of internal
registers, RAM or external memory occupy these addresses.

2.4.2 Extended Mode

In the extended addressing mode, the effective address of the argument is contained in two bytes following
the opcode byte.

2.4.3 Immediate Mode

In the immediate addressing mode an argument is contained in the byte(s) immediately following the op-
code. The number of bytes following the opcode matches the size of the register or memory location being
operated on. The effective address is the address of the byte following the instruction.

2.4.4 Indexed Modes

In the indexed addressing mode, an 8-bit unsigned offset contained in the instruction is added to the value
contained in an index register (IX or IY) — the sum is the effective address. This addressing mode allows
referencing any memory location in the 64 Kbyte address space.

2.4.5 Inherent Modes

In the inherent addressing mode, all the information necessary to execute the instruction is contained in the
opcode. Operations that use only the index registers or accumulators, as well as control instructions with
no arguments, are included in this addressing mode.

2.4.6 Relative Mode

The relative addressing mode is used only for branch instructions. If the branch condition is true, an 8-bit
signed offset included in the instruction is added to the contents of the program counter to form the effective
branch address. Otherwise, control proceeds to the next instruction.

2.5 Instructions

The M68HC11 family of microcontrollers uses 8-bit opcodes. Each opcode identifies a particular instruction
and associated addressing mode to the CPU. Several opcodes are required to provide each instruction with
a range of addressing capabilities. Only 256 opcodes would be available if the range of values were restrict-
ed to the number able to be expressed in 8-bit binary numbers.

A four-page opcode map has been implemented to expand the number of instructions. An additional byte,
called a prebyte, directs the processor from page 0 of the opcode map to one of the other three pages. As
its name implies, the additional byte precedes the opcode.

A complete instruction consists of a prebyte, if any, an opcode, and zero, one, two, or three operands. The
operands contain information the CPU needs for executing the instruction. Complete instructions can be
from one to five bytes long.

2.6 Instruction Execution

The M68HC11 CPU fetches and executes instruction bytes sequentially from byte addresses. The program
counter is incremented by one after each opcode or operand byte fetch.

AN1283/D MOTOROLA
5

2.7 Changes in Program Flow

M68HC11 jump, branch, and subroutine instructions initiate changes in program flow. When program flow
changes, instructions are fetched from a new address. When a change in flow is temporary, a return ad-
dress is stored, so that execution of the original instruction stream can resume after the change in flow.

The jump (JMP) instruction uses direct, extended and indexed addressing modes. Jumps are unconditional
changes in flow. No return PC value is stacked prior to executing a jump instruction.

The M68HC11 CPU supports a number of 8-bit relative displacement branch instructions, as well as spe-
cialized bit condition branches that use the direct and indexed addressing modes. Branch instructions are
conditional changes in flow. A change occurs only if a pre-defined condition is satisfied. No return PC value
is stacked prior to executing a branch instruction.

Subroutines are called by special branch (BSR) or jump (JSR) instructions. The RTS instruction returns con-
trol to the calling routine after a subroutine has executed. JSR uses the direct, indexed, and extended ad-
dressing modes; BSR uses only relative addressing mode. When a subroutine instruction is executed, the
PC points to the address of the instruction that follows the instruction that calls the subroutine. Both calling
instructions stack the high and low bytes of this return PC value. The return PC is pulled from the stack when
RTS is executed at the end of a subroutine.

2.8 Reset And Interrupt Vectors

Reset and interrupt operations load the M68HC11 CPU program counter with a vector that points to a new
location from which instructions are to be fetched.

Table 2

 shows vector assignments for a typical
M68HC11 device.

2.9 Resets

Resets are generally used to initialize the MCU or to recover from catastrophic failure. A reset immediately
stops program execution and forces the program counter to a known starting address. Internal registers and
control bits are initialized so the MCU can resume operation in a known state. There are four possible sourc-
es of reset. External reset and power-on reset share a vector. The computer operating properly system and
the clock monitor each have a vector.

The M68HC11 CPU distinguishes between internal and external reset conditions by measuring the time it
takes the MCU RESET line to return to logic level one after assertion. When a reset condition is sensed, an
internal circuit drives the RESET pin low for four ECLK cycles, then releases it. Two ECLK cycles later, the
logic level of the RESET line is sampled. If it is still low, the CPU assumes that an external reset has oc-
curred. If it is high, the CPU assumes that reset was initiated internally.

A positive transition on V

dd

 generates a power-on reset, which is used only for power-up conditions. A 4064
clock cycle

delay after the oscillator becomes active allows the clock generator to stabilize. If RESET is low
at the end of 4064 clock cycles, the CPU remains in reset condition until RESET goes high.

The MCU includes a computer operating properly (COP) system to help protect against software failures.
When the system is enabled, software is responsible for keeping a free-running watchdog timer from timing
out. If the software fails to update the timer control register, a system reset occurs.

The clock monitor circuit is based on an internal RC time delay. If no MCU clock edges are detected within
the delay period, the clock monitor can generate a system reset.

When a reset condition is recognized, the internal registers and control bits are forced to an initial state.
Depending on the cause of the reset and the operating mode, the reset vector can be fetched from one of
the six possible locations shown in

Table 3

.

The M68HC11 CPU fetches the appropriate vector during the first three cycles after reset, then begins fetch-
ing instructions from the address pointed to by the vector. The stack pointer and other CPU registers are
indeterminate immediately after reset, but the X and I interrupt mask bits in the CCR are set to mask inter-
rupt requests.

MOTOROLA AN1283/D
6

Table 2 M68HC11 Interrupt and Reset Vector Assignments

Vector Address Interrupt Source CCR Mask
Bit

Local
Mask

FFC0, C1 – FFD4, D5 Reserved — —

FFD6, D7

SCI Serial System I

•

 SCI Transmit Complete TCIE

•

 SCI Transmit Data Register Empty TIE

•

 SCI Idle Line Detect ILIE

•

 SCI Receiver Overrun RIE

•

 SCI Receive Data Register Full RIE

FFD8, D9 SPI Serial Transfer Complete I SPIE

FFDA, DB Pulse Accumulator Input Edge I PAII

FFDC, DD Pulse Accumulator Overflow I PAOVI

FFDE, DF Timer Overflow I TOI

FFE0, E1 Timer Input Capture 4/Output Compare 5 I I4/O5I

FFE2, E3 Timer Output Compare 4 I OC4I

FFE4, E5 Timer Output Compare 3 I OC3I

FFE6, E7 Timer Output Compare 2 I OC2I

FFE8, E9 Timer Output Compare 1 I OC1I

FFEA, EB Timer Input Capture 3 I IC3I

FFEC, ED Timer Input Capture 2 I IC2I

FFEE, EF Timer Input Capture 1 I IC1I

FFF0, F1 Real-Time Interrupt I RTII

FFF2, F3
Parallel I/O Handshake

I
STAI

IRQ None

FFF4, F5 XIRQ Pin X None

FFF6, F7 Software Interrupt None None

FFF8, F9 Illegal Opcode Trap None None

FFFA, FB COP Failure None NOCOP

FFFC, FD Clock Monitor Fail None CME

FFFE, FF RESET None None

Table 3 Reset Vectors

Cause of Reset Normal Mode Vector Special Test or Bootstrap

RESET pin $FFFE, FFFF $BFFE, BFFF

Power-on reset $FFFE, FFFF $BFFE, BFFF

Clock monitor reset $FFFC, FFFD $BFFC, BFFD

COP system reset $FFFA, FFFB $BFFA, BFFB

AN1283/D MOTOROLA
7

2.10 Interrupts

An interrupt temporarily suspends normal program execution while an interrupt service routine is being ex-
ecuted. After an interrupt has been serviced, the main program resumes as if there had been no interruption.
Maskable interrupts are recognized only when the CCR I bit is cleared. Maskable interrupts are generated
by on-chip peripheral systems, and are enabled by control bits in MCU registers associated with these sys-
tems. Nonmaskable interrupt sources are not masked by the I bit. The three nonmaskable interrupt sources
are the illegal opcode trap, the software interrupt instruction, and the XIRQ pin. Operation of the XIRQ pin
is enabled by the CCR X bit.

Upon reset, both the X bit and the I bit are set, which inhibits both maskable interrupts and XIRQ interrupts.
After reset, software can clear both X and I to enable interrupt recognition. Once cleared, the X bit cannot
be set by software.

An interrupt request can be recognized at any time, but the CPU does not respond to a request until com-
pletion of the instruction being executed. Interrupt latency varies according to the number of cycles required
to complete the current instruction.

When the CPU begins to service an interrupt, the contents of the CPU registers are pushed onto the stack
in the order shown in

Table 4

.

After the CCR value is stacked, the appropriate mask bit is set to inhibit further interrupts. When an I-bit-
related interrupt occurs, the I bit is set after stacking, but the X bit is not affected. When an X-bit-related
interrupt occurs, both the X and I bits are set after stacking.

After stacking and masking take place, the priority of pending requests is evaluated, and the interrupt vector
for the highest priority pending source is fetched. Execution of the interrupt service routine begins at the
address pointed to by the vector. At the end of the interrupt service routine, the return from interrupt instruc-
tion (RTI) is executed and the stacked registers are restored from the stack (restoring the CCR restores the
X and I bits to their pre-interrupt request state), and normal program execution resumes.

2.11 Reset and Interrupt Priority

Resets and interrupts have a hardware priority that determines which reset or interrupt is serviced first when
simultaneous requests occur. There are six nonmaskable reset and interrupt sources. The priority hierarchy
for these sources is as follows:

1. POR or RESET pin

2. Clock monitor reset

3. COP watchdog reset

4. XIRQ interrupt

5. Illegal opcode interrupt

6. Software interrupt (SWI)

Table 4 Stacking Order on Entry to Interrupts

Memory Location CPU Registers

SP PCL

SP – 1 PCH

SP – 2 IYL

SP – 3 IYH

SP – 4 IXL

SP – 5 IXH

SP – 6 ACCA

SP – 7 ACCB

SP – 8 CCR

MOTOROLA AN1283/D
8

Maskable interrupt sources have the following priorities:

1. IRQ Interrupt

2. Real-time interrupt

3. Timer input capture 1

4. Timer input capture 2

5. Timer input capture 3

6. Timer output compare 1

7. Timer output compare 2

8. Timer output compare 3

9. Timer output compare 4

10. Timer input capture 4/output compare 5

11. Timer overflow

12. Pulse accumulator overflow

13. Pulse accumulator input edge

14. SPI transfer complete

15. SCI system

Any single interrupt source can be designated as the highest-priority interrupt by writing an appropriate val-
ue to the PSEL bits in the HPRIO register. Priority relationships of other maskable interrupts remain the
same. An interrupt that is assigned highest priority is still subject to global masking by the I bit. Interrupt
vectors are not affected by priority assignment.

3 CPU16 MODULE

The M68HC16 central processing unit (CPU16) was designed to provide compatibility with the M68HC11
CPU and to provide additional capabilities associated with 16- and 32-bit data sizes, 20-bit addressing, and
digital signal processing.

The CPU16 treats all peripheral, I/O, and memory locations as parts of a pseudolinear 1 Megabyte address
space. There are no special instructions for I/O that are separate from instructions for addressing memory.
Address space is made up of 16 64-Kbyte banks. Specialized bank addressing techniques and support reg-
isters provide transparent access across bank boundaries.

The CPU16 interacts with external devices and with other modules within the microcontroller via a standard-
ized bus and bus interface. There are bus protocols for memory and peripheral accesses, as well as for
managing an hierarchy of interrupt priorities.

3.1 Programming Model

CPU16 registers are an integral part of the CPU and are not addressed as memory locations. The CPU16
register model contains all the resources of the M68HC11 CPU, plus additional resources.

Figure 3

 shows
the CPU16 programming model. Registers are discussed in detail in the following paragraphs.

AN1283/D MOTOROLA
9

Figure 3 CPU16 Programming Model

3.1.1 Accumulators

The CPU16 has two 8-bit accumulators (A and B) and one 16-bit accumulator (E). In addition, accumulators
A and B can be concatenated into a second 16-bit double accumulator (D).

Accumulators A, B, and D are general-purpose registers used to hold operands and results during mathe-
matical and data manipulation operations.

Accumulator E can be used in the same way as accumulator D, and also extends CPU16 capabilities. It
allows more data to be held within the CPU16 during operations, simplifies 32-bit arithmetic and digital sig-
nal processing, and provides a practical 16-bit accumulator offset indexed addressing mode.

3.1.2 Index Registers

The CPU16 has three 16-bit index registers (IX, IY, and IZ). Each index register has an associated 4-bit
extension field (XK, YK, and ZK).

Concatenated registers and extension fields provide 20-bit indexed addressing and support data structure
functions anywhere in the CPU16 address space.

20 16 15 8 7 0 BIT POSITION

A B ACCUMULATORS A AND B
D ACCUMULATOR D (A : B)

E ACCUMULATOR E

XK IX INDEX REGISTER X

YK IY INDEX REGISTER Y

ZK IZ INDEX REGISTER Z

SK SP STACK POINTER

PK PC PROGRAM COUNTER

CCR PK CONDITION CODE REGISTER/
PC EXTENSION REGISTER

EK XK YK ZK ADDRESS EXTENSION REGISTER

SK STAACK EXTENSION REGISTER

H MAC MULTIPLIER REGISTER

IR MAC MULTIPLICAND REGISTER

AM (MSB) MAC ACCUMULATOR MSB [35:16]
AM (LSB) MAC ACCUMULATOR LSB [15:0]

XMSK YMSK MAC XY MASK REGISTER

MOTOROLA AN1283/D
10

IX and IY can perform the same operations as M68HC11 CPU registers of the same names, but the CPU16
instruction set provides additional indexed operations.

IZ can perform the same operations as IX and IY, and also provides an additional indexed addressing ca-
pability that replaces M68HC11 CPU direct addressing mode. Initial IZ and ZK extension field values are
included in the RESET exception vector, so that ZK : IZ can be used as a direct page pointer out of reset.

3.1.3 Stack Pointer

The CPU16 stack pointer (SP) is 16 bits wide. An associated 4-bit extension field (SK) provides 20-bit stack
addressing.

Stack implementation in the CPU16 is from high to low memory. The stack grows downward as it is filled.
SK : SP are decremented each time data is pushed on the stack, and incremented each time data is pulled
from the stack.

SK : SP point to the next available stack address, rather than to the address of the latest stack entry. Al-
though the stack pointer is normally incremented or decremented by word address, it is possible to push
and pull byte-sized data. Setting the stack pointer to an odd value causes misalignment, which affects per-
formance.

3.1.4 Program Counter

The CPU16 program counter (PC) is 16 bits wide. An associated 4-bit extension field (PK) provides 20-bit
program addressing.

CPU16 instructions are fetched from even word boundaries. PC0 always has a value of zero, to assure that
instruction fetches are made from word-aligned addresses.

3.1.5 Condition Code Register

The 16-bit condition code register can be divided into two functional blocks. The 8 MSB, which correspond
to the CCR in the M68HC11 CPU, contain the low-power stop control bit and processor status flags. The 8
LSB contain the interrupt priority field, the DSP saturation mode control bit, and the program counter ad-
dress extension field.

Figure 4

 shows the condition code register. Detailed descriptions of each status indicator and field in the
register follow the figure.

Figure 4 CPU16 Condition Code Register

S — STOP Enable
0 = Stop clock when LPSTOP instruction is executed.
1 = Perform NOP when LPSTOP instruction is executed.

MV — Accumulator M overflow flag
Set when overflow into AM35 has occurred.

H — Half Carry Flag
Set when a carry from A3 or B3 occurs during BCD addition.

EV — Extension Bit Overflow Flag
Set when an overflow into AM31 has occurred.

N — Negative Flag
Set when the MSB of a result register is set.

Z — Zero Flag
Set when all bits of a result register are zero.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

AN1283/D MOTOROLA
11

V — Overflow Flag
Set when two's complement overflow occurs as the result of an operation.

C — Carry Flag
Set when carry or borrow occurs during arithmetic operation. Also used during shift and rotate to facil-
itate multiple word operations.

IP[2:0] — Interrupt Priority Field
The priority value in this field (0 to 7) is used to mask interrupts.

SM — Saturate Mode Bit
When SM is set, if either EV or MV is set, data read from AM using TMER or TMET will be given max-
imum positive or negative value, depending on the state of the AM sign bit before overflow.

PK[3:0] — Program Counter Address Extension Field
This field is concatenated with the program counter to form a 20-bit address.

3.1.6 Address Extension Register and Address Extension Fields

There are six 4-bit address extension fields. EK, XK, YK, and ZK are contained by the address extension
register, PK is part of the CCR, and SK stands alone.

Extension fields are the bank portions of 20-bit concatenated bank : byte addresses used in the CPU16
pseudolinear memory management scheme.

All extension fields except EK correspond directly to a register. XK, YK, and ZK extend registers IX, IY, and
IZ; PK extends the PC; and SK extends the SP. EK holds the 4 MSB of the 20-bit address used by extended
addressing mode.

3.1.7 Multiply and Accumulate Registers

The multiply and accumulate (MAC) registers are part of a CPU submodule that performs repetitive signed
fractional multiplication and stores the cumulative result. These operations are part of control-oriented dig-
ital signal processing.

There are four MAC registers. Register H contains the 16-bit signed fractional multiplier. Register I contains
the 16-bit signed fractional multiplicand. Accumulator M is a specialized 36-bit product accumulation regis-
ter. XMSK and YMSK contain 8-bit mask values used in modulo addressing.

The CPU16 has a special subset of signal processing instructions that manipulate the MAC registers and
perform signal processing calculation.

3.2 Memory Management

The CPU16 uses bank switching to provide a 1 Megabyte address space. There are 16 banks within the
address space. Each bank is made up of 64 Kbytes addressed from $0000 to $FFFF. Banks are selected
by means of address extension fields associated with individual CPU16 registers. CPU16 addressing is
pseudolinear — a 20-bit extended address can access any byte location in the appropriate address space.

In addition, address space can be split into discrete 1 Megabyte program and data spaces by externally de-
coding the SIM function code outputs. When this technique is used, instruction fetches and reset vector
fetches access program space, while exception vector fetches (other than for reset), data accesses, and
stack accesses are made in data space.

3.2.1 Address Extension

All CPU16 resources that are used to generate addresses are effectively 20 bits wide. These resources in-
clude extended index registers, program counter, and stack pointer. All addressing modes use 20-bit ad-
dresses. 20-bit addresses are formed from a 16-bit byte address generated by an individual CPU16 register
and a 4-bit bank address contained in an associated extension field. The byte address corresponds to AD-
DR[15:0] and the bank address corresponds to ADDR[19:16].

MOTOROLA AN1283/D
12

3.3 Data Types

The CPU16 uses the following types of data:
• Bits
• 4-bit signed integers
• 8-bit (byte) signed and unsigned integers
• 8-bit, 2-digit binary coded decimal numbers
• 16-bit (word) signed and unsigned integers
• 32-bit (long word) signed and unsigned integers
• 16-bit signed fractions
• 32-bit signed fractions
• 36-bit signed fixed-point numbers
• 20-bit effective address consisting of 16-bit byte address and 4-bit extension

There are 8 bits in a byte, 16 bits in a word. Bit set and clear instructions use both byte and word operands.
Bit test instructions use byte operands.

Negative integers are represented in two's-complement form. Four-bit signed integers, packed two to a
byte, are used only as X and Y offsets in MAC and RMAC operations. Thirty-two-bit integers are used only
by extended multiply and divide instructions, and by the associated LDED and STED instructions.

Binary coded decimal numbers are packed, two digits per byte. BCD operations use byte operands.

16-bit fractions are used in both fractional multiplication and division, and as multiplicand and multiplier op-
erands in the MAC unit. Bit 15 is the sign bit. There is an implied radix point between bits 15 and 14. There

are 15 bits of magnitude — the range of values is –1 ($8000) to 1 – 2

-15

 ($7FFF).

Signed 32-bit fractions are used only by fractional multiplication and division instructions. Bit 31 is the sign
bit. An implied radix point lies between bits 31 and 30. There are 31 bits of magnitude — the range of values
is –1 ($80000000) to 1 – 2

-31

 ($7FFFFFFF).

Signed 36-bit fixed-point numbers are used only by the MAC unit. Bit 35 is the sign bit. Bits [34:31] are sign
extension bits. There is an implied radix point between bits 31 and 30. There are 31 bits of magnitude, but
use of the extension bits allows representation of numbers in the range –16 ($800000000) to 15.999969482
($7FFFFFFFF).

20-bit addresses are formed by combining a 16-bit byte address with a 4-bit address extension.

3.4 Memory Organization

A word is composed of two consecutive bytes. A word address is normally an even byte address. Byte 0 of
a word has a lower 16-bit address than Byte 1. Long words and 32-bit signed fractions consist of two con-
secutive words, and are normally accessed at the address of Byte 0 in Word 0.

Instruction fetches always access word addresses. Word operands are normally accessed at even byte ad-
dresses, but may be accessed at odd byte addresses, with a substantial performance penalty.

To be compatible with the M68HC11 CPU, misaligned word transfers and misaligned stack accesses are
allowed. Transferring a misaligned word requires two successive byte transfer operations.

3.5 Addressing Modes

The CPU16 uses 9 basic types of addressing. There are one or more addressing modes within each type.

Table 5

 shows the addressing modes.

AN1283/D MOTOROLA
13

All modes generate ADDR[15:0]. This address is combined with ADDR[19:16] from an operand or an ex-
tension field to form a 20-bit effective address. Bank switching is transparent to most instructions. AD-
DR[19:16] of the effective address are changed to make an access across a bank boundary. However,
extension field values do not change as a result of effective address computation.

3.5.1 Immediate Addressing Modes

In the immediate modes, an argument is contained in a byte or word immediately following the instruction.
For IMM8 and IMM16 modes, the effective address is the address of the argument.

There are three specialized forms of IMM8 addressing. The AIS, AIX/Y/Z, ADDD and ADDE instructions
decrease execution time by sign-extending the 8-bit immediate operand to 16 bits, then adding it to an ap-
propriate register. The MAC and RMAC instructions use an 8-bit immediate operand to specify two signed
4-bit index register offsets. The PSHM and PULM instructions use an 8-bit immediate mask operand to in-
dicate which registers must be pushed to or pulled from the stack.

3.5.2 Extended Addressing Modes

Regular extended mode instructions contain ADDR[15:0] in the word following the opcode. The effective
address is formed by concatenating the EK field and the 16-bit byte address. EXT20 mode is used only by
the JMP and JSR instructions. These instructions contain a 20-bit effective address that is zero-extended
to 24 bits to give the instruction an even number of bytes.

3.5.3 Indexed Addressing Modes

In the indexed modes, registers IX, IY, and IZ, together with their associated extension fields, are used to
calculate the effective address. For 8-bit indexed modes an 8-bit unsigned offset contained in the instruction

Table 5 CPU16 Addressing Modes

Mode Mnemonic Description

Accumulator Offset

E,X Index Register X with Accumulator E offset

E,Y Index Register Y with Accumulator E offset

E,Z Index Register Z with Accumulator E offset

Extended
EXT Extended

EXT20 20-bit Extended

Immediate
IMM8 8-bit Immediate

IMM16 16-bit Immediate

Indexed 8-Bit

IND8, X Index Register X with unsigned 8-bit offset

IND8, Y Index Register Y with unsigned 8-bit offset

IND8, Z Index Register Z with unsigned 8-bit offset

Indexed 16-Bit

IND16, X Index Register X with signed 16-bit offset

IND16, Y Index Register Y with signed 16-bit offset

IND16, Z Index Register Z with signed 16-bit offset

Indexed 20-Bit

IND20, X Index Register X with signed 20-bit offset

IND20, Y Index Register Y with signed 20-bit offset

IND20, Z Index Register Z with signed 20-bit offset

Inherent INH Inherent

Post-Modified Index IXP
Signed 8-bit offset added to Index Register X
after effective address is used

Relative
REL8 8-bit relative

REL16 16-bit relative

MOTOROLA AN1283/D
14

is added to the value contained in an index register and its extension field. For 16-bit modes, a 16-bit signed
offset contained in the instruction is added to the value contained in an index register and its extension field.
For 20-bit modes, a 20-bit signed offset (zero-extended to 24 bits) is added to the value contained in an
index register. These modes are used for JMP and JSR instructions only.

3.5.4 Inherent Addressing Mode

Inherent mode instructions use information directly available to the processor to determine the effective ad-
dress. Operands (if any) are system resources and are thus not fetched from memory.

3.5.5 Accumulator Offset Addressing Mode

Accumulator offset modes form an effective address by sign-extending the content of accumulator E to 20
bits, then adding the result to an index register and its associated extension field. This mode allows use of
an index register and an accumulator within a loop without corrupting accumulator D.

3.5.6 Relative Addressing Modes

Relative modes are used for branch and long branch instructions. If a branch condition is satisfied, a byte
or word signed two's-complement offset is added to the concatenated PK field and program counter. The
new PK : PC value is the effective address.

3.5.7 Post-Modified Index Addressing Mode

Post-modified index mode is used by the MOVB and MOVW instructions. A signed 8-bit offset is added to

index register X after the effective address formed by XK

:

 IX is used.

3.6 Instructions

The instruction set is based upon that of the M68HC11 CPU, but the opcode map has been rearranged to
maximize performance with a 16-bit data bus. Much M68HC11 code can run on the CPU16 following reas-
sembly. The user must take into account changed instruction times, the interrupt mask, and the new inter-
rupt stack frame.

CPU16 instructions consist of an 8-bit opcode, which may be preceded by an 8-bit prebyte and followed by
one or more operands.

Opcodes are mapped in four 256-instruction pages. Page 0 opcodes stand alone, but Page 1, 2, and 3 op-
codes are pointed to by a prebyte code on Page 0. The prebytes are $17 (Page 1), $27 (Page 2), and $37
(Page 3).

Operands can be 4 bits, 8 bits or 16 bits in length. However, because the CPU16 fetches 16-bit instruction
words from even byte boundaries, each instruction must contain an even number of bytes.

Operands are organized as bytes, words, or a combination of bytes and words. Four-bit operands are either
zero-extended to 8 bits, or packed two to a byte. The largest instructions are six bytes in length. Size, order,
and function of operands are evaluated when an instruction is decoded.

A Page 0 opcode and an 8-bit operand can be fetched simultaneously. Instructions that use 8-bit indexed,
immediate, and relative addressing modes have this form. Code written with these instructions is very com-
pact.

3.7 CPU16 Pipeline Mechanism

This description is a simplified model of the mechanism the CPU16 uses to fetch and execute instructions.
Functional divisions in the model do not necessarily correspond to distinct architectural subunits of the mi-
croprocessor.

AN1283/D MOTOROLA
15

There are three functional blocks involved in fetching, decoding, and executing instructions. These are the
microsequencer, the instruction pipeline, and the execution unit. These elements function concurrently —
at any given time, all three may be active.

3.7.1 Microsequencer

The microsequencer controls the order in which instructions are fetched, advanced through the pipeline,
and executed. It increments the program counter and generates multiplexed external tracking signals
IPIPE0 and IPIPE1 from internal signals that control execution sequence.

3.7.2 Instruction Pipeline

The pipeline is a three stage FIFO that holds instructions while they are decoded and executed. As many
as three instructions can be in the pipeline at one time (single-word instructions, one held in stage C, one
being executed in stage B, and one latched in stage A).

3.7.3 Execution Unit

The execution unit evaluates opcodes, interfaces with the microsequencer to advance instructions through
the pipeline, and performs instruction operations.

3.8 Execution Process

A prefetch mechanism in the microsequencer reads instruction words from memory and increments the pro-
gram counter. When instruction execution begins, the program counter points to an address six bytes after
the address of the first word of the instruction being executed.

Fetched opcodes are latched into stage A, then advanced to stage B. Opcodes are evaluated in stage B.
The execution unit can access operands in either stage A or stage B (stage B accesses are limited to 8-bit
operands). When execution is complete, opcodes are moved from stage B to stage C, where they remain
until the next instruction is complete. The number of machine cycles necessary to complete an execution
sequence varies according to the complexity of the instruction.

3.9 Changes in Program Flow

When program flow changes, instructions are fetched from a new address. Before execution can begin at
the new address, instructions and operands from the previous instruction stream must be removed from the
pipeline. If a change in flow is temporary, a return address must be stored, so that execution of the original
instruction stream can resume after the change in flow.

At the time an instruction that causes a change in program flow executes, PK : PC point to the address of
the first word of the instruction

+

 $0006. During execution of the instruction, PK : PC is loaded with the ad-
dress of the first word of the new instruction stream. However, stages A and B still contain words from the
old instruction stream. The CPU16 prefetches to advance the new instruction to stage C, and fills the pipe-
line from the new instruction stream.

3.9.1 Jumps

The CPU16 jump instruction uses 20-bit extended and indexed addressing modes. It consists of an 8-bit
opcode with a 20-bit argument. No return PK : PC is stacked for a jump.

3.9.2 Branches

The CPU16 supports 8-bit relative displacement (short), and 16-bit relative displacement (long) branch in-
structions, as well as specialized bit condition branches that use indexed addressing modes. CPU16 short
branches are generally equivalent to M68HC11 CPU branches, although opcodes are not identical.
M68HC11 BHI and BLO are replaced by CPU16 BCC and BCS.

MOTOROLA AN1283/D
16

Short branch instructions consist of an 8-bit opcode and an 8-bit operand contained in one word. Long
branch instructions consist of an 8-bit prebyte and an 8-bit opcode in one word, followed by an operand
word. Bit condition branches consist of an 8-bit opcode and an 8-bit operand in one word, followed by one
or two operand words.

When a branch instruction executes, PK : PC point to an address equal to the address of the first word of
the instruction plus $0006. The range of displacement for each type of branch is relative to this value. In
addition, because prefetches are automatically aligned to word boundaries, only even offsets are valid. An
odd offset value is rounded down.

3.9.3 Subroutines

Subroutines can be called by short (BSR) or long (LBSR) branches, or by a jump (JSR). The RTS instruction
returns control to the calling routine. BSR consists of an 8-bit opcode with an 8-bit operand. LBSR consists
of an 8-bit prebyte and an 8-bit opcode in one word, followed by an operand word. JSR consists of an 8-bit
opcode with a 20-bit argument. RTS consists of an 8-bit prebyte and an 8-bit opcode in one word.

When a subroutine instruction is executed, PK : PC contain the address of the calling instruction plus $0006.
All three calling instructions stack return PK : PC values prior to processing instructions from the new in-
struction stream. In order for RTS to work with all three calling instructions, however, the value stacked by
BSR must be adjusted.

LBSR and JSR are two-word instructions. In order for program execution to resume with the instruction im-
mediately following them, RTS must subtract $0002 from the stacked PK : PC value. BSR is a one-word
instruction — it subtracts $0002 from PK : PC prior to stacking so that execution will resume correctly.

3.10 Exceptions

An exception is an event that preempts normal instruction process. Exception processing makes the tran-
sition from normal instruction execution to execution of a routine that deals with an exception.

Each exception has an assigned vector that points to an associated handler routine. Exception processing
includes all operations required to transfer control to a handler routine, but does not include execution of
the handler routine itself. Keep the distinction between exception processing and execution of an exception
handler in mind while reading this section.

3.10.1 Exception Vectors

An exception vector is the address of a routine that handles an exception. Exception vectors are contained
in a data structure called the exception vector table, which is located in the first 512 bytes of Bank 0.

All vectors except the reset vector consist of one word and reside in data space. The reset vector consists
of four words that reside in program space. There are 52 predefined or reserved vectors, and 200 user-de-
fined vectors.

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are generated by external
devices; others are supplied by the processor. There is a direct mapping of vector number to vector table
address. The processor left shifts the vector number one place (multiplies by two) to convert it to an address.

Table 6

 shows the exception vectors.

3.10.2 Exception Stack Frame

During exception processing, the contents of the program counter and condition code register are stacked
at a location pointed to by SK : SP. Unless it is altered during exception processing, the stacked PK : PC
value is the address of the next instruction in the current instruction stream, plus $0006.

Figure 5

 shows
the exception stack frame.

AN1283/D MOTOROLA
17

Figure 5 Exception Stack Frame Format

3.10.3 Exception Processing Sequence

Exception processing is performed in four distinct phases.

1. Priority of all pending exceptions is evaluated, and the highest priority exception is processed first.
2. Processor state is stacked, then the CCR PK extension field is cleared.
3. An exception vector number is acquired and converted to a vector address.
4. The content of the vector address is loaded into the PC, and the processor jumps to the exception

handler routine.

There are variations within each phase for differing types of exceptions. However, all vectors but the reset
vectors contain 16-bit addresses, and the PK field is cleared. Exception handlers must be located within
Bank 0 or vectors must point to a jump table.

Table 6 Exception Vector Table

Vector
Number

Vector
Address

Address
Space

Type of
Exception

0 0000 P Reset — Initial ZK, SK, and PK

0002 P Reset — Initial PC

0004 P Reset — Initial SP

0006 P Reset — Initial IZ

4 0008 D Breakpoint

5 000A D Bus Error

6 000C D Software Interrupt Instruction (SWI)

7 000E D Illegal Instruction

8 0010 D Division by Zero

9 – E 0012 – 001C D Unassigned, Reserved

F 001E D Uninitialized Interrupt

10 0020 D Unassigned, Reserved

11 0022 D Level 1 Interrupt Autovector

12 0024 D Level 2 Interrupt Autovector

13 0026 D Level 3 Interrupt Autovector

14 0028 D Level 4 Interrupt Autovector

15 002A D Level 5 Interrupt Autovector

16 002C D Level 6 Interrupt Autovector

17 002E D Level 7 Interrupt Autovector

18 0030 D Spurious Interrupt

19 – 37 0032 – 006E D Unassigned, Reserved

38 – FF 0070 – 01FE D User-Defined Interrupts

Low Address

⇐

SP After Exception Stacking

Condition Code Register

High Address Program Counter

⇐

SP Before Exception Stacking

MOTOROLA AN1283/D
18

3.10.4 Types of Exceptions

Exceptions can be either internally or externally generated. External exceptions, which are defined as asyn-
chronous, include interrupts, bus errors, breakpoints, and resets. Internal exceptions, which are defined as
synchronous, include the software interrupt (SWI) instruction, the background (BGND) instruction, illegal in-
struction exceptions, and the divide-by-zero exception.

3.10.4.1 Asynchronous Exceptions

Asynchronous exceptions occur without reference to CPU16 or IMB clocks, but exception processing is syn-
chronized. For all asynchronous exceptions but reset, exception processing begins at the first instruction
boundary following recognition of an exception.

Because of pipelining, the stacked return PK : PC value for all asynchronous exceptions, other than reset,
is equal to the address of the next instruction in the current instruction stream plus $0006. The RTI instruc-
tion, which must terminate all exception handler routines, subtracts $0006 from the stacked value in order
to resume execution of the interrupted instruction stream.

3.10.4.2 Synchronous Exceptions

Synchronous exception processing is part of an instruction definition. Exception processing for synchronous
exceptions will always be completed, and the first instruction of the handler routine will always be executed,
before interrupts are detected.

Because of pipelining, the value of PK : PC at the time a synchronous exception executes is equal to the
address of the instruction that causes the exception plus $0006. Since RTI always subtracts $0006 upon
return, the stacked PK : PC must be adjusted so that execution will resume with the following instruction.
For this reason $0002 is added to the PK : PC value before it is stacked.

3.10.4.3 Multiple Exceptions

Each exception has a hardware priority based upon its relative importance to system operation. Asynchro-
nous exceptions have higher priorities than synchronous exceptions. Exception processing for multiple ex-
ceptions is done by priority, from lowest to highest. Priority governs the order in which exception processing
occurs, not the order in which exception handlers are executed.

Unless a bus error, a breakpoint, or a reset occurs during exception processing, the first instruction of all
exception handler routines is guaranteed to execute before another exception is processed. Since interrupt
exceptions have higher priority than synchronous exceptions, this means that the first instruction in an in-
terrupt handler will be executed before other interrupts are sensed.

Bus error, breakpoint, and reset exceptions that occur during exception processing of a previous exception
are processed before the first instruction of that exception's handler routine. The converse is not true — if
an interrupt occurs during bus error exception processing, for example, the first instruction of the bus error
handler is executed before interrupts are sensed. This permits the exception handler to mask interrupts dur-
ing execution.

3.11 RTI Instruction

The return-from-interrupt (RTI) instruction is used to terminate all exception handlers except the reset han-
dler. RTI restores context so that normal execution can resume. Asynchronous interrupts are serviced at
instruction boundaries, and a value of PK : PC + $0006 is stacked when exception processing begins. RTI
subtracts $0006 from the stacked value so that the pipeline is refilled from the correct address. RTI is not
used in the reset handler because the system is re-initialized and there is no context to restore.

SWI initiates interrupt exception processing without an external service request. The PK : PC value at the
time of execution is the first word address of SWI plus $0006. If this value were stacked, execution of RTI
at the end of the handler would cause SWI to execute again. To prevent this, SWI adds $0002 to the PK :
PC value prior to stacking.

AN1283/D MOTOROLA
19

3.12 Resets

Reset procedures handle system initialization and recovery from catastrophic failure. M68HC16 microcon-
trollers perform resets with a combination of hardware and software. The system integration module deter-
mines whether a reset is valid, asserts control signals, performs basic system configuration and boot ROM
selection based on hardware mode-select inputs, then passes control to the CPU16.

Reset occurs when an active low logic level on the RESET pin is clocked into the SIM. Resets are gated by
the CLKOUT signal. Asynchronous resets are assumed to be catastrophic. An asynchronous reset can oc-
cur on any clock edge. Synchronous resets are timed to occur at the end of bus cycles. If there is no clock
when RESET is asserted, reset does not occur until the clock starts. Resets are clocked in order to allow
completion of write cycles in progress at the time RESET is asserted.

Reset is the highest-priority CPU16 exception. Any processing in progress is aborted by the reset exception,
and cannot be restarted. Only essential tasks are performed during reset exception processing. Other ini-
tialization tasks must be accomplished by the exception handler routine.

The logic states of certain data bus pins during reset determine SIM operating configuration. In addition, the
state of the MODCLK pin determines system clock source and the state of the BKPT pin determines what
happens during subsequent breakpoint assertions.

Generally, module pins default to port functions, and input/output ports are set to input state. This is accom-
plished by disabling pin functions in the appropriate control registers, and by clearing the appropriate port
data direction registers.

3.12.1 Reset Timing

The RESET input must be asserted for a specified minimum period in order for reset to occur. External RE-
SET assertion can be delayed internally for a period equal to the longest bus cycle time (or the bus monitor
timeout period) in order to protect write cycles from being aborted by reset. While RESET is asserted, SIM
pins are either in an inactive, high-impedance state or are driven to their inactive states.

When an external device asserts RESET for the proper period, reset control logic clocks the signal into an
internal latch. The control logic drives the RESET pin low for an additional 512 CLKOUT cycles after it de-
tects that the RESET signal is no longer being externally driven, to guarantee this length of reset to the en-
tire system.

If an internal source asserts a reset signal, the reset control logic asserts RESET for a minimum of 512 cy-
cles. If the reset signal is still asserted at the end of 512 cycles, the control logic continues to assert RESET
until the internal reset signal is negated.

After 512 cycles have elapsed, the reset input pin goes to an inactive, high-impedance state for 10 cycles.
At the end of this 10-cycle period, the reset input is tested. When the input is at logic level one, reset excep-
tion processing begins. If, however, the reset input is at logic level zero, the reset control logic drives the pin
low for another 512 cycles. At the end of this period, the pin again goes to high-impedance state for 10 cy-
cles, then it is tested again. The process repeats until RESET is released.

During power-on reset, an internal circuit in the SIM drives the IMB internal and external reset lines. The
circuit releases the internal reset line as VDD ramps up to the minimum specified value, and SIM pins are
initialized. When VDD reaches the specified minimum value, the clock synthesizer VCO begins operation.
Clock frequency ramps up to the specified limp mode frequency. The external RESET line remains asserted
until the clock synthesizer PLL locks and 512 CLKOUT cycles elapse.

The SIM clock synthesizer provides clock signals to the other MCU modules. After the clock is running and
the internal reset signal is asserted for four clock cycles, these modules reset. VDD ramp time and VCO fre-
quency ramp time determine how long these four cycles take. Worst case is approximately 15 milliseconds.
During this period, module port pins may be in an indeterminate state. While input-only pins can be put in a
known state by means of external pull-up resistors, external logic on input/output or output-only pins must
condition the lines during this time. Active drivers require high-impedance buffers or isolation resistors to
prevent conflict.

MOTOROLA AN1283/D
20

3.13 Interrupts

Interrupt recognition and servicing involve complex interaction between the central processing unit, the sys-
tem integration module, and a device or module requesting interrupt service.

The CPU16 provides for eight levels of interrupt priority (0–7), seven automatic interrupt vectors, and 200
assignable interrupt vectors. All interrupts with priorities less than 7 can be masked by the interrupt priority
(IP) field in the condition code register. The CPU16 handles interrupts as a type of asynchronous exception.

Interrupt recognition is based on the states of interrupt request signals IRQ[7:1] and the IP mask value. Each
of the signals corresponds to an interrupt priority. IRQ1 has the lowest priority, and IRQ7 has the highest
priority.

The IP field consists of three bits (CCR[7:5]). Binary values %000 to %111 provide eight priority masks.
Masks prevent an interrupt request of a priority less than or equal to the mask value (except for IRQ7) from
being recognized and processed. When IP contains %000, no interrupt is masked. During exception pro-
cessing, the IP field is set to the priority of the interrupt being serviced.

Interrupt request signals can be asserted by external devices or by microcontroller modules. Request lines
are connected internally by means of a wired NOR — simultaneous requests of differing priority can be
made. Internal assertion of an interrupt request signal does not affect the logic state of the corresponding
MCU pin.

External interrupt requests are routed to the CPU16 via the external bus interface and SIM interrupt control
logic. The CPU treats external interrupt requests as though they come from the SIM.

External IRQ[6:1] are active-low level-sensitive inputs. External IRQ7 is an active-low transition-sensitive
input. IRQ7 requires both an edge and a voltage level for validity.

IRQ[6:1] are maskable. IRQ7 is nonmaskable. The IRQ7 input is transition-sensitive in order to prevent re-
dundant servicing and stack overflow. A nonmaskable interrupt is generated each time IRQ7 is asserted,
and each time the priority mask changes from %111 to a lower number while IRQ7 is asserted.

Interrupt requests are sampled on consecutive falling edges of the system clock. Interrupt request input cir-
cuitry has hysteresis. To be valid, a request signal must be asserted for at least two consecutive clock pe-
riods. Valid requests do not cause immediate exception processing, but are left pending. Pending requests
are processed at instruction boundaries or when exception processing of higher-priority exceptions is com-
plete.

The CPU16 does not latch the priority of a pending interrupt request. If an interrupt source of higher priority
makes a service request while a lower priority request is pending, the higher priority request is serviced. If
an interrupt request of equal or lower priority than the current IP mask value is made, the CPU does not
recognize the occurrence of the request in any way.

3.13.1 Interrupt Acknowledge and Arbitration

Interrupt acknowledge bus cycles are generated during exception processing. When the CPU16 detects
one or more interrupt requests of a priority higher than the interrupt priority mask value, it performs a CPU
space read from address $FFFFF : [IP] : 1.

The CPU space read cycle performs two functions: it places a mask value corresponding to the highest pri-
ority interrupt request on the address bus, and it acquires an exception vector number from the interrupt
source. The mask value also serves two purposes: it is latched into the CCR IP field in order to mask lower-
priority interrupts during exception processing, and it is decoded by modules that have requested interrupt
service to determine whether the current interrupt acknowledge cycle pertains to them.

Modules that have requested interrupt service decode the IP value placed on the address bus at the begin-
ning of the interrupt acknowledge cycle, and if their requests are at the specified IP level, respond to the
cycle. Arbitration between simultaneous requests of the same priority is performed by means of serial con-
tention between module interrupt arbitration (IARB) field bit values.

AN1283/D MOTOROLA
21

Each module that can make an interrupt service request, including the SIM, has an IARB field in its config-
uration register. An IARB field can be assigned a value from %0001 (lowest priority) to %1111 (highest pri-
ority). A value of %0000 in an IARB field causes the CPU16 to process a spurious interrupt exception when
an interrupt from that module is recognized.

Because the EBI manages external interrupt requests, the SIM IARB value is used for arbitration between
internal and external interrupt requests. The reset value of IARB for the SIM is %1111, and the reset IARB
value for all other modules is %0000. Initialization software must assign different IARB values in order to
implement an arbitration scheme.

Each module must be assigned a unique IARB value. When two or more IARB fields have the same nonzero
value, the CPU16 attempts to interpret multiple vector numbers simultaneously, with unpredictable conse-
quences.

Arbitration must always take place, even when a single source requests service. This point is important for
two reasons: the CPU interrupt acknowledge cycle is not driven on the external bus unless the SIM wins
contention, and failure to contend causes an interrupt acknowledge bus cycle to be terminated by a bus er-
ror, which causes a spurious interrupt exception to be taken.

When arbitration is complete, the dominant module must place an interrupt vector number on the data bus
and terminate the bus cycle. In the case of an external interrupt request, because the interrupt acknowledge
cycle is transferred to the external bus, an external device must decode the mask value and respond with
a vector number, then generate bus cycle termination signals. If the device does not respond in time, a spu-
rious interrupt exception is taken.

The periodic interrupt timer (PIT) in the SIM can generate internal interrupt requests of specific priority at
predetermined intervals. By hardware convention, PIT interrupts are serviced before external interrupt ser-
vice requests of the same priority.

3.13.2 Interrupt Processing Summary

A valid interrupt service request has been detected and is pending.

The CPU finishes higher priority exception processing or reaches an instruction boundary.
Processor state is stacked, then the CCR PK extension field is cleared.
FC[2:0] are driven to %111 (CPU space) encoding.
The address bus is driven as follows:

ADDR[23:20] = %1111;
ADDR[19:16] = %1111, indicating an interrupt acknowledge CPU space cycle;
ADDR[15:4] = %111111111111;
ADDR[3:1] = the priority of the interrupt request being acknowledged;
ADDR0 = %1.

Request priority is latched into the CCR IP field from the address bus.
Modules or external peripherals that have requested interrupt service decode ADDR[3:1].
IARB contention takes place.
The interrupt vector number is generated, in one of four ways:

If contention has not produced a dominant interrupt source (IARB = %0000), the CPU16
generates the spurious interrupt vector number.

If contention has produced a dominant interrupt source, it supplies the vector number.
If the autovector signal is asserted, the CPU16 generates a vector number that corresponds to

interrupt request priority.
If the bus monitor asserts the bus error signal, the CPU16 generates the spurious interrupt vector

number.
The CPU16 converts the vector number to a vector address.
The content of the vector address is loaded into the PC.
The exception handler routine begins to execute.

MOTOROLA AN1283/D
22

3.14 Development Support

The CPU16 incorporates powerful tools for tracking program execution and for system debugging. These
tools are deterministic opcode tracking, breakpoint exceptions, and background debugging mode. Judicious
use of CPU16 capabilities permits in-circuit emulation and system debugging using a bus state analyzer, a
simple serial interface, and a terminal. Refer to CPU16 Reference Manual (CPU16RM/AD) for more infor-
mation.

4 COMPARISON OF INSTRUCTION SETS
This section provides detailed analysis of differences between M68HC11 instructions and CPU16 instruc-
tions. Topics include functionally equivalent instructions, instructions with the same mnemonic that operate
differently, functions that perform the same operation in a different way, and unimplemented instructions.

4.1 Functionally Equivalent Instructions

The CPU16 has a number of instructions that are functionally equivalent to M68HC11 instructions — a
CPU16 instruction with a different mnemonic that performs the same task as an M68HC11 instruction. The
following paragraphs give the mnemonic of the M68HC11 instruction, then discuss the equivalent CPU16
operation.

4.1.1 BHS

The BHS mnemonic is used in the M68HC11 CPU instruction set to differentiate a branch based on a com-
parison of unsigned numbers from a branch based on operations that clear the Carry bit. The CPU16 uses
only the BCC mnemonic.

4.1.2 BHO

The BLO mnemonic is used in the M68HC11 CPU instruction set to differentiate a branch based on a com-
parison of unsigned numbers from a branch based on operations that set the Carry bit. The CPU16 uses
only the BCS mnemonic.

4.1.3 CLC

The CLC instruction has been replaced by ANDP. ANDP performs AND between the content of the condi-
tion code register and an unsigned immediate operand, then replaces the content of the CCR with the result.
The PK extension field (CCR[3:0]) is not affected.

The following code can be used to clear the C bit in the CCR:

ANDP #$FEFF

The ANDP instruction can clear the entire CCR, except for the PK extension field, at once.

4.1.4 CLI

The CLI instruction has been replaced by ANDP. ANDP performs AND between the content of the condition
code register and an unsigned immediate operand, then replaces the content of the CCR with the result.
The PK extension field (CCR[3:0]) is not affected.

The following code can be used to clear the IP field in the CCR:

ANDP #$FF1F

The ANDP instruction can clear the entire CCR, except for the PK extension field, at once.

AN1283/D MOTOROLA
23

4.1.5 CLV

The CLV instruction has been replaced by ANDP. ANDP performs AND between the content of the condi-
tion code register and an unsigned immediate operand, then replaces the content of the CCR with the result.
The PK extension field (CCR[3:0]) is not affected.

The following code can be used to clear the V bit in the CCR:

ANDP #$FDFF

The ANDP instruction can clear the entire CCR, except for the PK extension field, at once.

4.1.6 DES

The DES instruction has been replaced by AIS. AIS adds a 20-bit value to concatenated SK and SP. The
20-bit value is formed by sign-extending an 8-bit or 16-bit signed immediate operand.

The following code can be used to perform a DES:

AIS –1

CPU16 stacking operations normally use 16-bit words and even word addresses, while M68HC11 CPU
stacking operations normally use bytes and byte addresses. If the CPU16 stack pointer is misaligned as a
result of a byte operation, performance can be degraded.

4.1.7 DEX

The DEX instruction has been replaced by AIX. AIX adds a 20-bit value to concatenated XK and IX. The
20-bit value is formed by sign-extending an 8-bit or 16-bit signed immediate operand.

The following code can be used to perform a DEX:

AIX –1

4.1.8 DEY

The DEY instruction has been replaced by AIY. AIY adds a 20-bit value to concatenated YK and IY. The
20-bit value is formed by sign-extending an 8-bit or 16-bit signed immediate operand.

The following code can be used to perform a DEY:

AIY –1

4.1.9 INS

The INS instruction has been replaced by AIS. AIS adds a 20-bit value to concatenated SK and SP. The
20-bit value is formed by sign-extending an 8-bit or 16-bit signed immediate operand.

The following code can be used to perform an INS:

AIS –1

CPU16 stacking operations normally use 16-bit words and even word addresses, while M68HC11 CPU
stacking operations normally use bytes and byte addresses. If the CPU16 stack pointer is misaligned as a
result of a byte operation, performance can be degraded.

4.1.10 INX

The INX instruction has been replaced by AIX. AIX adds a 20-bit value to concatenated XK and IX. The 20-
bit value is formed by sign-extending an 8-bit or 16-bit signed immediate operand.

The following code can be used to perform an INX:

AIX1

MOTOROLA AN1283/D
24

4.1.11 INY

The INY instruction has been replaced by AIY. AIY adds a 20-bit value to concatenated YK and IY. The 20-
bit value is formed by sign-extending an 8-bit or 16-bit signed immediate operand.

The following code can be used to perform an INY:

AIY 1

4.1.12 PSHX

The PSHX instruction has been replaced by PSHM. PSHM stores the contents of selected registers on the
system stack. Registers are designated by setting bits in a mask byte.

The following code can be used to stack index register X:

PSHM X

The CPU16 can stack up to seven registers with a single PSHM instruction.

4.1.13 PSHY

The PSHY instruction has been replaced by PSHM. PSHM stores the contents of selected registers on the
system stack. Registers are designated by setting bits in a mask byte.

The following code can be used to stack index register Y:

PSHM Y

The CPU16 can stack up to seven registers with a single PSHM instruction.

4.1.14 PULX

The PULX instruction has been replaced by PULM. PULM restores the contents of selected registers from
the system stack. Registers are designated by setting bits in a mask byte.

The following code can be used to restore index register X:

PULM X

The CPU16 can restore up to seven registers with a single PULM instruction. As a part of normal execution,
PULM reads an extra location in memory. The extra data is discarded. A PULM from the highest available
location in memory will cause an attempt to read an unimplemented location, with unpredictable results.

4.1.15 PULY

The PULY instruction has been replaced by PULM. PULM restores the contents of selected registers from
the system stack. Registers are designated by setting bits in a mask byte.

The following code can be used to restore index register Y:

PULM Y

The CPU16 can restore up to seven registers with a single PULM instruction. As a part of normal execution,
PULM reads an extra location in memory. The extra data is discarded. A PULM from the highest available
location in memory will cause an attempt to read an unimplemented location, with unpredictable results.

4.1.16 SEC

The SEC instruction has been replaced by ORP. ORP performs inclusive OR between the content of the
condition code register and an unsigned immediate operand, then replaces the content of the CCR with the
result. The PK extension field (CCR[3:0]) is not affected.

The following code can be used to set the CCR C bit:

AN1283/D MOTOROLA
25

ORP #$0100

The ORP instruction can set all CCR bits, except the PK extension field, at once.

4.1.17 SEI

The SEI instruction has been replaced by ORP. ORP performs inclusive OR between the content of the con-
dition code register and an unsigned immediate operand, then replaces the content of the CCR with the re-
sult. The PK extension field (CCR[3:0]) is not affected.

The following code can be used to set all the bits in the CCR IP field:

ORP #$00E0

The ORP instruction can set all CCR bits, except the PK extension field, at once.

4.1.18 SEV

The SEV instruction has been replaced by ORP. ORP performs inclusive OR between the content of the
condition code register and an unsigned immediate operand, then replaces the content of the CCR with the
result. The PK extension field (CCR[3:0]) is not affected.

The following code can be used to set the CCR V bit:

ORP #$0200

The ORP instruction can set all CCR bits, except the PK extension field, at once.

4.1.19 STOP and WAIT instructions

There are two instructions that put the M68HC11 CPU in an inactive state. Both require that either an inter-
rupt or a reset occur before normal execution of instructions resumes. The STOP instruction turns off on-
chip clocks and reduces power consumption to a minimum while retaining the contents of RAM. The WAIT
instruction suspends processing and reduces power consumption to an intermediate level.

STOP operation is controlled by the S bit in the CCR. If S = 0 when STOP is executed, the MCU goes to
stop condition. If S = 1 when STOP is executed, the STOP opcode is treated as a NOP. While the MCU is
stopped, all MCU clocks, including the crystal oscillator, are turned off, and all internal peripheral functions
stop. The MCU remains stopped until an interrupt or reset occurs. The interrupt can be an internally-gener-
ated interrupt, an external IRQ, or an XIRQ. An internal interrupt or the IRQ pin re-activate the MCU only
when the I bit in the CCR is cleared — processing resumes with the instruction that follows the STOP in-
struction. XIRQ assertion always activates the MCU, but recovery sequence depends upon X-bit state. If X
= 0, the MCU executes the stacking sequence leading to normal XIRQ interrupt service when it restarts. If
X = 1, processing restarts with the instruction that follows the STOP instruction. When a reset is used to
restart the system, a normal reset sequence is performed before processing begins.

When WAI is executed, CPU registers are stored and processing is suspended. The on-chip crystal oscil-
lator remains active. The MCU remains in wait state until an interrupt is detected. The interrupt can be an
external IRQ, an XIRQ, or any of the internally generated interrupts, such as the timer or serial interrupts.
CCR interrupt mask bits (I and X) affect interrupt recognition during wait state. Reduction of power during
wait depends on how many internal peripheral clock signals are turned off. These clocks must be turned off
by means of control bits in the appropriate peripheral system registers. The MCU free-running timer system
is shut down only if the I bit is set and the COP system is disabled. WAI does not significantly reduce analog-
to-digital converter power consumption. While in the wait state, the address/data bus repeatedly runs read
cycles to the address where the CCR contents are stacked.

The CPU16 also has two instructions that put it in an inactive state. Both require that either an interrupt or
a reset exception occur before normal execution resumes. LPSTOP minimizes microcontroller power con-
sumption. WAI idles the CPU16, but does not affect operation of other microcontroller modules. To make
certain that conditions for termination of LPSTOP and WAI are correct, interrupts are not recognized until
after the instruction following ANDP, ORP, TAP, and TDP executes. This prevents interrupt exception pro-
cessing during the period after the mask changes but before the following instruction executes.

MOTOROLA AN1283/D
26

LPSTOP operation is controlled by the S bit in the CCR. If S = 0 when LPSTOP is executed, the IP field
from the condition code register is copied into an external bus interface, and the MCU system clock is dis-
abled. If S = 1, LPSTOP operates in the same way as a 4-cycle NOP. The CPU16 initiates low-power stop,
but it and other controller modules are deactivated by the microcontroller system integration module. Reac-
tivation is also handled by the integration module. When a reset or an interrupt of higher priority than the IP
value occurs, the integration module activates the CPU16, and the appropriate exception processing se-
quence begins.

When WAI is executed, internal CPU clocks are stopped, and normal execution of instructions ceases. The
IP field is not copied to the integration module. System clocks continue to run. The processor waits until a
reset or an interrupt of higher priority than the IP value occurs, then begins the appropriate exception pro-
cessing sequence. Because the system integration module does not restart the CPU16, interrupts are ac-
knowledged more quickly following WAI than following LPSTOP.

4.2 Instructions That Operate Differently

There are a number of CPU16 instructions that have the same mnemonic as an M68HC11 instruction, but
operate differently. The following paragraphs discuss the differences in detail.

4.2.1 BSR

The CPU16 stack frame differs from the M68HC11 CPU stack frame. The CPU16 stacks the current PC
and CCR, but restores only the return PK : PC. The programmer must designate (PSHM) which other reg-
isters are stacked during a subroutine. Because SK : SP point to the next available word address, stacked
CPU16 parameters are at a different offset from the stack pointer than stacked M68HC11 CPU parameters.
In order for RTS to work with all three calling instructions, the PK : PC value stacked by BSR is decremented
by two before being pushed on to the stack. Stacked PC value is the return address + $0002.

4.2.2 JSR

The CPU16 stack frame differs from the M68HC11 CPU stack frame. The CPU16 stacks the current PC
and CCR, but restores only the return PK : PC. The programmer must designate (PSHM) which other reg-
isters are stacked during a subroutine. Because SK : SP point to the next available word address, stacked
CPU16 parameters are at a different offset from the stack pointer than stacked M68HC11 CPU parameters.

4.2.3 PSHA, PSHB

These instructions operate in the same way as the M68HC11 CPU instructions with the same mnemonics.
However, because the CPU16 normally pushes words from an even boundary, pushing byte data to the
stack can misalign the stack pointer and degrade performance.

4.2.4 PULA, PULB

These instructions operate in the same way as the M68HC11 CPU instructions with the same mnemonics.
However, because the CPU16 normally pulls words from the stack, pulling byte data can misalign the stack
pointer and degrade performance.

4.2.5 RTI

The CPU16 stack frame differs from the M68HC11 CPU stack frame. The CPU16 stacks only the current
PC and

CCR

before exception processing begins. In order to resume execution after interrupt with the cor-
rect instruction, RTI subtracts $0006 from the stacked PK : PC.

AN1283/D MOTOROLA
27

4.2.6 SWI

The CPU16 stack frame differs from the M68HC11 CPU stack frame. The PK : PC value at the time of ex-
ecution is the first word address of SWI plus $0006. If this value were stacked, RTI would cause SWI to
execute again. In order to resume execution with the instruction following SWI, $0002 is added to the PK :
PC value prior to stacking. PSHM must be used to stack other registers during an interrupt.

4.2.7 TAP

The CPU16 CCR differs from the M68HC11 CPU CCR. The CPU16 interrupt priority scheme differs from
that of the M68HC11 CPU, and the CPU16 interrupt priority field cannot be changed by the TAP instruction.

4.2.7.1

M68HC11

CPU

Implementation:

4.2.7.2 CPU16 Implementation:

4.2.8 TPA

The CPU16 CCR and the M68HC11 CPU CCR are different. TPA cannot be used to read CPU16 interrupt
priority status. Use TPD to read the CPU16 CCR interrupt priority field.

4.2.8.1 M68HC11

CPU

Implementation:

4.2.8.2 CPU16 Implementation:

7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

7 6 5 4 3 2 1 0

S X H I N Z V C

7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

7 6 5 4 3 2 1 0

S X H I N Z V C

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S MV H EV N Z V C IP SM PK

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0

MOTOROLA AN1283/D
28

4.3 Instructions With Transparent Changes

Some CPU16 instructions with mnemonics identical to M68HC11 instructions function differently than the
corresponding M68HC11 instructions, but accomplish the equivalent operation. These instructions are dis-
cussed in the following paragraphs.

4.3.1 RTS

The CPU16 stack frame differs from the M68HC11 CPU stack frame. PK : PC is restored during an RTS.
The PK field in the CCR is restored, then the PC value read from the stack is decremented by two before
being loaded into the PC. The PC value is decremented because LBSR and JSR are two-word instructions.
In order for program execution to resume with the instruction immediately following them, RTS must sub-
tract $0002 from the stacked PK : PC value. Because BSR is a one-word instruction, it subtracts $0002 from
PK : PC prior to stacking so that execution will resume correctly after RTS.

4.3.2 TSX

The CPU16 adds 2 to SK : SP before the transfer to XK : IX. The M68HC11 CPU adds 1.

4.3.3 TSY

The CPU16 adds 2 to SK : SP before the transfer to YK : IY. The M68HC11 CPU adds 1.

4.3.4 TXS

The CPU16 subtracts 2 from XK : IX before the transfer to SK : SP. The M68HC11 CPU subtracts 1.

4.3.5 TYS

The CPU16 subtracts 2 from YK : IY before the transfer to SK : SP. The M68HC11 CPU subtracts 1.

4.4 Unimplemented Instructions

There is only one M68HC11 instruction that has no CPU16 equivalent.

4.4.1 TEST

Causes the program counter to be continuously incremented.

AN1283/D MOTOROLA
29

4.5 Summary of Instruction Set Differences

Table 7 provides a quick reference to differences between the CPU16 and M68HC11 CPU instruction sets.
Refer to appropriate paragraphs in the preceding sections for detailed information.

*Motorola assemblers automatically translate LSL mnemonics

Table 7 CPU16 Implementation of M68HC11 CPU Instructions

M68HC11 CPU Instruction CPU16 Implementation

BHS BCC

BLO BCS

BSR Generates a different stack frame

CLC Replaced by ANDP

CLI Replaced by ANDP

CLV Replaced by ANDP

DES Replaced by AIS

DEX Replaced by AIX

DEY Replaced by AIY

INS Replaced by AIS

INX Replaced by AIX

INY Replaced by AIY

JMP IND8 addressing modes replaced by IND20 and EXT modes

JSR IND8 addressing modes replaced by IND20 and EXT modes
Generates a different stack frame

LSL, LSLD Use ASL instructions*

PSHX Replaced by PSHM

PSHY Replaced by PSHM

PULX Replaced by PULM

PULY Replaced by PULM

RTI Reloads PC and CCR only

RTS Uses two-word stack frame

SEC Replaced by ORP

SEI Replaced by ORP

SEV Replaced by ORP

STOP Replaced by LPSTOP

TAP CPU16 CCR bits differ from M68HC11 CPU
CPU16 interrupt priority scheme differs from M68HC11

TPA CPU16 CCR bits differ from M68HC11 CPU
CPU16 interrupt priority scheme differs from M68HC11

TSX Adds 2 to SK : SP before transfer to XK : IX

TSY Adds 2 to SK : SP before transfer to YK : IY

TXS Subtracts 2 from XK : IX before transfer to SK : SP

TXY Transfers XK field to YK field

TYS Subtracts 2 from YK : IY before transfer to SK : SP

TYX Transfers YK field to XK field

WAI Waits indefinitely for interrupt or reset
Generates a different stack frame

MOTOROLA AN1283/D
30

5 COMPARISON OF ADDRESSING MODES
In general, CPU16 addressing modes can be thought of as a superset of M68HC11 CPU addressing
modes. The CPU16 has all the capabilities of the M68HC11 CPU, and each mode is enhanced by the
pseudolinear addressing scheme. In addition, M68HC11 direct addressing has been replaced by an en-
hanced form of indexed addressing that can use the IZ register as a pointer out of reset.

5.1 Addressing Mode Differences

The following paragraphs summarize the differences between CPU16 addressing modes and the equiva-
lent M68HC11 CPU addressing modes. In addition, the effects discussed in 3.7 CPU16 Pipeline Mecha-
nism must be considered when indexed modes are used.

5.1.1 Extended Addressing Mode

In M68HC11 CPU extended addressing mode, the effective address of the instruction appears explicitly in
the two bytes following the opcode. In CPU16 extended addressing mode, the effective address is formed
by concatenating the EK field and the 16-bit byte address. A 20-bit extended mode (EXT20) is used only by
the JMP and JSR instructions. These instructions contain a 20-bit effective address that is zero-extended
to 24 bits to give the instruction an even number of bytes.

5.1.2 Indexed Addressing Mode

M68HC11 CPU indexed addressing mode forms the effective address by adding an 8-bit unsigned offset to
the index register. In CPU16 indexed addressing mode, a 16-bit offset can be used. However, the 16-bit
offset is signed and effective address calculation can yield a negative offset from the index register. An 8-
bit unsigned mode is still available on the CPU16. A 20-bit indexed mode is used for JMP and JSR instruc-
tions. In 20-bit modes, a 20-bit signed offset is added to the value contained in an index register.

5.1.3 Post-Modified Index Addressing Mode

Post-modified index mode is used with the CPU16 MOVB and MOVW instructions. A signed 8-bit offset is
added to index register X after the effective address formed by XK : IX is used.

5.2 Use Of CPU16 Indexed Mode To Replace M68HC11 Direct Mode

In M68HC11 systems, direct addressing mode can be used to perform rapid accesses to RAM or I/O
mapped into bank 0 ($0000 to $00FF), but the CPU16 uses the first 512 bytes of bank 0 for exception vec-
tors. To provide an enhanced replacement for direct mode, the ZK field and index register Z have been as-
signed reset initialization vectors. After ZK : IZ have been initialized, indexed addressing can provide rapid
access to any address in the memory map.

6 INSTRUCTION SET REFERENCE
Table 8 and Table 9 are comprehensive references to the M68HC11 CPU and the CPU16 instructions sets.
For more detailed information, please refer to the M68HC11 Reference Manual (M68HC11RM/AD) and to
the CPU16 Reference Manual (CPU16RM/AD).

AN1283/D MOTOROLA
31

Table 8 M68HC11 Instruction Set (Sheet 1 of 6)

Mnemonic Operation Description Addressing Instruction Condition Codes
Mode Opcode Operand Cycles S X H I N Z V C

ABA Add
Accumulators

A + B ⇒ A INH 1B — 2 — — ∆ — ∆ ∆ ∆ ∆

ABX Add B to X IX + (00 : B) ⇒ IX INH 3A — 3 — — — — — — — —
ABY Add B to Y IY + (00 : B) ⇒ IY INH 18 3A — 4 — — — — — — — —

ADCA (opr) Add with
Carry to A

A + M + C ⇒ A A IMM
A DIR
A EXT
A IND,X
A IND,Y

89
99
 B9
A9

18 A9

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — ∆ — ∆ ∆ ∆ ∆

ADCB (opr) Add with
Carry to B

B + M + C ⇒ B B IMM
B DIR
B EXT
B IND,X
B IND,Y

C9
D9
 F9
E9

18 E9

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — ∆ — ∆ ∆ ∆ ∆

ADDA (opr) Add Memory
to A

A + M ⇒ A A IMM
A DIR
A EXT
A IND,X
A IND,Y

8B
9B
 BB
AB

18 AB

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — ∆ — ∆ ∆ ∆ ∆

ADDB (opr) Add Memory
to B

B + M ⇒ B B IMM
B DIR
B EXT
B IND,X
B IND,Y

CB
DB
 FB
EB

18 EB

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — ∆ — ∆ ∆ ∆ ∆

ADDD (opr) Add 16-Bit to
D

D + (M : M + 1) ⇒ D IMM
DIR
EXT
IND,X
IND,Y

C3
D3
F3
E3

18 E3

jj kk
dd
hh ll
ff
ff

4
5
6
6
7

— — — — ∆ ∆ ∆ ∆

ANDA (opr) AND A with
Memory

A • M ⇒ A A IMM
A DIR
A EXT
A IND,X
A IND,Y

84
94
 B4
A4

18 A4

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

ANDB (opr) AND B with
Memory

B • M ⇒ B B IMM
B DIR
B EXT
B IND,X
B IND,Y

C4
D4
 F4
E4

18 E4

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

ASL (opr) Arithmetic
Shift Left

EXT
IND,X
IND,Y

78
68

18 68

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ ∆ ∆

ASLA Arithmetic
Shift Left A

A INH 48 — 2 — — — — ∆ ∆ ∆ ∆

ASLB Arithmetic
Shift Left B

B INH 58 — 2 — — — — ∆ ∆ ∆ ∆

ASLD Arithmetic
Shift Left D

INH 05 — 3 — — — — ∆ ∆ ∆ ∆

ASR Arithmetic
Shift Right

EXT
IND,X
IND,Y

77
67

18 67

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ ∆ ∆

ASRA Arithmetic
Shift Right A

A INH 47 — 2 — — — — ∆ ∆ ∆ ∆

ASRB Arithmetic
Shift Right B

B INH 57 — 2 — — — — ∆ ∆ ∆ ∆

BCC (rel) Branch if
Carry Clear

? C = 0 REL 24 rr 3 — — — — — — — —

BCLR (opr)
 (msk)

Clear Bit(s) M • (mm) ⇒ M DIR
IND,X
IND,Y

15
1D

18 1D

dd mm
ff mm
ff mm

6
7
8

— — — — ∆ ∆ 0 —

BCS (rel) Branch if
Carry Set

? C = 1 REL 25 rr 3 — — — — — — — —

BEQ (rel) Branch if =
Zero

? Z = 1 REL 27 rr 3 — — — — — — — —

BGE (rel) Branch if ∆
Zero

? N ⊕ V = 0 REL 2C rr 3 — — — — — — — —

BGT (rel) Branch if >
Zero

? Z + (N ⊕ V) = 0 REL 2E rr 3 — — — — — — — —

C
0

b7 b0

C
0

b7 b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

Cb7 b0

Cb7 b0

Cb7 b0

MOTOROLA AN1283/D
32

BHI (rel) Branch if
Higher

? C + Z = 0 REL 22 rr 3 — — — — — — — —

BHS (rel) Branch if
Higher or

Same

? C = 0 REL 24 rr 3 — — — — — — — —

BITA (opr) Bit(s) Test A
with Memory

A • M A IMM
A DIR
A EXT
A IND,X
A IND,Y

85
95
 B5
A5

18 A5

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

BITB (opr) Bit(s) Test B
with Memory

B • M B IMM
B DIR
B EXT
B IND,X
B IND,Y

C5
D5
 F5
E5

18 E5

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

BLE (rel) Branch if ∆
Zero

? Z + (N ⊕ V) = 1 REL 2F rr 3 — — — — — — — —

BLO (rel) Branch if
Lower

? C = 1 REL 25 rr 3 — — — — — — — —

BLS (rel) Branch if
Lower or

Same

? C + Z = 1 REL 23 rr 3 — — — — — — — —

BLT (rel) Branch if <
Zero

? N ⊕ V = 1 REL 2D rr 3 — — — — — — — —

BMI (rel) Branch if
Minus

? N = 1 REL 2B rr 3 — — — — — — — —

BNE (rel) Branch if not
= Zero

? Z = 0 REL 26 rr 3 — — — — — — — —

BPL (rel) Branch if Plus ? N = 0 REL 2A rr 3 — — — — — — — —
BRA (rel) Branch Always ? 1 = 1 REL 20 rr 3 — — — — — — — —

BRCLR(opr)
 (msk)
 (rel)

Branch if
 Bit(s) Clear

? M • mm = 0 DIR
IND,X
IND,Y

13
1F

18 1F

dd mm rr
ff mm rr
ff mm rr

6
7
8

— — — — — — — —

BRN (rel) Branch Never ? 1 = 0 REL 21 rr 3 — — — — — — — —
BRSET(opr)

 (msk)
 (rel)

Branch if
Bit(s) Set

? (M) • mm = 0 DIR
IND,X
IND,Y

12
1E

18 1E

dd mm rr
ff mm rr
ff mm rr

6
7
8

— — — — — — — —

BSET (opr)
 (msk)

Set Bit(s) M + mm ⇒ M DIR
IND,X
IND,Y

14
1C

18 1C

dd mm
ff mm
ff mm

6
7
8

— — — — ∆ ∆ 0 —

BSR (rel) Branch to
Subroutine

See Figure 3–2 REL 8D rr 6 — — — — — — — —

BVC (rel) Branch if
Overflow Clear

? V = 0 REL 28 rr 3 — — — — — — — —

BVS (rel) Branch if
Overflow Set

? V = 1 REL 29 rr 3 — — — — — — — —

CBA Compare A to
B

A – B INH 11 — 2 — — — — ∆ ∆ ∆ ∆

CLC Clear Carry Bit 0 ⇒ C INH 0C — 2 — — — — — — — 0
CLI Clear

Interrupt Mask
0 ⇒ I INH 0E — 2 — — — 0 — — — —

CLR (opr) Clear Memory
Byte

0 ⇒ M EXT
IND,X
IND,Y

7F
6F

18 6F

hh ll
ff
ff

6
6
7

— — — — 0 1 0 0

CLRA Clear
Accumulator A

0 ⇒ A A INH 4F — 2 — — — — 0 1 0 0

CLRB Clear
Accumulator B

0 ⇒ B B INH 5F — 2 — — — — 0 1 0 0

CLV Clear
Overflow Flag

0 ⇒ V INH 0A — 2 — — — — — — 0 —

CMPA (opr) Compare A to
Memory

A – M A IMM
A DIR
A EXT
A IND,X
A IND,Y

81
91
 B1
A1

18 A1

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ ∆ ∆

CMPB (opr) Compare B to
Memory

B – M B IMM
B DIR
B EXT
B IND,X
B IND,Y

C1
D1
 F1
E1

18 E1

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ ∆ ∆

COM (opr) Ones
Complement
Memory Byte

$FF – M ⇒ M EXT
IND,X
IND,Y

73
63

18 63

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ 0 1

Table 8 M68HC11 Instruction Set (Sheet 2 of 6)

Mnemonic Operation Description Addressing Instruction Condition Codes
Mode Opcode Operand Cycles S X H I N Z V C

AN1283/D MOTOROLA
33

COMA Ones
Complement

A

$FF – A ⇒ A A INH 43 — 2 — — — — ∆ ∆ 0 1

COMB Ones
Complement

B

$FF – B ⇒ B B INH 53 — 2 — — — — ∆ ∆ 0 1

CPD (opr) Compare D to
Memory 16-Bit

D – M : M + 1 IMM
DIR
EXT
IND,X
IND,Y

1A 83
1A 93
1A B3
1A A3
CD A3

jj kk
dd
hh ll
ff
ff

5
6
7
7
7

— — — — ∆ ∆ ∆ ∆

CPX (opr) Compare X to
Memory 16-Bit

IX – M : M + 1 IMM
DIR
EXT
IND,X
IND,Y

8C
9C
 BC
AC

CD AC

jj kk
dd
hh ll
ff
ff

4
5
6
6
7

— — — — ∆ ∆ ∆ ∆

CPY (opr) Compare Y to
Memory 16-Bit

IY – M : M + 1 IMM
DIR
EXT
IND,X
IND,Y

18 8C
18 9C
18 BC
1A AC
18 AC

jj kk
dd
hh ll
ff
ff

5
6
7
7
7

— — — — ∆ ∆ ∆ ∆

DAA Decimal
Adjust A

Adjust Sum to BCD INH 19 — 2 — — — — ∆ ∆ ∆ ∆

DEC (opr) Decrement
Memory Byte

M – 1 ⇒ M EXT
IND,X
IND,Y

7A
6A

18 6A

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ ∆ —

DECA Decrement
Accumulator

A

A – 1 ⇒ A A INH 4A — 2 — — — — ∆ ∆ ∆ —

DECB Decrement
Accumulator

B

B – 1 ⇒ B B INH 5A — 2 — — — — ∆ ∆ ∆ —

DES Decrement
Stack Pointer

SP – 1 ⇒ SP INH 34 — 3 — — — — — — — —

DEX Decrement
Index

Register X

IX – 1 ⇒ IX INH 09 — 3 — — — — — ∆ — —

DEY Decrement
Index

Register Y

IY – 1 ⇒ IY INH 18 09 — 4 — — — — — ∆ — —

EORA (opr) Exclusive OR
A with Memory

A ⊕ M ⇒ A A IMM
A DIR
A EXT
A IND,X
A IND,Y

88
98
 B8
A8

18 A8

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

EORB (opr) Exclusive OR
B with Memory

B ⊕ M ⇒ B B IMM
B DIR
B EXT
B IND,X
B IND,Y

C8
D8
 F8
E8

18 E8

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

FDIV Fractional
Divide 16 by

16

D / IX ⇒ IX; r ⇒ D INH 03 — 41 — — — — — ∆ ∆ ∆

IDIV Integer Divide
16 by 16

D / IX ⇒ IX; r ⇒ D INH 02 — 41 — — — — — ∆ 0 ∆

INC (opr) Increment
Memory Byte

M + 1 ⇒ M EXT
IND,X
IND,Y

7C
6C

18 6C

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ ∆ —

INCA Increment
Accumulator

A

A + 1 ⇒ A A INH 4C — 2 — — — — ∆ ∆ ∆ —

INCB Increment
Accumulator

B

B + 1 ⇒ B B INH 5C — 2 — — — — ∆ ∆ ∆ —

INS Increment
Stack Pointer

SP + 1 ⇒ SP INH 31 — 3 — — — — — — — —

INX Increment
Index

Register X

IX + 1 ⇒ IX INH 08 — 3 — — — — — ∆ — —

INY Increment
Index

Register Y

IY + 1 ⇒ IY INH 18 08 — 4 — — — — — ∆ — —

JMP (opr) Jump See Figure 3–2 EXT
IND,X
IND,Y

7E
6E

18 6E

hh ll
ff
ff

3
3
4

— — — — — — — —

Table 8 M68HC11 Instruction Set (Sheet 3 of 6)

Mnemonic Operation Description Addressing Instruction Condition Codes
Mode Opcode Operand Cycles S X H I N Z V C

MOTOROLA AN1283/D
34

JSR (opr) Jump to
Subroutine

See Figure 3–2 DIR
EXT
IND,X
IND,Y

9D
BD
 AD

18 AD

dd
hh ll
ff
ff

5
6
6
7

— — — — — — — —

LDAA (opr) Load
Accumulator

A

M ⇒ A A IMM
A DIR
A EXT
A IND,X
A IND,Y

86
96
 B6
A6

18 A6

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

LDAB (opr) Load
Accumulator

B

M ⇒ B B IMM
B DIR
B EXT
B IND,X
B IND,Y

C6
D6
 F6
E6

18 E6

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

LDD (opr) Load Double
Accumulator

D

M ⇒ A,M + 1 ⇒ B IMM
DIR
EXT
IND,X
IND,Y

CC
DC
 FC
EC

18 EC

jj kk
dd
hh ll
ff
ff

3
4
5
5
6

— — — — ∆ ∆ 0 —

LDS (opr) Load Stack
Pointer

M : M + 1 ⇒ SP IMM
DIR
EXT
IND,X
IND,Y

8E
9E
 BE
AE

18 AE

jj kk
dd
hh ll
ff
ff

3
4
5
5
6

— — — — ∆ ∆ 0 —

LDX (opr) Load Index
Register

X

M : M + 1 ⇒ IX IMM
DIR
EXT
IND,X
IND,Y

CE
DE
 FE
EE

CD EE

jj kk
dd
hh ll
ff
ff

3
4
5
5
6

— — — — ∆ ∆ 0 —

LDY (opr) Load Index
Register

Y

M : M + 1 ⇒ IY IMM
DIR
EXT
IND,X
IND,Y

18 CE
18 DE
18 FE
1A EE
18 EE

jj kk
dd
hh ll
ff
ff

4
5
6
6
6

— — — — ∆ ∆ 0 —

LSL (opr) Logical Shift
Left

EXT
IND,X
IND,Y

78
68

18 68

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ ∆ ∆

LSLA Logical Shift
Left A

A INH 48 — 2 — — — — ∆ ∆ ∆ ∆

LSLB Logical Shift
Left B

B INH 58 — 2 — — — — ∆ ∆ ∆ ∆

LSLD Logical Shift
Left Double

INH 05 — 3 — — — — ∆ ∆ ∆ ∆

LSR (opr) Logical Shift
Right

EXT
IND,X
IND,Y

74
64

18 64

hh ll
ff
ff

6
6
7

— — — — 0 ∆ ∆ ∆

LSRA Logical Shift
Right A

A INH 44 — 2 — — — — 0 ∆ ∆ ∆

LSRB Logical Shift
Right B

B INH 54 — 2 — — — — 0 ∆ ∆ ∆

LSRD Logical Shift
Right Double

INH 04 — 3 — — — — 0 ∆ ∆ ∆

MUL Multiply 8 by 8 A ∗ B ⇒ D INH 3D — 10 — — — — — — — ∆
NEG (opr) Two’s

Complement
Memory Byte

0 – M ⇒ M EXT
IND,X
IND,Y

70
60

18 60

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ ∆ ∆

NEGA Two’s
Complement

A

0 – A ⇒ A A INH 40 — 2 — — — — ∆ ∆ ∆ ∆

NEGB Two’s
Complement

 B

0 – B ⇒ B B INH 50 — 2 — — — — ∆ ∆ ∆ ∆

NOP No operation No Operation INH 01 — 2 — — — — — — — —
ORAA (opr) OR

Accumulator
A (Inclusive)

A + M ⇒ A A IMM
A DIR
A EXT
A IND,X
A IND,Y

8A
9A
 BA
AA

18 AA

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

Table 8 M68HC11 Instruction Set (Sheet 4 of 6)

Mnemonic Operation Description Addressing Instruction Condition Codes
Mode Opcode Operand Cycles S X H I N Z V C

C
0

b7 b0

C
0

b7 b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

AN1283/D MOTOROLA
35

ORAB (opr) OR
Accumulator
 B (Inclusive)

B + M ⇒ B B IMM
B DIR
B EXT
B IND,X
B IND,Y

CA
DA
 FA
EA

18 EA

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ 0 —

PSHA Push A onto
Stack

A ⇒ Stk,SP = SP –
1

A INH 36 — 3 — — — — — — — —

PSHB Push B onto
Stack

B ⇒ Stk,SP = SP –
1

B INH 37 — 3 — — — — — — — —

PSHX Push X onto
Stack (Lo

First)

IX ⇒ Stk,SP = SP –
2

INH 3C — 4 — — — — — — — —

PSHY Push Y onto
Stack (Lo

First)

IY ⇒ Stk,SP = SP –
2

INH 18 3C — 5 — — — — — — — —

PULA Pull A from
Stack

SP = SP + 1, A ⇐
Stk

A INH 32 — 4 — — — — — — — —

PULB Pull B from
Stack

SP = SP + 1, B ⇐
Stk

B INH 33 — 4 — — — — — — — —

PULX Pull X From
Stack (Hi

First)

SP = SP + 2, IX ⇐
Stk

INH 38 — 5 — — — — — — — —

PULY Pull Y from
Stack (Hi

First)

SP = SP + 2, IY ⇐
Stk

INH 18 38 — 6 — — — — — — — —

ROL (opr) Rotate Left EXT
IND,X
IND,Y

79
69

18 69

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ ∆ ∆

ROLA Rotate Left A A INH 49 — 2 — — — — ∆ ∆ ∆ ∆

ROLB Rotate Left B B INH 59 — 2 — — — — ∆ ∆ ∆ ∆

ROR (opr) Rotate Right EXT
IND,X
IND,Y

76
66

18 66

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ ∆ ∆

RORA Rotate Right A A INH 46 — 2 — — — — ∆ ∆ ∆ ∆

RORB Rotate Right B B INH 56 — 2 — — — — ∆ ∆ ∆ ∆

RTI Return from
Interrupt

See Figure 3–2 INH 3B — 12 ∆ ↓ ∆ ∆ ∆ ∆ ∆ ∆

RTS Return from
Subroutine

See Figure 3–2 INH 39 — 5 — — — — — — — —

SBA Subtract B
from A

A – B ⇒ A INH 10 — 2 — — — — ∆ ∆ ∆ ∆

SBCA (opr) Subtract with
Carry from A

A – M – C ⇒ A A IMM
A DIR
A EXT
A IND,X
A IND,Y

82
92
 B2
A2

18 A2

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ ∆ ∆

SBCB (opr) Subtract with
Carry from B

B – M – C ⇒ B B IMM
B DIR
B EXT
B IND,X
B IND,Y

C2
D2
 F2
E2

18 E2

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ ∆ ∆

SEC Set Carry 1 ⇒ C INH 0D — 2 — — — — — — — 1
SEI Set Interrupt

Mask
1 ⇒ I INH 0F — 2 — — — 1 — — — —

SEV Set Overflow
Flag

1 ⇒ V INH 0B — 2 — — — — — — 1 —

STAA (opr) Store
Accumulator

A

A ⇒ M A DIR
A EXT
A IND,X
A IND,Y

97
B7
 A7

18 A7

dd
hh ll
ff
ff

3
4
4
5

— — — — ∆ ∆ 0 —

STAB (opr) Store
Accumulator

B

B ⇒ M B DIR
B EXT
B IND,X
B IND,Y

D7
F7
 E7

18 E7

dd
hh ll
ff
ff

3
4
4
5

— — — — ∆ ∆ 0 —

STD (opr) Store
Accumulator

D

A ⇒ M, B ⇒ M + 1 DIR
EXT
IND,X
IND,Y

DD
FD
 ED

18 ED

dd
hh ll
ff
ff

4
5
5
6

— — — — ∆ ∆ 0 —

Table 8 M68HC11 Instruction Set (Sheet 5 of 6)

Mnemonic Operation Description Addressing Instruction Condition Codes
Mode Opcode Operand Cycles S X H I N Z V C

C b7 b0

C b7 b0

C b7 b0

Cb7 b0

Cb7 b0

Cb7 b0

MOTOROLA AN1283/D
36

STOP Stop Internal
Clocks

— INH CF — 2 — — — — — — — —

STS (opr) Store Stack
Pointer

SP ⇒ M : M + 1 DIR
EXT
IND,X
IND,Y

9F
BF
 AF

18 AF

dd
hh ll
ff
ff

4
5
5
6

— — — — ∆ ∆ 0 —

STX (opr) Store Index
Register X

IX ⇒ M : M + 1 DIR
EXT
IND,X
IND,Y

DF
FF
 EF

CD EF

dd
hh ll
ff
ff

4
5
5
6

— — — — ∆ ∆ 0 —

STY (opr) Store Index
Register Y

IY ⇒ M : M + 1 DIR
EXT
IND,X
IND,Y

18 DF
18 FF
1A EF
18 EF

dd
hh ll
ff
ff

5
6
6
6

— — — — ∆ ∆ 0 —

SUBA (opr) Subtract
Memory from

A

A – M ⇒ A A IMM
A DIR
A EXT
A IND,X
A IND,Y

80
90
 B0
A0

18 A0

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ ∆ ∆

SUBB (opr) Subtract
Memory from

B

B – M ⇒ B A IMM
A DIR
A EXT
A IND,X
A IND,Y

C0
D0
 F0
E0

18 E0

ii
dd
hh ll
ff
ff

2
3
4
4
5

— — — — ∆ ∆ ∆ ∆

SUBD (opr) Subtract
Memory from

D

D – M : M + 1 ⇒ D IMM
DIR
EXT
IND,X
IND,Y

83
93
 B3
A3

18 A3

jj kk
dd
hh ll
ff
ff

4
5
6
6
7

— — — — ∆ ∆ ∆ ∆

SWI Software
Interrupt

See Figure 3–2 INH 3F — 14 — — — 1 — — — —

TAB Transfer A to
B

A ⇒ B INH 16 — 2 — — — — ∆ ∆ 0 —

TAP Transfer A to
CC Register

A ⇒ CCR INH 06 — 2 ∆ ↓ ∆ ∆ ∆ ∆ ∆ ∆

TBA Transfer B to
A

B ⇒ A INH 17 — 2 — — — — ∆ ∆ 0 —

TEST TEST (Only in
Test Modes)

Address Bus Counts INH 00 — * — — — — — — — —

TPA Transfer CC
Register to A

CCR ⇒ A INH 07 — 2 — — — — — — — —

TST (opr) Test for Zero
or Minus

M – 0 EXT
IND,X
IND,Y

7D
6D

18 6D

hh ll
ff
ff

6
6
7

— — — — ∆ ∆ 0 0

TSTA Test A for
Zero or Minus

A – 0 A INH 4D — 2 — — — — ∆ ∆ 0 0

TSTB Test B for
Zero or Minus

B – 0 B INH 5D — 2 — — — — ∆ ∆ 0 0

TSX Transfer
Stack Pointer

to X

SP + 1 ⇒ IX INH 30 — 3 — — — — — — — —

TSY Transfer
Stack Pointer

to Y

SP + 1 ⇒ IY INH 18 30 — 4 — — — — — — — —

TXS Transfer X to
Stack Pointer

IX – 1 ⇒ SP INH 35 — 3 — — — — — — — —

TYS Transfer Y to
Stack Pointer

IY – 1 ⇒ SP INH 18 35 — 4 — — — — — — — —

WAI Wait for
Interrupt

Stack Regs & WAIT INH 3E — ** — — — — — — — —

XGDX Exchange D
with X

IX ⇒ D, D ⇒ IX INH 8F — 3 — — — — — — — —

XGDY Exchange D
with Y

IY ⇒ D, D ⇒ IY INH 18 8F — 4 — — — — — — — —

Table 8 M68HC11 Instruction Set (Sheet 6 of 6)

Mnemonic Operation Description Addressing Instruction Condition Codes
Mode Opcode Operand Cycles S X H I N Z V C

AN1283/D MOTOROLA
37

Table 9 CPU16 Instruction Set Summary (Sheet 1 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

ABA Add B to A (A) + (B) ⇒ A INH 370B — 2 — — ∆ — ∆ ∆ ∆ ∆
ABX Add B to X (XK : IX) + (000 : B) ⇒ XK : IX INH 374F — 2 — — — — — — — —

ABY Add B to Y (YK : IY) + (000 : B) ⇒ YK : IY INH 375F — 2 — — — — — — — —

ABZ Add B to Z (ZK : IZ) + (000 : B) ⇒ ZK : IZ INH 376F — 2 — — — — — — — —

ACE Add E to AM[31:15] (AM[31:15]) + (E) ⇒ AM INH 3722 — 2 — ∆ — ∆ — — — —

ACED Add concatenated
E and D to AM

(E : D) + (AM) ⇒ AM INH 3723 — 4 — ∆ — ∆ — — — —

ADCA Add with Carry to A (A) + (M) + C ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

43
53
63
73

1743
1753
1763
1773
2743
2753
2763

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — ∆ — ∆ ∆ ∆ ∆

ADCB Add with Carry to B (B) + (M) + C ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8
E, X
E, Y
E, Z

IND16, X
IND16, Y
IND16, Z

EXT

C3
D3
E3
F3

27C3
27D3
27E3
17C3
17D3
17E3
17F3

ff
ff
ff
ii

—
—
—

gggg
gggg
gggg
hh ll

6
6
6
2
6
6
6
6
6
6
6

— — ∆ — ∆ ∆ ∆ ∆

ADCD Add with Carry to D (D) + (M : M + 1) + C ⇒ D IND8, X
IND8, Y
IND8, Z

E, X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

83
93
A3

2783
2793
27A3
37B3
37C3
37D3
37E3
37F3

ff
ff
ff
—
—
—

jj kk
gggg
gggg
gggg
hh ll

6
6
6
6
6
6
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

ADCE Add with Carry to E (E) + (M : M + 1) + C ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3733
3743
3753
3763
3773

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

ADDA Add to A (A) + (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8
E, X
E, Y
E, Z

IND16, X
IND16, Y
IND16, Z

EXT

41
51
61
71

2741
2751
2761
1741
1751
1761
1771

ff
ff
ff
ii

—
—
—

gggg
gggg
gggg
hh ll

6
6
6
2
6
6
6
6
6
6
6

— — ∆ — ∆ ∆ ∆ ∆

ADDB Add to B (B) + (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8
E, X
E, Y
E, Z

IND16, X
IND16, Y
IND16, Z

EXT

C1
D1
E1
F1

27C1
27D1
27E1
17C1
17D1
17E1
17F1

ff
ff
ff
ii

—
—
—

gggg
gggg
gggg
hh ll

6
6
6
2
6
6
6
6
6
6
6

— — ∆ — ∆ ∆ ∆ ∆

MOTOROLA AN1283/D
38

ADDD Add to D (D) + (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z
IMM8
E, X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

81
91
A1
FC

2781
2791
27A1
37B1
37C1
37D1
37E1
37F1

ff
ff
ff
ii

—
—
—
jjkk

gggg
gggg
gggg
hh ll

6
6
6
2
6
6
6
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

ADDE Add to E (E) + (M : M + 1) ⇒ E IMM8
IMM16

IND16, X
IND16, Y
IND16, Z

EXT

7C
3731
3741
3751
3761
3771

ii
jj kk
gggg
gggg
gggg
hh ll

2
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

ADE Add D to E (E) + (D) ⇒ E INH 2778 — 2 — — — — ∆ ∆ ∆ ∆
ADX Add D to X (XK : IX) + («D) ⇒ XK : IX INH 37CD — 2 — — — — — — — —

ADY Add D to Y (YK : IY) + («D) ⇒ YK : IY INH 37DD — 2 — — — — — — — —

ADZ Add D to Z (ZK : IZ) + («D) ⇒ ZK : IZ INH 37ED — 2 — — — — — — — —

AEX Add E to X (XK : IX) + («E) ⇒ XK : IX INH 374D — 2 — — — — — — — —

AEY Add E to Y (YK : IY) + («E) ⇒ YK : IY INH 375D — 2 — — — — — — — —

AEZ Add E to Z (ZK : IZ) + («E) ⇒ ZK : IZ INH 376D — 2 — — — — — — — —

AIS Add Immediate Data to
SP

SK : SP + «IMM ⇒ SK : SP IMM8
IMM16

3F
373F

ii
jj kk

2
4

— — — — — — — —

AIX Add Immediate Value
to X

XK : IX + «IMM ⇒ XK : IX IMM8
IMM16

3C
373C

ii
jj kk

2
4

— — — — — ∆ — —

AIY Add Immediate Value
to Y

YK : IY + «IMM ⇒ YK : IY IMM8
IMM16

3D
373D

ii
jj kk

2
4

— — — — — ∆ — —

AIZ Add Immediate Value
to Z

ZK : IZ + «IMM ⇒ ZK : IZ IMM8
IMM16

3E
373E

ii
jj kk

2
4

— — — — — ∆ — —

ANDA AND A (A) • (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

46
56
66
76

1746
1756
1766
1776
2746
2756
2766

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

ANDB AND B (B) • (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C6
D6
E6
F6

17C6
17D6
17E6
17F6
27C6
27D6
27E6

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

ANDD AND D (D) • (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z

E, X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

86
96
A6

2786
2796
27A6
37B6
37C6
37D6
37E6
37F6

ff
ff
ff
—
—
—

jj kk
gggg
gggg
gggg
hh ll

6
6
6
6
6
6
4
6
6
6
6

— — — — ∆ ∆ 0 —

ANDE AND E (E) • (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3736
3746
3756
3766
3776

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ 0 —

ANDP1 AND CCR (CCR) • IMM16⇒ CCR IMM16 373A jj kk 4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

Table 9 CPU16 Instruction Set Summary (Sheet 2 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

AN1283/D MOTOROLA
39

ASL Arithmetic Shift Left IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

04
14
24

1704
1714
1724
1734

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

ASLA Arithmetic Shift Left A INH 3704 — 2 — — — — ∆ ∆ ∆ ∆

ASLB Arithmetic Shift Left B INH 3714 — 2 — — — — ∆ ∆ ∆ ∆

ASLD Arithmetic Shift Left D INH 27F4 — 2 — — — — ∆ ∆ ∆ ∆

ASLE Arithmetic Shift Left E INH 2774 — 2 — — — — ∆ ∆ ∆ ∆

ASLM Arithmetic Shift Left
AM

INH 27B6 — 4 — ∆ — ∆ ∆ — — ∆

ASLW Arithmetic Shift Left
Word

IND16, X
IND16, Y
IND16, Z

EXT

2704
2714
2724
2734

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

ASR Arithmetic Shift Right IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

0D
1D
2D

170D
171D
172D
173D

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

ASRA Arithmetic Shift Right A INH 370D — 2 — — — — ∆ ∆ ∆ ∆

ASRB Arithmetic Shift Right B INH 371D — 2 — — — — ∆ ∆ ∆ ∆

ASRD Arithmetic Shift Right D INH 27FD — 2 — — — — ∆ ∆ ∆ ∆

ASRE Arithmetic Shift Right E INH 277D — 2 — — — — ∆ ∆ ∆ ∆

ASRM Arithmetic Shift Right
AM

INH 27BA — 4 — — — ∆ ∆ — — ∆

ASRW Arithmetic Shift Right
Word

IND16, X
IND16, Y
IND16, Z

EXT

270D
271D
272D
273D

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

BCC4 Branch if Carry Clear If C = 0, branch REL8 B4 rr 6, 2 — — — — — — — —

BCLR Clear Bit(s) (M) • (Mask) ⇒ M IND16, X
IND16, Y
IND16, Z

EXT
IND8, X
IND8, Y
IND8, Z

08
18
28
38

1708
1718
1728

mm gggg
mm gggg
mm gggg
mm hh ll

mm ff
mm ff
mm ff

8
8
8
8
8
8
8

— — — — ∆ ∆ 0 —

BCLRW Clear Bit(s) Word (M : M + 1) • (Mask) ⇒
M : M + 1

IND16, X

IND16, Y

IND16, Z

EXT

2708

2718

2728

2738

gggg
mmmm
gggg

mmmm
gggg

mmmm
hh ll

mmmm

10

10

10

10

— — — — ∆ ∆ 0 —

Table 9 CPU16 Instruction Set Summary (Sheet 3 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

MOTOROLA AN1283/D
40

BCS4 Branch if Carry Set If C = 1, branch REL8 B5 rr 6, 2 — — — — — — — —

BEQ4 Branch if Equal If Z = 1, branch REL8 B7 rr 6, 2 — — — — — — — —

BGE4 Branch if Greater Than
or Equal to Zero

If N ⊕ V = 0, branch REL8 BC rr 6, 2 — — — — — — — —

BGND Enter Background De-
bug Mode

If BDM enabled
enter BDM;

else, illegal instruction

INH 37A6 — — — — — — — — — —

BGT 4 Branch if Greater Than
Zero

If Z + (N ⊕ V) = 0, branch REL8 BE rr 6, 2 — — — — — — — —

BHI 4 Branch if Higher If C + Z = 0, branch REL8 B2 rr 6, 2 — — — — — — — —

BITA Bit Test A (A) • (M) IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

49
59
69
79

1749
1759
1769
1779
2749
2759
2769

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

BITB Bit Test B (B) • (M) IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C9
D9
E9
F9

17C9
17D9
17E9
17F9
27C9
27D9
27E9

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

BLE 4 Branch if Less Than or
Equal to Zero

If Z + (N ⊕ V) = 1, branch REL8 BF rr 6, 2 — — — — — — — —

BLS4 Branch if Lower or
Same

If C + Z = 1, branch REL8 B3 rr 6, 2 — — — — — — — —

BLT4 Branch if Less Than
Zero

If N ⊕ V = 1, branch REL8 BD rr 6, 2 — — — — — — — —

BMI 4 Branch if Minus If N = 1, branch REL8 BB rr 6, 2 — — — — — — — —

BNE 4 Branch if Not Equal If Z = 0, branch REL8 B6 rr 6, 2 — — — — — — — —

BPL4 Branch if Plus If N = 0, branch REL8 BA rr 6, 2 — — — — — — — —

BRA Branch Always If 1 = 1, branch REL8 B0 rr 6 — — — — — — — —

BRCLR4 Branch if Bit(s) Clear If (M) • (Mask) = 0, branch IND8, X
IND8, Y
IND8, Z

IND16, X

IND16, Y

IND16, Z

EXT

CB
DB
EB
0A

1A

2A

3A

mm ff rr
mm ff rr
mm ff rr

mm
gggg rrrr

mm
gggg rrrr

mm
gggg rrrr
mm hh ll

rrrr

10, 12
10, 12
10, 12
10, 14

10, 14

10, 14

10, 14

— — — — — — — —

BRN Branch Never If 1 = 0, branch REL8 B1 rr 2 — — — — — — — —

BRSET4 Branch if Bit(s) Set If (M) • (Mask) = 0, branch IND8, X
IND8, Y
IND8, Z

IND16, X

IND16, Y

IND16, Z

EXT

8B
9B
AB
0B

1B

2B

3B

mm ff rr
mm ff rr
mm ff rr

mm
gggg rrrr

mm
gggg rrrr

mm
gggg rrrr
mm hh ll

rrrr

10, 12
10, 12
10, 12
10, 14

10, 14

10, 14

10, 14

— — — — — — — —

BSET Set Bit(s) (M) • (Mask) ⇒ M IND16, X
IND16, Y
IND16, Z

EXT
IND8, X
IND8, Y
IND8, Z

09
19
29
39

1709
1719
1729

mm gggg
mm gggg
mm gggg
 mm hh ll

mm ff
mm ff
mm ff

8
8
8
8
8
8
8

— — — — ∆ ∆ 0 —

Table 9 CPU16 Instruction Set Summary (Sheet 4 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

AN1283/D MOTOROLA
41

BSETW Set Bit(s) in Word (M : M + 1) • (Mask)
⇒ M : M + 1

IND16, X

IND16, Y

IND16, Z

EXT

2709

2719

2729

2739

gggg
mmmm
gggg

mmmm
gggg

mmmm
hh ll

mmmm

10

10

10

10

— — — — ∆ ∆ 0 —

BSR Branch to Subroutine (PK : PC) − 2 ⇒ PK : PC
Push (PC)

(SK : SP) – 2 ⇒ SK : SP
Push (CCR)

(SK : SP) – 2 ⇒ SK : SP
(PK:PC) + Offset ⇒ PK:PC

REL8 36 rr 10 — — — — — — — —

BVC4 Branch if Overflow
Clear

If V = 0, branch REL8 B8 rr 6, 2 — — — — — — — —

BVS4 Branch if Overflow Set If V = 1, branch REL8 B9 rr 6, 2 — — — — — — — —

CBA Compare A to B (A) – (B) INH 371B — 2 — — — — ∆ ∆ ∆ ∆
CLR Clear Memory $00 ⇒ M IND8, X

IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

05
15
25

1705
1715
1725
1735

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — 0 1 0 0

CLRA Clear A $00 ⇒ A INH 3705 — 2 — — — — 0 1 0 0

CLRB Clear B $00 ⇒ B INH 3715 — 2 — — — — 0 1 0 0

CLRD Clear D $0000 ⇒ D INH 27F5 — 2 — — — — 0 1 0 0

CLRE Clear E $0000 ⇒ E INH 2775 — 2 — — — — 0 1 0 0

CLRM Clear AM $000000000 ⇒ AM[32:0] INH 27B7 — 2 — 0 — 0 — — — —

CLRW Clear Memory Word $0000 ⇒ M : M + 1 IND16, X
IND16, Y
IND16, Z

EXT

2705
2715
2725
2735

gggg
gggg
gggg
hh ll

6
6
6
6

— — — — 0 1 0 0

CMPA Compare A to Memory (A) – (M) IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

48
58
68
78

1748
1758
1768
1778
2748
2758
2768

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

CMPB Compare B to Memory (B) – (M) IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C8
D8
E8
F8

17C8
17D8
17E8
17F8
27C8
27D8
27E8

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

COM One’s Complement $FF – (M) ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

00
10
20

1700
1710
1720
1730

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ 0 1

COMA One’s Complement A $FF – (A) ⇒ A INH 3700 — 2 — — — — ∆ ∆ 0 1

COMB One’s Complement B $FF – (B) ⇒ B INH 3710 — 2 — — — — ∆ ∆ 0 1

COMD One’s Complement D $FFFF – (D) ⇒ D INH 27F0 — 2 — — — — ∆ ∆ 0 1

COME One’s Complement E $FFFF – (E) ⇒ E INH 2770 — 2 — — — — ∆ ∆ 0 1

COMW One’s Complement
Word

$FFFF – M : M + 1 ⇒
M : M + 1

IND16, X
IND16, Y
IND16, Z

EXT

2700
2710
2720
2730

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ 0 1

Table 9 CPU16 Instruction Set Summary (Sheet 5 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

MOTOROLA AN1283/D
42

CPD Compare D to Memory (D) – (M : M + 1) IND8, X
IND8, Y
IND8, Z

E, X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

88
98
A8

2788
2798
27A8
37B8
37C8
37D8
37E8
37F8

ff
ff
ff
—
—
—

jj kk
gggg
gggg
gggg
hh ll

6
6
6
6
6
6
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

CPE Compare E to Memory (E) – (M : M + 1) IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3738
3748
3758
3768
3778

jjkk
gggg
gggg
gggg
hhll

4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

CPS Compare SP to
Memory

(SP) – (M : M + 1) IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

4F
5F
6F

174F
175F
176F
177F
377F

ff
ff
ff

gggg
gggg
gggg
hh ll
jj kk

6
6
6
6
6
6
6
4

— — — — ∆ ∆ ∆ ∆

CPX Compare IX to Memory (IX) – (M : M + 1) IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

4C
5C
6C

174C
175C
176C
177C
377C

ff
ff
ff

gggg
gggg
gggg
hh ll
jj kk

6
6
6
6
6
6
6
4

— — — — ∆ ∆ ∆ ∆

CPY Compare IY to Memory (IY) – (M : M + 1) IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

4D
5D
6D

174D
175D
176D
177D
377D

ff
ff
ff

gggg
gggg
gggg
hh ll
jj kk

6
6
6
6
6
6
6
4

— — — — ∆ ∆ ∆ ∆

CPZ Compare IZ to Memory (IZ) – (M : M + 1) IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

4E
5E
6E

174E
175E
176E
177E
377E

ff
ff
ff

gggg
gggg
gggg
hh ll
jj kk

6
6
6
6
6
6
6
4

— — — — ∆ ∆ ∆ ∆

DAA Decimal Adjust A (A)10 INH 3721 — 2 — — — — ∆ ∆ U ∆

DEC Decrement Memory (M) – $01 ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

01
11
21

1701
1711
1721
1731

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ —

DECA Decrement A (A) – $01 ⇒ A INH 3701 — 2 — — — — ∆ ∆ ∆ —

DECB Decrement B (B) – $01 ⇒ B INH 3711 — 2 — — — — ∆ ∆ ∆ —

DECW Decrement Memory
Word

(M : M + 1) – $0001
 ⇒ M : M + 1

IND16, X
IND16, Y
IND16, Z

EXT

2701
2711
2721
2731

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ —

EDIV Extended Unsigned
Divide

(E : D) / (IX)
Quotient ⇒ IX

Remainder ⇒ D

INH 3728 — 24 — — — — ∆ ∆ ∆ ∆

EDIVS Extended Signed Di-
vide

(E : D) / (IX)
Quotient ⇒ IX

Remainder ⇒ ACCD

INH 3729 — 38 — — — — ∆ ∆ ∆ ∆

EMUL Extended Unsigned
Multiply

(E) ∗ (D) ⇒ E : D INH 3725 — 10 — — — — ∆ ∆ — ∆

EMULS Extended Signed Mul-
tiply

(E) ∗ (D) ⇒ E : D INH 3726 — 8 — — — — ∆ ∆ — ∆

Table 9 CPU16 Instruction Set Summary (Sheet 6 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

AN1283/D MOTOROLA
43

EORA Exclusive OR A (A) ⊕ (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

44
54
64
74

1744
1754
1764
1774
2744
2754
2764

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

EORB Exclusive OR B (B) ⊕ (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C4
D4
E4
F4

17C4
17D4
17E4
17F4
27C4
27D4
27E4

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

EORD Exclusive OR D (D) ⊕ (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z

E, X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

84
94
A4

2784
2794
27A4
37B4
37C4
37D4
37E4
37F4

ff
ff
ff
—
—
—
jjkk

gggg
gggg
gggg
hhll

6
6
6
6
6
6
4
6
6
6
6

— — — — ∆ ∆ 0 —

EORE Exclusive OR E (E) ⊕ (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3734
3744
3754
3764
3774

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ 0 —

FDIV Fractional
Unsigned Divide

(D) / (IX) ⇒ IX
Remainder ⇒ D

INH 372B — 22 — — — — — ∆ ∆ ∆

FMULS Fractional Signed
Multiply

(E) ∗ (D) ⇒ E : D[31:1]
0 ⇒ D[0]

INH 3727 — 8 — — — — ∆ ∆ ∆ ∆

IDIV Integer Divide (D) / (IX) ⇒ IX;
Remainder ⇒ D

INH 372A — 22 — — — — — ∆ 0 ∆

INC Increment Memory (M) + $01 ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

03
13
23

1703
1713
1723
1733

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ —

INCA Increment A (A) + $01 ⇒ A INH 3703 — 2 — — — — ∆ ∆ ∆ —

INCB Increment B (B) + $01 ⇒ B INH 3713 — 2 — — — — ∆ ∆ ∆ —

INCW Increment Memory
Word

(M : M + 1) + $0001
 ⇒ M : M + 1

IND16, X
IND16, Y
IND16, Z

EXT

2703
2713
2723
2733

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ —

JMP Jump 〈ea〉 ⇒ PK : PC IND20, X
IND20, Y
IND20, Z
EXT20

4B
5B
6B
7A

zg gggg
zg gggg
zg gggg
zb hh ll

8
8
8
6

— — — — — — — —

JSR Jump to Subroutine Push (PC)
(SK : SP) – 2 ⇒ SK : SP

Push (CCR)
(SK : SP) – 2 ⇒ SK : SP

〈ea〉 ⇒ PK : PC

IND20, X
IND20, Y
IND20, Z
EXT20

89
99
A9
FA

zg gggg
zg gggg
zg gggg
zb hh ll

12
12
12
10

— — — — — — — —

LBCC4 Long Branch if Carry
Clear

If C = 0, branch REL16 3784 rrrr 6, 4 — — — — — — — —

LBCS4 Long Branch if Carry
Set

If C = 1, branch REL16 3785 rrrr 6, 4 — — — — — — — —

LBEQ4 Long Branch if Equal If Z = 1, branch REL16 3787 rrrr 6, 4 — — — — — — — —

LBEV4 Long Branch if EV Set If EV = 1, branch REL16 3791 rrrr 6, 4 — — — — — — — —

LBGE4 Long Branch if Greater
Than or Equal to Zero

If N ⊕ V = 0, branch REL16 378C rrrr 6, 4 — — — — — — — —

Table 9 CPU16 Instruction Set Summary (Sheet 7 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

MOTOROLA AN1283/D
44

LBGT 4 Long Branch if Greater
Than Zero

If Z ✛ (N ⊕ V) = 0, branch REL16 378E rrrr 6, 4 — — — — — — — —

LBHI 4 Long Branch if Higher If C ✛ Z = 0, branch REL16 3782 rrrr 6, 4 — — — — — — — —

LBLE 4 Long Branch if Less
Than or Equal to Zero

If Z ✛ (N ⊕ V) = 1, branch REL16 378F rrrr 6, 4 — — — — — — — —

LBLS4 Long Branch if Lower
or Same

If C ✛ Z = 1, branch REL16 3783 rrrr 6, 4 — — — — — — — —

LBLT 4 Long Branch if Less
Than Zero

If N ⊕ V = 1, branch REL16 378D rrrr 6, 4 — — — — — — — —

LBMI 4 Long Branch if Minus If N = 1, branch REL16 378B rrrr 6, 4 — — — — — — — —

LBMV4 Long Branch if MV Set If MV = 1, branch REL16 3790 rrrr 6, 4 — — — — — — — —

LBNE 4 Long Branch if Not
Equal

If Z = 0, branch REL16 3786 rrrr 6, 4 — — — — — — — —

LBPL4 Long Branch if Plus If N = 0, branch REL16 378A rrrr 6, 4 — — — — — — — —

LBRA Long Branch Always If 1 = 1, branch REL16 3780 rrrr 6 — — — — — — — —

LBRN Long Branch Never If 1 = 0, branch REL16 3781 rrrr 6 — — — — — — — —

LBSR Long Branch to
Subroutine

Push (PC)
(SK : SP) – 2 ⇒ SK : SP

Push (CCR)
(SK : SP) – 2 ⇒ SK : SP

(PK : PC) + Offset ⇒
PK : PC

REL16 27F9 rrrr 10 — — — — — — — —

LBVC4 Long Branch if
Overflow Clear

If V = 0, branch REL16 3788 rrrr 6, 4 — — — — — — — —

LBVS4 Long Branch if
Overflow Set

If V = 1, branch REL16 3789 rrrr 6, 4 — — — — — — — —

LDAA Load A (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

45
55
65
75

1745
1755
1765
1775
2745
2755
2765

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

LDAB Load B (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C5
D5
E5
F5

17C5
17D5
17E5
17F5
27C5
27D5
27E5

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

LDD Load D (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z

E, X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

85
95
A5

2785
2795
27A5
37B5
37C5
37D5
37E5
37F5

ff
ff
ff
—
—
—

jj kk
gggg
gggg
gggg
hh ll

6
6
6
6
6
6
4
6
6
6
6

— — — — ∆ ∆ 0 —

LDE Load E (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3735
3745
3755
3765
3775

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ 0 —

LDED Load Concatenated
E and D

(M : M + 1) ⇒ E
(M + 2 : M + 3) ⇒ D

EXT 2771 hh ll 8 — — — — — — — —

LDHI Initialize H and I (M : M + 1)X ⇒ H R
(M : M + 1)Y ⇒ I R

EXT 27B0 — 8 — — — — — — — —

Table 9 CPU16 Instruction Set Summary (Sheet 8 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

AN1283/D MOTOROLA
45

LDS Load SP (M : M + 1) ⇒ SP IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

CF
DF
EF

17CF
17DF
17EF
17FF
37BF

ff
ff
ff

gggg
gggg
gggg
hh ll
jj kk

6
6
6
6
6
6
6
4

— — — — ∆ ∆ 0 —

LDX Load IX (M : M + 1) ⇒ IX IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

CC
DC
EC

17CC
17DC
17EC
17FC
37BC

ff
ff
ff

gggg
gggg
gggg
hh ll
jj kk

6
6
6
6
6
6
6
4

— — — — ∆ ∆ 0 —

LDY Load IY (M : M + 1) ⇒ IY IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

CD
DD
ED

17CD
17DD
17ED
17FD
37BD

ff
ff
ff

gggg
gggg
gggg
hh ll
jj kk

6
6
6
6
6
6
6
4

— — — — ∆ ∆ 0 —

LDZ Load IZ (M : M + 1) ⇒ IZ IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

CE
DE
EE

17CE
17DE
17EE
17FE
37BE

ff
ff
ff

gggg
gggg
gggg
hh ll
jj kk

6
6
6
6
6
6
6
4

— — — — ∆ ∆ 0 —

LPSTOP Low Power Stop If S
then STOP
else NOP

INH 27F1 — 4, 20 — — — — — — — —

LSR Logical Shift Right IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

0F
1F
2F

170F
171F
172F
173F

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — 0 ∆ ∆ ∆

LSRA Logical Shift Right A INH 370F — 2 — — — — 0 ∆ ∆ ∆

LSRB Logical Shift Right B INH 371F — 2 — — — — 0 ∆ ∆ ∆

LSRD Logical Shift Right D INH 27FF — 2 — — — — 0 ∆ ∆ ∆

LSRE Logical Shift Right E INH 277F — 2 — — — — 0 ∆ ∆ ∆

LSRW Logical Shift Right
Word

IND16, X
IND16, Y
IND16, Z

EXT

270F
271F
272F
273F

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — 0 ∆ ∆ ∆

MAC Multiply and
Accumulate

Signed 16-Bit
Fractions

(HR) ∗ (IR) ⇒ E : D
(AM) + (E : D) ⇒ AM
Qualified (IX) ⇒ IX
Qualified (IY) ⇒ IY

(HR) ⇒ IZ
(M : M + 1)X ⇒ HR
(M : M + 1)Y ⇒ IR

IMM8 7B xoyo 12 — ∆ — ∆ — — ∆ —

MOVB Move Byte (M1) ⇒ M2 IXP to EXT
EXT to IXP
EXT to EXT

30
32

37FE

ff hh ll
ff hh ll

hh ll hh ll

8
8

10

— — — — ∆ ∆ 0 —

MOVW Move Word (M : M + 11) ⇒ M : M + 12 IXP to EXT
EXT to IXP
EXT to EXT

31
33

37FF

ff hh ll
ff hh ll

hh ll hh ll

8
8

10

— — — — ∆ ∆ 0 —

MUL Multiply (A) ∗ (B) ⇒ D INH 3724 — 10 — — — — — — — ∆

Table 9 CPU16 Instruction Set Summary (Sheet 9 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

MOTOROLA AN1283/D
46

NEG Negate Memory $00 – (M) ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

02
12
22

1702
1712
1722
1732

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

NEGA Negate A $00 – (A) ⇒ A INH 3702 — 2 — — — — ∆ ∆ ∆ ∆
NEGB Negate B $00 – (B) ⇒ B INH 3712 — 2 — — — — ∆ ∆ ∆ ∆
NEGD Negate D $0000 – (D) ⇒ D INH 27F2 — 2 — — — — ∆ ∆ ∆ ∆
NEGE Negate E $0000 – (E) ⇒ E INH 2772 — 2 — — — — ∆ ∆ ∆ ∆
NEGW Negate Memory Word $0000 – (M : M + 1)

⇒ M : M + 1
IND16, X
IND16, Y
IND16, Z

EXT

2702
2712
2722
2732

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

NOP Null Operation — INH 274C — 2 — — — — — — — —

ORAA OR A (A) ✛ (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

47
57
67
77

1747
1757
1767
1777
2747
2757
2767

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

ORAB OR B (B) ✛ (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C7
D7
E7
F7

17C7
17D7
17E7
17F7
27C7
27D7
27E7

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ 0 —

ORD OR D (D) ✛ (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z

E, X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

87
97
A7

2787
2797
27A7
37B7
37C7
37D7
37E7
37F7

ff
ff
ff
—
—
—

jj kk
gggg
gggg
gggg
hh ll

6
6
6
6
6
6
4
6
6
6
6

— — — — ∆ ∆ 0 —

ORE OR E (E) ✛ (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3737
3747
3757
3767
3777

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ 0 —

ORP 1 OR Condition Code
Register

(CCR) ✛ IMM16 ⇒ CCR IMM16 373B jj kk 4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

PSHA Push A (SK : SP) + 1 ⇒ SK : SP
Push (A)

(SK : SP) – 2 ⇒ SK : SP

INH 3708 — 4 — — — — — — — —

PSHB Push B (SK : SP) + 1 ⇒ SK : SP
Push (B)

(SK : SP) – 2 ⇒ SK : SP

INH 3718 — 4 — — — — — — — —

PSHM Push Multiple
Registers

Mask bits:
0 = D
1 = E
2 = IX
3 = IY
4 = IZ
5 = K

6 = CCR
7 = (reserved)

For mask bits 0 to 7:

If mask bit set
Push register

(SK : SP) – 2 ⇒ SK : SP

IMM8 34 ii 4 + 2N

N =
number of
iterations

— — — — — — — —

PSHMAC Push MAC State MAC Registers ⇒ Stack INH 27B8 — 14 — — — — — — — —

Table 9 CPU16 Instruction Set Summary (Sheet 10 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

AN1283/D MOTOROLA
47

PULA Pull A (SK : SP) + 2 ⇒ SK : SP
Pull (A)

(SK : SP) – 1 ⇒ SK : SP

INH 3709 — 6 — — — — — — — —

PULB Pull B (SK : SP) + 2 ⇒ SK : SP
Pull (B)

(SK : SP) – 1 ⇒ SK : SP

INH 3719 — 6 — — — — — — — —

PULM 1 Pull Multiple Registers

Mask bits:
0 = CCR[15:4]

1 = K
2 = IZ
3 = IY
4 = IX
5 = E
6 = D

7 = (reserved)

For mask bits 0 to 7:

If mask bit set
(SK : SP) + 2 ⇒ SK : SP

Pull register

IMM8 35 ii 4+2(N+1)

N =
number of
iterations

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

PULMAC Pull MAC State Stack ⇒ MAC Registers INH 27B9 — 16 — — — — — — — —

RMAC Repeating
Multiply and
Accumulate

Signed 16-Bit
Fractions

Repeat until (E) < 0
(AM) + (H) ∗ (I) ⇒ AM
Qualified (IX) ⇒ IX;
Qualified (IY) ⇒ IY;
(M : M + 1)X ⇒ H;
(M : M + 1)Y ⇒ I

(E) – 1 ⇒ E

IMM8 FB xoyo 6 + 12
per

iteration

— ∆ — ∆ — — — —

ROL Rotate Left IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

0C
1C
2C

170C
171C
172C
173C

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

ROLA Rotate Left A INH 370C — 2 — — — — ∆ ∆ ∆ ∆

ROLB Rotate Left B INH 371C — 2 — — — — ∆ ∆ ∆ ∆

ROLD Rotate Left D INH 27FC — 2 — — — — ∆ ∆ ∆ ∆

ROLE Rotate Left E INH 277C — 2 — — — — ∆ ∆ ∆ ∆

ROLW Rotate Left Word IND16, X
IND16, Y
IND16, Z

EXT

270C
271C
272C
273C

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

ROR Rotate Right IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

0E
1E
2E

170E
171E
172E
173E

ff
ff
ff

gggg
gggg
gggg
hh ll

8
8
8
8
8
8
8

— — — — ∆ ∆ ∆ ∆

RORA Rotate Right A INH 370E — 2 — — — — ∆ ∆ ∆ ∆

RORB Rotate Right B INH 371E — 2 — — — — ∆ ∆ ∆ ∆

RORD Rotate Right D INH 27FE — 2 — — — — ∆ ∆ ∆ ∆

RORE Rotate Right E INH 277E — 2 — — — — ∆ ∆ ∆ ∆

Table 9 CPU16 Instruction Set Summary (Sheet 11 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

MOTOROLA AN1283/D
48

RORW Rotate Right Word IND16, X
IND16, Y
IND16, Z

EXT

270E
271E
272E
273E

gggg
gggg
gggg
hh ll

8
8
8
8

— — — — ∆ ∆ ∆ ∆

RTI2 Return from Interrupt (SK : SP) + 2 ⇒ SK : SP
Pull CCR

(SK : SP) + 2 ⇒ SK : SP
Pull PC

(PK : PC) – 6 ⇒ PK : PC

INH 2777 — 12 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

RTS3 Return from Subrou-
tine

(SK : SP) + 2 ⇒ SK : SP
Pull PK

(SK : SP) + 2 ⇒ SK : SP
Pull PC

(PK : PC) – 2 ⇒ PK : PC

INH 27F7 — 12 — — — — — — — —

SBA Subtract B from A (A) – (B) ⇒ A INH 370A — 2 — — — — ∆ ∆ ∆ ∆
SBCA Subtract with Carry

from A
(A) – (M) – C ⇒ A IND8, X

IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

42
52
62
72

1742
1752
1762
1772
2742
2752
2762

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SBCB Subtract with Carry
from B

(B) – (M) – C ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C2
D2
E2
F2

17C2
17D2
17E2
17F2
27C2
27D2
27E2

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SBCD Subtract with Carry
from D

(D) – (M : M + 1) – C ⇒ D IND8, X
IND8, Y
IND8, Z

E, X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

82
92
A2

2782
2792
27A2
37B2
37C2
37D2
37E2
37F2

ff
ff
ff
—
—
—

jj kk
gggg
gggg
gggg
hh ll

6
6
6
6
6
6
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SBCE Subtract with Carry
from E

(E) – (M : M + 1) – C ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3732
3742
3752
3762
3772

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SDE Subtract D from E (E) – (D)⇒ E INH 2779 — 2 — — — — ∆ ∆ ∆ ∆
STAA Store A (A) ⇒ M IND8, X

IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

4A
5A
6A

174A
175A
176A
177A
274A
275A
276A

ff
ff
ff

gggg
gggg
gggg
hh ll
—
—
—

4
4
4
6
6
6
6
4
4
4

— — — — ∆ ∆ 0 —

STAB Store B (B) ⇒ M IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

CA
DA
EA

17CA
17DA
17EA
17FA
27CA
27DA
27EA

ff
ff
ff

gggg
gggg
gggg
hh ll
—
—
—

4
4
4
6
6
6
6
4
4
4

— — — — ∆ ∆ 0 —

Table 9 CPU16 Instruction Set Summary (Sheet 12 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

AN1283/D MOTOROLA
49

STD Store D (D) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

E, X
E, Y
E, Z

IND16, X
IND16, Y
IND16, Z

EXT

8A
9A
AA

278A
279A
27AA
37CA
37DA
37EA
37FA

ff
ff
ff
—
—
—

gggg
gggg
gggg
hh ll

6
6
6
6
6
6
4
4
4
6

— — — — ∆ ∆ 0 —

STE Store E (E) ⇒ M : M + 1 IND16, X
IND16, Y
IND16, Z

EXT

374A
375A
376A
377A

gggg
gggg
gggg
hh ll

6
6
6
6

— — — — ∆ ∆ 0 —

STED Store Concatenated
D and E

(E) ⇒ M : M + 1
(D) ⇒ M + 2 : M + 3

EXT 2773 hh ll 8 — — — — — — — —

STS Store SP (SP) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

8F
9F
AF

178F
179F
17AF
17BF

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — ∆ ∆ 0 —

STX Store IX (IX) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

8C
9C
AC

178C
179C
17AC
17BC

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — ∆ ∆ 0 —

STY Store IY (IY) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

8D
9D
AD

178D
179D
17AD
17BD

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — ∆ ∆ 0 —

STZ Store Z (IZ) ⇒ M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

8E
9E
AE

178E
179E
17AE
17BE

ff
ff
ff

gggg
gggg
gggg
hh ll

4
4
4
6
6
6
6

— — — — ∆ ∆ 0 —

SUBA Subtract from A (A) – (M) ⇒ A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

40
50
60
70

1740
1750
1760
1770
2740
2750
2760

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SUBB Subtract from B (B) – (M) ⇒ B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C0
D0
E0
F0

17C0
17D0
17E0
17F0
27C0
27D0
27E0

ff
ff
ff
ii

gggg
gggg
gggg
hh ll
—
—
—

6
6
6
2
6
6
6
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SUBD Subtract from D (D) – (M : M + 1) ⇒ D IND8, X
IND8, Y
IND8, Z

E, X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

80
90
A0

2780
2790
27A0
37B0
37C0
37D0
37E0
37F0

ff
ff
ff
—
—
—

jj kk
gggg
gggg
gggg
hh ll

6
6
6
6
6
6
4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

Table 9 CPU16 Instruction Set Summary (Sheet 13 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

MOTOROLA AN1283/D
50

SUBE Subtract from E (E) – (M : M + 1) ⇒ E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3730
3740
3750
3760
3770

jj kk
gggg
gggg
gggg
hh ll

4
6
6
6
6

— — — — ∆ ∆ ∆ ∆

SWI Software Interrupt (PK : PC) + 2 ⇒ PK : PC
Push (PC)

(SK : SP) – 2 ⇒ SK : SP
Push (CCR)

(SK : SP) – 2 ⇒ SK : SP
$0 ⇒ PK

SWI Vector ⇒ PC

INH 3720 — 16 — — — — — — — —

SXT Sign Extend B into A If B7 = 1
then A = $FF
else A = $00

INH 27F8 — 2 — — — — ∆ ∆ — —

TAB Transfer A to B (A) ⇒ B INH 3717 — 2 — — — — ∆ ∆ 0 —

TAP Transfer A to CCR (A[7:0]) ⇒ CCR[15:8] INH 37FD — 4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
TBA Transfer B to A (B) ⇒ A INH 3707 — 2 — — — — ∆ ∆ 0 —

TBEK Transfer B to EK (B) ⇒ EK INH 27FA — 2 — — — — — — — —

TBSK Transfer B to SK (B) ⇒ SK INH 379F — 2 — — — — — — — —

TBXK Transfer B to XK (B) ⇒ XK INH 379C — 2 — — — — — — — —

TBYK Transfer B to YK (B) ⇒ YK INH 379D — 2 — — — — — — — —

TBZK Transfer B to ZK (B) ⇒ ZK INH 379E — 2 — — — — — — — —

TDE Transfer D to E (D) ⇒ E INH 277B — 2 — — — — ∆ ∆ 0 —

TDMSK Transfer D to
XMSK : YMSK

(D[15:8]) ⇒ X MASK
(D[7:0]) ⇒ Y MASK

INH 372F — 2 — — — — — — — —

TDP1 Transfer D to CCR (D) ⇒ CCR[15:4] INH 372D — 4 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

TED Transfer E to D (E) ⇒ D INH 27FB — 2 — — — — ∆ ∆ 0 —

TEDM Transfer E and D to
AM[31:0]

Sign Extend AM

(D) ⇒ AM[15:0]
(E) ⇒ AM[31:16]

AM[35:32] = AM31

INH 27B1 — 4 — 0 — 0 — — — —

TEKB Transfer EK to B $0 ⇒ B[7:4]
(EK) ⇒ B[3:0]

INH 27BB — 2 — — — — — — — —

TEM Transfer E to
AM[31:16]

Sign Extend AM
Clear AM LSB

(E) ⇒ AM[31:16]
$00 ⇒ AM[15:0]

AM[35:32] = AM31

INH 27B2 — 4 — 0 — 0 — — — —

TMER Transfer AM to E
Rounded

Rounded (AM) ⇒ Temp
If (SM • (EV ✛ MV))
then Saturation ⇒ E

else Temp[31:16] ⇒ E

INH 27B4 — 6 — ∆ — ∆ ∆ ∆ — —

TMET Transfer AM to E Trun-
cated

If (SM • (EV ✛ MV))
then Saturation ⇒ E
else AM[31:16] ⇒ E

INH 27B5 — 2 — — — — ∆ ∆ — —

TMXED Transfer AM to
IX : E : D

AM[35:32] ⇒ IX[3:0]
AM35 ⇒ IX[15:4]
AM[31:16] ⇒ E
AM[15:0] ⇒ D

INH 27B3 — 6 — — — — — — — —

TPA Transfer CCR MSB to
A

(CCR[15:8]) ⇒ A INH 37FC — 2 — — — — — — — —

TPD Transfer CCR to D (CCR) ⇒ D INH 372C — 2 — — — — — — — —

TSKB Transfer SK to B (SK) ⇒ B[3:0]
$0 ⇒ B[7:4]

INH 37AF — 2 — — — — — — — —

TST Test for Zero or Minus (M) – $00 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16, Z

EXT

06
16
26

1706
1716
1726
1736

ff
ff
ff

gggg
gggg
gggg
hh ll

6
6
6
6
6
6
6

— — — — ∆ ∆ 0 0

TSTA Test A for
Zero or Minus

(A) – $00 INH 3706 — 2 — — — — ∆ ∆ 0 0

TSTB Test B for
Zero or Minus

(B) – $00 INH 3716 — 2 — — — — ∆ ∆ 0 0

TSTD Test D for
Zero or Minus

(D) – $0000 INH 27F6 — 2 — — — — ∆ ∆ 0 0

TSTE Test E for
Zero or Minus

(E) – $0000 INH 2776 — 2 — — — — ∆ ∆ 0 0

Table 9 CPU16 Instruction Set Summary (Sheet 14 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

AN1283/D MOTOROLA
51

TSTW Test for
Zero or Minus Word

(M : M + 1) – $0000 IND16, X
IND16, Y
IND16, Z

EXT

2706
2716
2726
2736

gggg
gggg
gggg
hh ll

6
6
6
6

— — — — ∆ ∆ 0 0

TSX Transfer SP to X (SK : SP) + 2 ⇒ XK : IX INH 274F — 2 — — — — — — — —

TSY Transfer SP to Y (SK : SP) + 2 ⇒ YK : IY INH 275F — 2 — — — — — — — —

TSZ Transfer SP to Z (SK : SP) + 2 ⇒ ZK : IZ INH 276F — 2 — — — — — — — —

TXKB Transfer XK to B $0 ⇒ B[7:4]
(XK) ⇒ B[3:0]

INH 37AC — 2 — — — — — — — —

TXS Transfer X to SP (XK : IX) – 2 ⇒ SK : SP INH 374E — 2 — — — — — — — —

TXY Transfer X to Y (XK : IX) ⇒ YK : IY INH 275C — 2 — — — — — — — —

TXZ Transfer X to Z (XK : IX) ⇒ ZK : IZ INH 276C — 2 — — — — — — — —

TYKB Transfer YK to B $0 ⇒ B[7:4]
(YK) ⇒ B[3:0]

INH 37AD — 2 — — — — — — — —

TYS Transfer Y to SP (YK : IY) – 2 ⇒ SK : SP INH 375E — 2 — — — — — — — —

TYX Transfer Y to X (YK : IY) ⇒ XK : IX INH 274D — 2 — — — — — — — —

TYZ Transfer Y to Z (YK : IY) ⇒ ZK : IZ INH 276D — 2 — — — — — — — —

TZKB Transfer ZK to B $0 ⇒ B[7:4]
(ZK) ⇒ B[3:0]

INH 37AE — 2 — — — — — — — —

TZS Transfer Z to SP (ZK : IZ) – 2 ⇒ SK : SP INH 376E — 2 — — — — — — — —

TZX Transfer Z to X (ZK : IZ) ⇒ XK : IX INH 274E — 2 — — — — — — — —

TZY Transfer Z to Y (ZK : IZ) ⇒ ZK : IY INH 275E — 2 — — — — — — — —

WAI Wait for Interrupt WAIT INH 27F3 — 8 — — — — — — — —

XGAB Exchange A with B (A) ⇔ (B) INH 371A — 2 — — — — — — — —

XGDE Exchange D with E (D) ⇔ (E) INH 277A — 2 — — — — — — — —

XGDX Exchange D with X (D) ⇔ (IX) INH 37CC — 2 — — — — — — — —

XGDY Exchange D with Y (D) ⇔ (IY) INH 37DC — 2 — — — — — — — —

XGDZ Exchange D with Z (D) ⇔ (IZ) INH 37EC — 2 — — — — — — — —

XGEX Exchange E with X (E) ⇔ (IX) INH 374C — 2 — — — — — — — —

XGEY Exchange E with Y (E) ⇔ (IY) INH 375C — 2 — — — — — — — —

XGEZ Exchange E with Z (E) ⇔ (IZ) INH 376C — 2 — — — — — — — —

NOTES:

 1. CCR[15:4] change according to results of operation. The PK field is not affected.

 2. CCR[15:0] change according to copy of CCR pulled from stack.

 3. PK field changes according to state pulled from stack. The rest of the CCR is not affected.

 4. Cycle times for conditional branches are shown in "taken, not taken" order.

Table 9 CPU16 Instruction Set Summary (Sheet 15 of 15)

Mnemonic Operation Description Address Instruction Condition Codes

Mode Opcode Operand Cycles S MV H EV N Z V C

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. M is a
registered trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

TO OBTAIN ADDITIONAL PRODUCT INFORMATION:
USA/EUROPE: Motorola Literature Distribution;

 P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609
INTERNET: http://www.mot.com

	Transporting M68HC11 Code to M68HC16 Devices
	1 INTRODUCTION
	2 M68HC11 CPU
	2.1 Programming Model
	Figure 1 M68HC11 CPU Programming Model
	2.1.1 Accumulators
	2.1.2 Index Registers
	2.1.3 Stack Pointer
	2.1.4 Program Counter
	2.1.5 Condition Code Register
	Figure 2 M68HC11 CPU Condition Code Register

	2.2 Memory Management
	2.3 Data Types
	2.4 Addressing Modes
	Table 1 M68HC11 CPU Addressing Modes
	2.4.1 Direct Mode
	2.4.2 Extended Mode
	2.4.3 Immediate Mode
	2.4.4 Indexed Modes
	2.4.5 Inherent Modes
	2.4.6 Relative Mode

	2.5 Instructions
	2.6 Instruction Execution
	2.7 Changes in Program Flow
	2.8 Reset And Interrupt Vectors
	Table 2 M68HC11 Interrupt and Reset Vector Assignments

	2.9 Resets
	Table 3 Reset Vectors

	2.10 Interrupts
	Table 4 Stacking Order on Entry to Interrupts

	2.11 Reset and Interrupt Priority

	3 CPU16 MODULE
	3.1 Programming Model
	3.1.1 Accumulators
	Figure 3 CPU16 Programming Model

	3.1.2 Index Registers
	3.1.3 Stack Pointer
	3.1.4 Program Counter
	3.1.5 Condition Code Register
	Figure 4 CPU16 Condition Code Register

	3.1.6 Address Extension Register and Address Extension Fields
	3.1.7 Multiply and Accumulate Registers

	3.2 Memory Management
	3.2.1 Address Extension

	3.3 Data Types
	3.4 Memory Organization
	3.5 Addressing Modes
	3.5.1 Immediate Addressing Modes
	Table 5 CPU16 Addressing Modes

	3.5.2 Extended Addressing Modes
	3.5.3 Indexed Addressing Modes
	3.5.4 Inherent Addressing Mode
	3.5.5 Accumulator Offset Addressing Mode
	3.5.6 Relative Addressing Modes
	3.5.7 Post-Modified Index Addressing Mode

	3.6 Instructions
	3.7 CPU16 Pipeline Mechanism
	3.7.1 Microsequencer
	3.7.2 Instruction Pipeline
	3.7.3 Execution Unit

	3.8 Execution Process
	3.9 Changes in Program Flow
	3.9.1 Jumps
	3.9.2 Branches
	3.9.3 Subroutines

	3.10 Exceptions
	3.10.1 Exception Vectors
	3.10.2 Exception Stack Frame
	Table 6 Exception Vector Table
	Figure 5 Exception Stack Frame Format

	3.10.3 Exception Processing Sequence
	3.10.4 Types of Exceptions

	3.11 RTI Instruction
	3.12 Resets
	3.12.1 Reset Timing

	3.13 Interrupts
	3.13.1 Interrupt Acknowledge and Arbitration
	3.13.2 Interrupt Processing Summary

	3.14 Development Support

	4 COMPARISON OF INSTRUCTION SETS
	4.1 Functionally Equivalent Instructions
	4.1.1 BHS
	4.1.2 BHO
	4.1.3 CLC
	4.1.4 CLI
	4.1.5 CLV
	4.1.6 DES
	4.1.7 DEX
	4.1.8 DEY
	4.1.9 INS
	4.1.10 INX
	4.1.11 INY
	4.1.12 PSHX
	4.1.13 PSHY
	4.1.14 PULX
	4.1.15 PULY
	4.1.16 SEC
	4.1.17 SEI
	4.1.18 SEV
	4.1.19 STOP and WAIT instructions

	4.2 Instructions That Operate Differently
	4.2.1 BSR
	4.2.2 JSR
	4.2.3 PSHA, PSHB
	4.2.4 PULA, PULB
	4.2.5 RTI
	4.2.6 SWI
	4.2.7 TAP
	4.2.8 TPA

	4.3 Instructions With Transparent Changes
	4.3.1 RTS
	4.3.2 TSX
	4.3.3 TSY
	4.3.4 TXS
	4.3.5 TYS

	4.4 Unimplemented Instructions
	4.4.1 TEST

	4.5 Summary of Instruction Set Differences
	Table 7 CPU16 Implementation of M68HC11 CPU Instructions

	5 COMPARISON OF ADDRESSING MODES
	5.1 Addressing Mode Differences
	5.1.1 Extended Addressing Mode
	5.1.2 Indexed Addressing Mode
	5.1.3 Post-Modified Index Addressing Mode

	5.2 Use Of CPU16 Indexed Mode To Replace M68HC11 Direct Mode

	6 INSTRUCTION SET REFERENCE
	Table 8 M68HC11 Instruction Set
	Table 9 CPU16 Instruction Set Summary

