
EMBS 6100 Winter 2004 – Building programs in C 1

Building C programs for the Dragon12

Version 1.0 – Thu Feb 19 22:16:12 EST 2004

The HC12 GNU C Compiler (gcc-mc68hc1x) is able to compile programs for
the CPU12, but the Dragon12 environment requires a bit of custom home-
grown help.

1 Compiling and linking

gcc compiles source code to an intermediate format, where the binary code is
not committed to a particular set of addresses. The final phase of compila-
tion, called linking, resolves the addresses for variables, constants and text1,
then produces the actual binary file that will be loaded and run on the CPU.

The linking process attempts to connect program variable and function names
with real memory addresses. Most of the variables are allocated automati-
cally to data or stack memory. However, it is often necessary to dictate the
exact address of variables such as the initial stack pointer, I/O registers and
the interrupt vector table.

2 Dragon12 important addresses

The addresses that must be fixed in memory on the Dragon12 are described
here. The compiler reads the resource file memory.x to locate those addresses
in memory (figure 1). The PROVIDE statement defines the addresses.

2.1 I/O registers

The hardware control and status registers for the MC9S12DP256B MCU at
the heart of the Dragon12 start at address 0x0000, and the block is 0x400
(1024d) bytes long.

1The program instructions executed by the CPU is called “text” because the word
“code” is overused and potentially confusing.

EMBS 6100 Winter 2004 – Building programs in C 2

OUTPUT_FORMAT("elf32-m68hc12", "elf32-m68hc12",

"elf32-m68hc12")

OUTPUT_ARCH(m68hc12)

ENTRY(_start)

SEARCH_DIR(C:\usr\lib\gcc-lib\m6811-elf\3.0.4\m68hc12\mshort)

MEMORY

{

ioports (!x) : org = 0x0000, l = 0x400

eeprom (!i) : org = 0x400, l = 0xc00

page0 (rwx) : org = 0x1000, l = 0x100

data (rwx) : org = 0x1000, l = 0x1000

text (rx) : org = 0x2000, l = 0x2000

}

PROVIDE (_stack = 0x2000);

PROVIDE (_io_reg = 0x0000);

PROVIDE (_ramvectors = 0x3e00);

Figure 1: Linker resource memory.x defining the Dragon12 memory layout

2.2 Stack

The initial value of the stack pointer is 0x2000, corresponding to the start
address of the text segment, as defined in the Dragon12 profile.

2.3 Interrupt vector table

The interrupt service routine addresses are loaded into a RAM table main-
tained by D-Bug12. In D-Bug12 Ver.4, the table is located at 0x3e00.

3 Dragon12 hardware registers

The hardware control and status registers for the MCU are described in the
MC9S12DP256B Device User Guide. The registers are addressed in C as an
array io reg of type unsigned char.

EMBS 6100 Winter 2004 – Building programs in C 3

3.1 Hardware register header file

The offsets to each register are given in the header file reg9s12c.h. The
file was translated from the assembler header file reg9s12.h supplied in the
Dragon12 support package (note the letter ‘c’ on the end of the C version).

At the top of each file that needs to address hardware registers, add the line:
#include "reg9s12c.h"

The file must be in the same directory as the C source file2.

3.2 Declaring the I/O register array

At the top of each file that needs to address hardware registers, add the line:
extern volatile unsigned char io reg[];

The statement tells the compiler that the array ([]) named io reg con-
tains 8-bit unsigned values (unsigned char). The keyword extern means
that the exact address in memory of the array will be supplied outside this
particular file, and the keyword volatile prevents the optimiser from re-
moving repetitive read/write operations because the value of the register is
outside the program’s direct control.

3.3 Writing to a register

To write a value of type unsigned char to a register, assign the value to the
array element. For example, writing the port B register (PORTB) to turn
on the LEDs:

unsigned char leds; /* declare before using */

· · ·

io reg[portb] = leds;

portb is the offset from the base of the register block and is supplied by the
header file reg9s12c.h . The register names are the same as those in the
Device User Guide, except they have been changed to lowercase.

2The angle brackets (< >) used to include standard header files, such as
#include <stdio.h>

are interpreted as “search the system-wide directories”. The standard quotation marks
(") mean “search the current directory” .

EMBS 6100 Winter 2004 – Building programs in C 4

3.4 Reading from a register

To copy the current value of a register, assign the array element’s value to
a variable of type unsigned char. For example, reading the port H input
register (PTIH) to capture the state of the Dragon12 DIP switches S1:

unsigned char switch; /* declare before using */

· · ·

switch = io reg[ptih];

ptih is the offset from the base of the register block and is supplied by the
header file reg9s12c.h .

4 Interrupts

This section details the mechanics of setting up for interrupts on the Dragon12

under D-Bug12. For additional instructions on interrupts in C, see EMBS
6100 lab 3 (Interrupts).

4.1 RAM interrupt vector table

D-Bug12 maintains an array of interrupt vectors in RAM to get around
the need to program the on-chip flash EPROM every time a new program
is downloaded. The offsets are defined in the header file dbug12c.h . The
names are based on the list given in the D-Bug12 Ver.4 reference guide (p.86).

4.2 Interrupts header file

Include the interrupts definition file with the statement
#include "dbug12c.h"

The RAM based interrupt table is defined inside dbug12c.h as the array
extern volatile Address ramvectors[];

where the type Address is a synonym for pointer to type char. Once you
have included dbug12c.h, you do not need to further declare or define the
array in your program.

EMBS 6100 Winter 2004 – Building programs in C 5

5 References

D-Bug12 Ver.4 reference guide
http://opentech.durhamc.on.ca/bertrandl/embs6100/resources/DB12RG4.pdf

EMBS 6100 C programming support kit
http://opentech.durhamc.on.ca/bertrandl/embs6100/resources/embs6100cprograms.zip

All referenced Motorola PDF documents may be downloaded from the Mo-
torola Semiconductors documentation site for the MC9S12DP256B 16-bit
microcontroller:
http://e-www.motorola.com/webapp/sps/site/prod_summary.jsp?

code=MC9S12DP256B&nodeId=0162468636K100

