
© Motorola, Inc., 1999 EB287

Order this document
by EB287

Motorola Semiconductor Engineering Bulletin

EB287

C Macro Definitions for the MC68HC(7)11E9/E8/E1/E0

By John Bodnar
Austin, Texas

Introduction

With more microcontroller users moving to high level languages like C,
macro definition files like the one outlined in this document can speed
software development efforts. The file reproduced in this engineering
bulletin is available at http://www.mot.com/pub/SPS/MCU/mcu11.
Download and unzip the hc11e9h.zip file from the mcu11 directory.

The hc11e9h.zip file includes an ASCII text copy of this documentation
and the actual hc11e9.h text file. The hc11e9.h file, and others like it, use
Motorola’s designated register and bit names for each device described.
Any user already familiar with MC68HC11 assembly language and
architecture (a requirement even for those who think they will only
program in C) will be able to use this file easily.

Conventions

The contents of the actual file will be designated with the Courier
typeface while commentary will appear in the Helvetica typeface used in
this paragraph.

Engineering Bulletin

EB287

2 MOTOROLA

Thus, the following lines appear in the hc11e9.h file:

/* MOTOROLA INC. * * FILENAME: hc11e9.h * * DESCRIPTION:
Register and bit macro definitions for the * MC68HC11E9,
MC68HC711E9, MC68HC11E8, MC68HC11E1, and MC68HC11E0 *
microcontrollers. * * CREATED: 11/18/93 * * NOTE: Your comments,
suggestions, and corrections are requested * and greatly appreciated. */

First references to key terms appear in bold type, and C keywords and
expressions appear in italics.

Concepts, Development, and Usage

In C language, we can make just about anything an lvalue, that is,
something that appears to the left of the equal sign in an assignment
expression. We can even use a number as an lvalue. In particular, we
like to use register addresses as lvalues. To do this, we must cast the
lvalue as a pointer to a particular data type.

For example,

(unsigned char *) 0x1000

would be an lvalue that points to an unsigned character (an 8-bit
unsigned value) at memory location 0x1000 ($1000 for those used to
assembly language).

In this particular form, however, we cannot yet assign a value to the
memory location. To do this, we must dereference the pointer.
Dereferencing a pointer specifies the value that is pointed to and not the
pointer itself. So, to assign the value 0xFF to memory location 0x1000,
we would use this C assignment expression

*(unsigned char *) 0x1000 = 0xFF;

Likewise, to assign the contents of memory location 0x1000 to the
variable A, use this assignment

A = *(unsigned char *) 0x1000;

Engineering Bulletin
Concepts, Development, and Usage

EB287

MOTOROLA 3

This is all that is really necessary to manipulate the memory mapped
registers of the MC68HC11. Unfortunately, *(unsigned char *) 0x1000 is
not particularly indicative of the function memory location 0x1000
performs (PORT A on most MC68HC11 devices). The extra typing
required to use this memory location can also be a source of minor, but
unnecessary, compilation errors.

A better idea is to use the following line. (Remember, lines appearing in
the hc11e9.h file appear in the Courier typeface.)

#define REGISTER unsigned char

Thus, to access memory location 0x1000, we can now type

A = *(REGISTER *) 0x1000;

This is an improvement, but it would be even better if we could define a
register as PORTA or DDRC as we do when programming in assembly.
Thus, this line

#define SOMEDEVICE *(REGISTER *)0x1000

allows us to address 0x1000 in a very convenient fashion.

For example, we can now type

SOMEDEVICE = 0xFF;

to assign 0xFF to memory location 0x1000.

And, we can also type

A = SOMEDEVICE;

to assign the contents of 0x1000 to the variable A.

The MC68HC11 has an INIT register which is used to remap internal
RAM and registers to the beginning of any 4-K page of memory. Some
applications may require register remapping, so it would be convenient
if we could make a simple change to the macro definition file to account
for this.

Engineering Bulletin

EB287

4 MOTOROLA

This line (part of hc11e9.h) allows us to do this:

#define REG_BASE 0x1000

We can thus use the following macro definition to handle register
relocation:

#define SOMEDEVICE *(REGISTER *)(REG_BASE + 0x00)

If we leave REG_BASE as 0x1000, then pointers to the MC68HC11’s
peripheral registers will be addressed at 0x1000 in our source code. If
we decide to remap the registers to 0x4000, we can simply replace
0x1000 in the #define REG_BASE macro with 0x4000.

NOTE: This does not actually modify the MC68HC11’s INIT register. This must
be done by modifying the C compiler’s run-time startup code. Refer to
the compiler’s documentation before making any such changes.

Before proceeding with the rest of the hc11e9.h file, we need to
understand the use of C’s volatile keyword. By specifying a variable as
volatile, we tell the C compiler not to optimize expressions using that
variable.

#define PORT *(REGISTER *)(REG_BASE + 0xA0)

void main() { PORT = 0x00; etc... /* PORT is not
used until while(PORT) */ while (PORT) { etc... } }

In this program fragment, we immediately initialize PORT to 0x00, but
will not reference it again until the while (PORT) expression. Unless
PORT were to somehow change, while (PORT) would be false, and
code in the braces immediately following would not execute. Some C
compilers may view this as unnecessary if PORT never changes, and it
is possible these lines could be optimized out of the resulting object
code.

On the MC68HC11, PORT may point to a bidirectional I/O (input/output)
port whose inputs may change during the course of program execution.
So, the while (PORT) expression could actually be true when it is
executed. As a precaution, we can designate the PORT pointer as
volatile so that the optimizer will not attempt to remove any questionable
references to it.

Engineering Bulletin
Concepts, Development, and Usage

EB287

MOTOROLA 5

We would thus change the #define macro to be

#define PORT *(volatile REGISTER *)(REG_BASE + 0xA0)

By doing this, references to PORT will not be optimized. Several
registers on the MC68HC11 can change without the intervention of user
code. These registers include port data registers (PORTC), peripheral
status registers (SPSR), peripheral data registers (SCDR, ADR1), flag
registers (TFLG1), and timer registers (TCNT, TIC3).

We could use the volatile keyword with every register macro definition to
simplify matters, but this runs counter to good code documentation. By
specifying only those registers which require it as volatile, the resulting
code will be better documented. Only registers which can receive data
externally or be changed by the processor without user intervention will
be declared volatile.

Write-only registers will be recognized easily because they will lack the
volatile declaration.

The following macro definitions are used for the registers on the
MC68HC11E9, MC68HC711E9, MC68HC11E8, MC68HC11E1, and
MC68HC11E0 devices:

#define PORTA (*(volatile REGISTER *)(REG_BASE + 0x00))
#define PIOC (*(volatile REGISTER *)(REG_BASE + 0x02))
#define PORTC (*(volatile REGISTER *)(REG_BASE + 0x03))
#define PORTB (*(REGISTER *)(REG_BASE + 0x04))
#define PORTCL (*(volatile REGISTER *)(REG_BASE + 0x05))
#define DDRC (*(REGISTER *)(REG_BASE + 0x07))
#define PORTD (*(volatile REGISTER *)(REG_BASE + 0x08))
#define DDRD (*(REGISTER *)(REG_BASE + 0x09))
#define PORTE (*(volatile REGISTER *)(REG_BASE + 0x0A))
#define CFORC (*(REGISTER *)(REG_BASE + 0x0B))
#define OC1M (*(REGISTER *)(REG_BASE + 0x0C))
#define OC1D (*(REGISTER *)(REG_BASE + 0x0D))

Engineering Bulletin

EB287

6 MOTOROLA

The following registers (TCNT, TICx, and TOCx) are declared as
unsigned integers because they are 16-bit registers and should be
accessed as such. It is much simpler and clearer to change, for example,
the output compare 4 register by using TOC4 = 0x4000,
TOC4 = TCNT + 0x20FF, or TOC4 + = 0x3200.

#define TCNT (*(volatile unsigned int *)(REG_BASE + 0x0E))
#define TIC1 (*(volatile unsigned int *)(REG_BASE + 0x10))
#define TIC2 (*(volatile unsigned int *)(REG_BASE + 0x12))
#define TIC3 (*(volatile unsigned int *)(REG_BASE + 0x14))
#define TOC1 (*(unsigned int *)(REG_BASE + 0x16))
#define TOC2 (*(unsigned int *)(REG_BASE + 0x18))
#define TOC3 (*(unsigned int *)(REG_BASE + 0x1A))
#define TOC4 (*(unsigned int *)(REG_BASE + 0x1C))
#define TI4O5 (*(volatile unsigned int *)(REG_BASE + 0x1E))
#define TCTL1 (*(REGISTER *)(REG_BASE + 0x20))
#define TCTL2 (*(REGISTER *)(REG_BASE + 0x21))
#define TMSK1 (*(REGISTER *)(REG_BASE + 0x22))
#define TFLG1 (*(volatile REGISTER *)(REG_BASE + 0x23))
#define TMSK2 (*(REGISTER *)(REG_BASE + 0x24))
#define TFLG2 (*(volatile REGISTER *)(REG_BASE + 0x25))
#define PACTL (*(REGISTER *)(REG_BASE + 0x26))
#define PACNT (*(volatile REGISTER *)(REG_BASE + 0x27))
#define SPCR (*(REGISTER *)(REG_BASE + 0x28))
#define SPSR (*(volatile REGISTER *)(REG_BASE + 0x29))
#define SPDR (*(volatile REGISTER *)(REG_BASE + 0x2A))
#define BAUD (*(REGISTER *)(REG_BASE + 0x2B))

SCCR1 is declared volatile because it has the R8 bit, the ninth data bit
received when SCI mode 1 is used. The remaining bits in this register
are write only. They are:

#define SCCR1 (*(volatile REGISTER *)(REG_BASE + 0x2C))
#define SCCR2 (*(REGISTER *)(REG_BASE + 0x2D))
#define SCSR (*(volatile REGISTER *)(REG_BASE + 0x2E))
#define SCDR (*(volatile REGISTER *)(REG_BASE + 0x2F))

ADCTL is declared volatile because bit 7, the conversion complete flag
(CCF), is changed without user intervention. The remaining bits in this
register are write only. They are:

#define ADCTL (*(volatile REGISTER *)(REG_BASE + 0x30))
#define ADR1 (*(volatile REGISTER *)(REG_BASE + 0x31))
#define ADR2 (*(volatile REGISTER *)(REG_BASE + 0x32))
#define ADR3 (*(volatile REGISTER *)(REG_BASE + 0x33))
#define ADR4 (*(volatile REGISTER *)(REG_BASE + 0x34))
#define BPROT (*(REGISTER *)(REG_BASE + 0x35))
#define OPTION (*(REGISTER *)(REG_BASE + 0x39))

Engineering Bulletin
Concepts, Development, and Usage

EB287

MOTOROLA 7

#define COPRST (*(REGISTER *)(REG_BASE + 0x3A))
#define PPROG (*(REGISTER *)(REG_BASE + 0x3B))
#define HPRIO (*(REGISTER *)(REG_BASE + 0x3C))
#define INIT (*(REGISTER *)(REG_BASE + 0x3D))
#define TEST1 (*(REGISTER *)(REG_BASE + 0x3E))
#define CONFIG (*(REGISTER *)(REG_BASE + 0x3F))

C also allows us to declare individual bit fields as constants. This allows
the user to make simple register bit assignments and comparisons.

For instance,

while (!(SPSR & SPIF));

can be used to halt program execution until the SPI status register SPIF
bit has set.

Likewise, we can use

SPCR = SPIE + SPE + MSTR + CPHA + SPR0;

to configure the SPI for master operation with interrupts using clock
phase 1 and a baud rate of E clock divided by 4. We can also use these
constants to clear individual bit fields in the timer flag registers.

TFLG1 &= OC3F;

This clears output compare flag 3 without affecting the other bits in the
TFLG1 register.

A partial list of the macro definitions used for the register bit fields on the
MC68HC11E9, MC68HC711E9, MC68HC11E8, MC68HC11E1, and
MC68HC11E0 devices follows. For a complete list, download the file
hc11e9h.zip from http://www.mot.com/pub/SPS/MCU/mcu11..

/* Bit names for general use */
#define bit7 0x80
#define bit6 0x40
#define bit5 0x20
#define bit4 0x10
#define bit3 0x08
#define bit2 0x04
#define bit1 0x02
#define bit0 0x01

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Engineering Bulletin

EB287/D

© Motorola, Inc., 1999

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217.

1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-Ku, Tokyo, Japan, 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, New Territories, Hong Kong, 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

/* PORTA bit definitions 0x00 */
#define PA7 bit7
#define PA6 bit6
#define PA5 bit5
#define PA4 bit4
#define PA3 bit3
#define PA2 bit2
#define PA1 bit1
#define PA0 bit0

 .
 .
 .

/* CONFIG bit definitions 0x3F */
#define NOSEC bit3
#define NOCOP bit2
#define ROMON bit1 /* MC68HC11E9 and MC68HC11E8 only */
#define EPON bit1 /* MC68HC711E9 only */
#define EEON bit0

	Introduction
	Conventions
	Concepts, Development, and Usage

