COLNE ROBOTICS CO. LTD.

BEAUFORT ROAD, off RICHMOND ROAD, TWICKENHAM TW1 2PQ, ENGLAND

Telephone: 01-8928197/8241 Telex: 8814066

Power Requirement 15 volts 5 to 6 amps

WRIST

GRIPPER
180° ROTATION(* ,

270° ROTATION

THREE

SPECIFICATIONS closune |

Configuration 5 Axes of rotation
Gripper 3 Finger type ,
Drive 6 Stepper motors 360° ROTATION WHICH
. THTHE W
with open loop control L e WO
Controller Any micro computer RITCH AND YAW

with an 8 bit parallel port

SHOULDER

e

ROTATION 180°

Weight 3.5 Kg. without power pack

Size 150mm x 230mm x 310mm high
PERFORMANCE @Q
[1

Resolution 4mm

Load Capacity 300gms
Gripping Force 20 Newtons
Reach 430mm ROTATION 360°

BASE

THE DEVICE v

The Armdroid represents an important step forward in automation and handling. The
device has five axes of rotation and is a continuous path machine. In other words it is able
to use several joints at once and to perform a programmed move sequence under
computer control. The robot comes either as a kit or in assembled form. This low cost
robotic development tool can be used in the home, school, factory or research laboratory
as an educational device. It is available with two distinct modes of control — computer
control or manual control.

COMPUTER CONTROL AND SOFTWARE

The Armdroid can be driven by most micro computers and can be used as a handling
device or alternatively as a computer peripheral. All the well known names will operate
the machine such as Pet, Apple, TRS 80, ZX 81 » RML 380Z, Acorn, BBC Computer and
many more. We now have software available for many of these computers. Programs
are memory orientated and have a learning capability so that a robot is able to repeat a
sequence which has been taught to it as many times as required.

MANUAL CONTROL
A hand held control box using separate centre-off switches to operate each of the six
motors is available to special order.

THE ELECTRONICS

The computer controlled robot has an interface board for an 8 bit bi-directional parallel
port. Micro switches to aid position sensing are optional. A separate interface board is
used for manual control and this is now interchangeable with the computer board. Power
packs are available for both 220/40v and 110v supplies.

THE HANDBOOK _
A set of instructions for both construction and operation is a part of the kit and it contains
detailed mechanical drawings, electronics schematics, software listings and description.

=

I’E
=

ZEAKER TNTRODUCTORY PRICE LIST AND ORDER FORM

uNE ROBOTICS CO LTD
AUFORT ROAD

F RICHMOND ROAD

ST TWICKENHAM

DDX TW1l 2PH
LEPHONE 892 8197 or 8241 TELEX 8814066
ME covansaisonspmonmepmns smssseos
SITTON o smin s v s 5605 % & ie é v n mms
DRESE Gt atnceconcnnasassnnnssesses
SANISATION v ie vt eeeneeennonoenns
NE it ittt ittt e
) DESCRIPTION PRICE QTY TOTAL
EACH PRICE
Zeaker Mobile Robot, In Kit Form 52£00
Control Station and :
connecting leads between
control station, Robot
and Micro Computer.
Merpi] Ready Assembled 69.50
Software listing for Catalogue Number Free
your Micro - See Oof
Appendix for Catalogue No Charge
Interface for 7X81 Computer 13.00
Interface for Spectrum Computer 25.00
Cassette of Software for Catalogue Number
your Micro - See
Appendix for Catalogue No 6.00
SUB TOTAL
Plus Packing, Postage, and Insurance 3.00

ess otherwise arranged

nent is due before delivery
“ept for Educational,’
~itutional and Large Commercial

“hasers where payment is due after
Lvery)

L 1983

SUB TOTAL

ADD 15% VAT

TOTAL AMOUNT

Power Requirement 15 volts 5 to 6 amps

GRIPPER WRIST —~

180° ROTATION(4

270° ROTATION

THREE

SPECIFICATIONS Finaen |

Configuration 5 Axes of rotation
Gripper 3 Finger type
Drive 6 Stepper motors 360° ROTATION WHICH
with open loop control ROTATION CREATES
Controller Any micro computer PITCH.AND YAW

with an 8 bit parallel port

SHOULDER

ROTATION 180°

Weight 3.5 Kg. without power pack

Size 150mm x 230mm x 310mm high y
PERFORMANCE QQ
[

Resolution 4mm
Load Capacity 300gms
Gripping Force 20 Newtons
Reach 430mm ROTATION 360°

THE DEVICE _

The Armdroid represents an important step forward in automation and handling. The
device has five axes of rotation and is a continuous path machine. In other words itis able
to use several joints at once and to perform a programmed move sequence under
computer control. The robot comes either as a kit or in assembled form. This low cost
robotic development tool can be used in the home, school, factory or research laboratory
as an educational device. It is available with two distinct modes of control — computer
control or manual control.

COMPUTER CONTROL AND SOFTWARE

The Armdroid can be driven by most micro computers and can be used as a handling
device or alternatively as a computer peripheral. All the well known names will operate
the machine such as Pet, Apple, TRS 80, ZX 81, RML 380Z, Acorn, BBC Computer and
many more. We now have software available for many of these computers. Programs
are memory orientated and have a learning capability so that a robot is able to repeat a
sequence which has been taught to it as many times as required.

MANUAL CONTROL
A hand held control box using separate centre-off switches to operate each of the six
motors is available to special order.

THE ELECTRONICS

The computer controlled robot has an interface board for an 8 bit bi-directional parallel
port. Micro switches to aid position sensing are optional. A separate interface board is
used for manual control and this is now interchangeable with the computer board. Power
packs are available for both 220/40v and 110v supplies.

THE HANDBOOK
A set of instructions for both construction and operation is a part of the kitand it contains
detailed mechanical drawings, electronics schematics, software listings and description.

= SEPARATE
. MOTIONS

OR

CONTINUOUS
PATH MOTION

COLNE ROBOTICS CO. LTD.

BEAUFORT ROAD, off RICHMOND ROAD, TWICKENHAM TW1 2PQ, ENGLAND

Teiephone: 01-8528197/8241 Telex: 8814066

THE ZEAKER MICRC-TURTLE

(~The world's first low-cost mobile robot for micro-computers.

hoaal 'u.....‘

WHAT IS IT? Zeaker is a small mobile robot (5" x 5" x 2") with
' two DC motor drive, four touch sensors, a two-tone
horn, direction-indicating LED's, a power supply,

2m umbilical ribbon cable, manual and software.

WHAT DOES IT DO? The Zeaker can be driven from any micro-computer
which has an 8 bit bi-directional port (in the case
of ZX81 a special interface board is required - see
below). Software provides a learning program, contrc
of pen and response of Zeaker to contact with its ser

I am interested in purchasing the units indicated below, I understand yc
will inform me when they are ready for despatch and will then ask me to

forward cheque/PO in payment.
Kit @ £59.00 (incl VAT)
Assembled Unit 8 £79.00 (incl VAT)

k; — 2ZX81 Interface Board @ £15.00 (incl VAT)

Please tear off angd send to above address.

THE ZEAKER MICRO-MOBILE — a low cost mobile robot for micro-computers

A new product shortly to become available
from Colne Robotics will be a 2-wheeled
mobile robot known as the Zeaker Micro-
Mobile. Its movements can be controlled
by a micro-computer, via a connecting
umbilical ribbon cable. Software is
provided which permits the movements to
be memorized and reproduced — that is to
say Zeaker has a learning capability. With
further appropriate software it is capable
of drawing Turtle and Logo graphics.
Sensors indicate when the robot touches
an obstacle and the computer instructs it

to find an alternative path. Stimulation of
the sensors produces one of two notes on
a horn, according to the direction of
Zeaker’s movements.

An additional feature is the built-in,
retractable pen beneath the unit, which
can trace the path taken across a surface.
The pen itself is controlled by the computer,
and its position (lowered or retracted) is
indicated by a light on the top of the
robot. Two further lights change according
to the direction of movement.

The Zeaker Micro-Mobile is aimed at
the educational market, in which a growing
number of schools wish to extend their
computer teaching syllabus to cover control
systems, through the use of micro-
computers. It is also aimed at the rapidly
expanding computer hobby market. To
keep in line with the fall in micro-
computer prices, the units have been
produced at very low cost: £59.95 for the
kit version and £79.95 for the assembled

robot. (INTRODUCTORY OFFER).

Zeaker comes complete with interface,
power supply, operation manual and
software. |t can be driven by any micro-
computer which has an 8-bit bi-directional
port, as well as by the ZX81 for which a
special interface is available from Colne
Robotics. We plan to produce interfaces
for other popular micro-computers too.

Look out for Zeaker on the front cover
of the May 83 issue of “Practical
Electronics’’, available from 8th April.

COLNE ROBOTICS CO. LTD.

BEAUFORT ROAD, off RICHMOND ROAD, TWICKENHAM TW1 2PQ, ENGLAND

Telephone: 01-892 8197/8241 Telex: 8814066

_{HTCH MDD HC HT Deuble cocnd

o fue He Sawve i+ -
DD He, M. Count=x4& o
P B C,A_ - resbove Cowntxl
A DD HUL B et x C -

LD BCARST e butly ol
kDD #FL BC (et neco CURIL, po e

___,__ﬁ*; _ L/> C UROLD H’L Swvf [f’
NI (- Q uc>§

o /L\? WA/F/{/\ »'§ %&%IQZW('LO O~ W—H\Q ‘
(e M Y 8«-\J e,aq I &L&—c/s no b M«n{‘:\gj
AROC Ae (zow - o re<taunilote o

Tvesbr "_'”‘fﬂw FTABL 5 accesseed
Ef‘:é(,_-_?(&('c-//‘/‘ e fle \CG,MJp L& el C/‘Léﬁ“if/_ﬂ‘__*
AL ov HALE ,,ﬁs&{a,,ﬂ

1(__,-0

1030 cM=
|cso RC 2 &Q%Og)

 lblo epf Pc"z;_g_@H _7_3* QL PO%HE 4B ermec

(0 St = peex(l %_,DL@C_ %/_ Pos A1 S SdeuldeR
__lpp Geozte 1400 \BR=BE |'chceuiite & c

e eL= g+ | o o

g Geosur j4gp

lidy IF _ch%;ﬁ ¢¢ THe _Lf/gg S

_ 5@ gH=SH+l | Ccn=CN+H -
68 GoSuB 44p - -
e F *%S(BGEB) < | meN @y

41,% eo el o
qp SH=SH~1 I"cNV=cy4

’Lﬁp GOoSUR 14pw@] - ﬁh

_[2lph T A’Bs(@c%@><('rrﬁee\/ /2360 - -
%__Lwéu@ re s -

i ___/_7/2@%&(’:@(eNG o

_ \4¢p #= 350 * SIN (Eﬁ—_/l> S—

1410 ze= gw(4 D239 = (4 0755398 — £ /) e 1

(41L¢ ReETURN o

4 phh St oA Pusic. L Bps

_tto AR= Z eFe
 wo cN=)

“;w]‘(G e PCCKW(7 52{ /:;W:é R2 $¢ g
120 s,wr = Ceew(252D) *R.§2goE

730 WouT'iHed) maNY STeps "5 N)

40 FoR I= | To Ny -)
8o CTf°SJJ3 "¢
e Nex T T o o

 Jgo Merse gc,) 25‘7&?
1\53 ”G’?%q{% |4\25C5

1o BC =33 * - f ﬁ
e EL=EL+ - - -

777777777777 20 Gesud & ZO -

- hgo o E ,érgg(gc BR)L | THeN LD
50 F NP 4 Tren

B l 6o \E RC -~ ~BBR LT THed IMLO i
_m___ﬁﬂ,,)g ,,,,, =8H~+t B
%0 N T M4 R e
 lq0 Gosui rwo B
e I Aes(BC-3R)LI THEN MgD

o & T WSo o
1tto SH=SH -~

%o CN = e.,v-ui

LS80 GOSUB /a4 o)
6o T Mz;gfgg-gg? e rego
1230 GoTe NiSg 140 ﬂazgwa-/s,_s_fi

L&D PokEWN AK-M} B 1300 AR=AR+L

13l ReTUAN

1490 K= 3%0% Siv (EC/2)
lato 82z SIN(41239 - (34+0.185 398 - 51/7)}4*

420 RETURN

__________ 160 gosy 5&,5;5, ———

o tte.__otew 'z, Fit — e

_.\ 7"%5 _2_:;——?-#-) - e
R/ Ea’,//»t/f/ﬁw#/ ,4_5 - e

%0 Fop =g 7o €
— /4"’ H A= M/Dg'(/hg vy) e —

B0 EE 7 52/9 47, mpepg)
SO frexT T —

~R.,,.,_[>O _Ard = ,Q/gp/.ﬁﬁ # ———
e ey

o peens % e

_ze0 =/ e

. Zlc)&mé?/vmr %/ B ;J,g T e

/ ———————

* ZZO H,,/.[: C:“&FO) 77/é/\/ 2570 T T eee—

RS S . E—

3‘¢0 4}“5*54(/;’ A ‘5‘ giom A= “““*h—ﬁh
310 olen ”o v g —

\3}0 —E= _fe il 7% 52.¢ szes)

340%/&5 &mg‘(@;‘ (Z 50,2/4_”_» —

B0 wer T

o PR T= , 7o on”

O ARTE oo 5
o T T= (T-1)%L »7

30 pits feen(ZroverTT)

FrO0 AT = 4 AAd o
50 /F cemM)< 253 THEA <

teo SRwT @/ Aty
o A-g= "1

P60 pexT 7

70 waErrT T

220 A= S

P60 TF A <> Trten PROT #,44
g S
b0 CleoSE / e

Lo MERGe ZCZ TP 5597
O NEFLg="" TN 526 o
S0 Near” hich olrive N brer " s DAY
o IFDNEC "¢ o DNE S "2
20 Frg=Fud+ "/hem "+ DNE
Bo Return

‘T.éfﬁl\l_;i%@_ﬁ

5 B0 WPUT " Ender Lile mame(Luitisit extensiom) " d

e T Jcaler

&gé;:aﬁ/ZFﬁ/(Z 64 Zee @’7/(Z /’/ Z??Z 5575

—_— —— S

-_— SO —
—_— o
e S S —
e
TS —————————— N—
-_—

PN o O A Sl s S e L -

Sgind Z8WSIc Z=x<dcDMag

tnedveds 4o Lepenfend

N EDURT_CQU (rmone) uldess sf e entog i
(/‘E%_SC €H_ODApl ch crpse leltefos
e orfee vt ewiC poegr

. B2 eESY 2LENSR . LD HC, CASRD ;é(eﬁejgjf:ﬂjk

PO ED4BUSEY D B, (touwr) (olalile o

el it C2omexx TC Otk enh)
> !

v Delele sCESH 4o SEwett oo d add
e Gllwivng _eqvates ,

ffffff — D EQU vnvse (eety b fwrn)
T WRTE_ER U xeye (pebegte Cpfe)

o ;M%_’%—7 4’%“5‘ Lo T 250 B an S

Q-

~Levk b sk 3 bufes — TP = Seconclonscdne
o A”{-Séww%ﬁ—wwl ety podule B /

p = S

/

Ko pleee rel epes LU -3 e

L Gk cisden e <caer
oA des t-le Wit @0 oo oy
_____ B redetdhve L’E’/K{E_,_?éhri A TP e

L Peplace tsl Gl TP 55914 (e, boet tolen

Leok G proprietany nofice(just before sfying o

, e o ! m i
kel slooks L (cH e ool Suds (iF
—— 0, Dk, D (D2 bides i all) eo ol e plaes e
. DPFs

* _ S(Mj-‘/\% %auxw.ce —*

L Cladin) - @W accmwoér% ffffff N

M, SNQ_ Nore Mvv*o ?_\LW# cgrvﬂ‘,

—% *L_/_Lﬁ,} Sethig '(*l\r_’,&/ (7/*6% gka,cg_ oo (MW\(EL‘/CS gp)

DG (;st o

—Sevollivn balled by pressing B _ ;
(O C,&*\A*le\,u{ prt'/?S M«,J ()’(iQ_/ LQLJ
T o S‘?() s el KQC() pwi:V\CJ>@

; c/:(a@ -

Q(@w CM@M‘S ”]wa\uul-es B S-ez(owwee M(LMEK>

) - A"ré\%\/\ r\wwx(.aﬁ—r @pj lagt oo o loe pf—/ncwm/k <evrer)
Wb step) allons ohnyas 4%:;1 oo o ol

L Geks cuvrent posithie of corn oz res
- 5(*0\/(‘ pouxt

>u,\/lwé\ LCWV\) g@{—g a Po?yd' Lo Cmég_% ‘K:Q -
e st oo bplyc exe cehing avofte, sequovee

p— _‘M [& V;%;LT P [C < N N »(M““R‘h‘*W'f“’”" T T
—press m)akiii’pmm N

Moy B B2

Grippe, (I e

B - M
3

o Rean | 6
B - e S

. Beasge e

— Y
B

‘“\Jg(o@iDMZ;C’”;’“\;HSZJ(Levce k?#:l; ''''' N

o prBgesns,
Cp f 3 eyt Lﬂw Mh?cj_bgi ‘:* —_—

—

——

—_—
- —_—
—_—

—_—

_— e
—_— .

toit

=

dbotics Armdroid

The Small-Systems Robot

“;:Steven W, Leininger :
:5402 Summit Ridge Trail

If you think you've explored all the possible hardware
options for your small-computer system and are'looking
for some excitement, you might be interested in Arm-
droid, a new computer-controlled robot arm. The bright
orange mechanical arm is available from Colne Robotics
in kit or assembled form, complete with power supply
and interface electronics. The kit form, besides being less
expensive, “enables the person assembling the device to
understand the principles of the robot,” according to the
manufacturer. The robot can be used for a variety of ex-
perimental and educational applications. It has 6
degrees of motion and a lift capacity of 10 ounces. |
received both a kit and an assembled Armdroid for my
evaluation, along with’a “preliminary” manual,

Mechanical Description

The Armdroid has five major mechanical components:
the base, the shoulder, the upper arm, the forearm, and
the wrist and hand assembly. Each section is connected to
its neighbor by a pivoting or rotating joint. The sta-
tionary base sits on the tabletop and provides support for
the rest of the arm. The base, which also serves as the
enclosure for the stepper-motor-drive electronics, con-
tains the motor which rotates the arm about a vertical
axis through the base.

About the Author

Steven W. Leininger was the design engineer for the original Rudio
Shack TRS-80 Model | microcomputer. He is now an independent com-
puter consultant.

286 May 1982 © BYTE Publications Inc

Lot tArlington, TX 76017 .

At a Glance

Name
Armdroid

Use
Robotic arm

Manufacturer
Colne Robotics
207 NE 33rd St.
Fort Lauderdale, FL 33334

Dimensions

At shoulder: .18 by 18 by 29 cm (7 by 7 by 11.5 in)

Shoulder pivot height: 25 cm (10 in))

Arm length at maximum extension from shoulder pivot to finger
tip: 48 cm (19 in)

Price
Kit: $595
Assembled: $695

Features
6 degrees of motion; menu-driven control software; 10-ounce load

capacity

Addltlonal Hardware Needed
TRS-80 Model I Level I {other microcomputers will be supported in
the future|

Addltlonal Software Needgd
Learn. an interactive rnenu-driven control program {included)

Hardware Optlon
Zero-position sensc swilcnes

Documentation _
Construction and Qperation Mariual, 87 pages

Audlence
Expenimenters. students, and prolessionals interested in robotics

o)

EEE RN

A AR
, ?:«"%2?"‘"3
= s » Ry ST gy SRl B . % Prymin,
SN ot D e 8 SIS B

it ih NS T

Photo 1: The Armdroid kit's many parts. The cost of the six
stepper motors (at the top of the photo) is offset by the rela-
tively inexpensive stamped-steel chassis and structural parts.
The power supply and interface electronics are not shown.

T, bl
2 %u W e Erd M

The shoulder rotates on the main bearing, a fairly
heavy-duty ball-bearing assembly at the top of the base.
Five stepper motors and associated reduction gears and
drive belts are mounted on the shoulder and provide mo-
tion control to the arm, wrist, and hand.

The upper arm connects to the shoulder with a
horizontal pivot and is rotated on that pivot by one of the
stepper motors in the shoulder. If you move the upper
arm vertically, the hand is raised and brought closer to
the base. Cable-driving gears transmit motion to the
forearm and the hand and wrist assembly; these are
mounted in the shoulder end of the upper arm.

The forearm fastens to the upper arm with a horizontal
pivot and is rotated about that point with one of the
motors in the shoulder. The primary response to pivoting
the forearm is the raising or lowering of the hand with
respect to the tabletop.

The hand and wrist assembly attaches to the end of the
forearm with a combination horizontal pivot and bevel
gear assembly. The operator uses two motors in the
shoulder to either rotate the hand about the pivot (an up-
and-down motion) or twist the hand about its axis. The
remaining motor in the shoulder opens and closes the
hand’s three rubber-tipped metal fingers.

You can move any section independently without af-
fecting the orientation of the other sections because of the
Armdroid’s parallelogram-type construction. This in-
dependence of control permits the angle of the hand to re-
main constant with respect to the workbench while the
rest of the arm is manipulated to position the hand in the

desired location.

Interface Electronics

The Armdroid | tested came with an 17O (input/out-
put) adapter for the Radio Shack TRS-80 Model I. This
adapter, a nonlatched parallel port, plugs into the expan-

288 My 1vs2 -

BY TE "ablications Ine

Photo 2: The shoulder contains five of the six stepper mot,
Reduction gears are used to increase the force applied via
drive cables.

sion port on the TRS-80. A cable from the adapter plu
into the base of the Armdroid.

Colne Robotics has mounted two printed-circuit car
within the base of the Armdroid: the interface board a
the motor-drive board. The interface board accef
signals from the TRS-80, conditions them, and conve
them to pulses of the duration and shape suitable for co
trolling the arm’s motors, The motor-drive boa,
amplifies the signals to provide the voltage and curre.
levels required to drive the motors’ coils.

You can set the Armdroid’s internal electronics for e
ternal computer control or operation via manual switch:
by making the selection on the two printed-circuit boar¢
inside the Armdroid’s base.

Building the Kit

Being a disciple of Erector Set and Heathkit, 1 had n
fears about venturing out into the frontiers of robot k
building. To get a feel for the scope of the project, 1 lai
all the parts out and familiarized myself with the cor
struction section of the manual.

The manual 1 received was a preliminary version. Th
entire mechanical assembly instructions were on just si.
pages! Undaunted, | forged ahead. About halfwa
through the first paragraph, 1 was instructed to glu
magnets onto some of the gears. Apparently, the magnet.
are optional (at least they weren't included in the kit), bu
no mention was made of that fact. The system uses the
magnets and their respective reed switches to sense the
home position of the gears.

The instructions rambled on, sometimes with severa
steps in a sentence. The manual specified part numbers
(usually) but didn't refer to the drawing numbers.

I knew the next part was going to be tricky because the
instructions said that an assistant would be helpful, The
task at hand was to assemble a dual-race ball-bearing
assembly from scratch, Using refrigerated petroleum jelly

hoto 3: The controlling circuitry is contained on two printed-
rcuit boards. The motor-drive board (left) and the micro-
ocessor interface board (right) are easy to assemble and con-
ct directly to a TRS-80 Model I (versions for the Commodore
T, the Apple 11, and the Sinclair ZX81 are planned).

- per the instructions, I greased the bearing track and
\bedded 24 ball bearings in the goo. After carefully in-
rting the base-support column into the bearing and
rming the assembly upright, I attempted to repeat the
b on the upper bearing track.
Darn. While tightening the adjusting ring, three balls
pped out of the lower bearing and huddled in a mound
petroleum jelly. Back to the beginning; twice more the
ne thing happened. Arrghl| Finally, success! But wait,
y was the shoulder pan rubbing on the shoulder-drive
ir? And, wasn't that ball-bearing assembly just a little
off parallel? At this point, I decided to cheat and look
the factory-assembled Armdroid. It appeared that the
rring-support column was too short, | described my
blem to the gentlemen at Colne Robotics over the
one and was told that | probably had the bearing
g—an almost but not quite symmetrical part—on up-
> down,
tried it again: I disassembled the bearing, inverted the
ring ring, and carefully placed the steel balls in the
roleum-jelly-coated track (I'm pretty good at this by
v). Continuing as before, [installed the adjusting ring
‘beheld a smoothly operating shoulder bearing,
he instructions continued: put this motor here, put
e gears there, and see the drawing, Well, I looked at
drawing. (The drawings are good up to a point, but
' lack fine detail or close-ups in some areas.) | cheated
uple more times by looking at the assembled arm to
fy my understanding of the drawings and text.
ssembly continued on the upper arm and forearm.
wrist posed no major problems. Then disaster
k! The fingers are held together with a large number
circlips” (split rings that fit around the outside of a
). The circlips allow you to slide a rod through a
. then prevent the rod from sliding back again. A
al pair of circlip pliers is an absolute necessity to
eed beyond this point. I tried to make do with what |

May 1982 © BYTE Publications Inc

Photo 4: A mechanical assistant can speed the assembly of the
arm.

had (needle-nose pliers, screwdrivers, etc.) and realized |
definitely needed the proper tools. It would have been
nice if the appropriate pliers came in the kit or were at
least available as an option. '

The final assembly of the hand progressed easily after |
purchased the circlip pliers. The instructions said to con-
nect the arm assembly to the shoulder and base assembly.
The cable threading came next. In the helpful hints sec-
tion, the instructions said that this operation is greatly
simplified by threading the arm before attaching it to the
shoulder. So I started over again.

The actual cable threading progressed well, except for
a clearance problem on one of the wrist cables. After
checking the preassembled arm, I decided that cable
clearance in the wrist is an assembly problem that Colne
Robotics had experienced and corrected but had not up-
dated in the manual. Ten minutes later, the offending
cable had been restrung and worked smoothly.

The two printed-circuit boards went together just
about as well as one would expect. No part numbers or
reference designators were silk-screened on the boards, so
I had to rely on the drawings in the manual for parts
placement. Mounting the interface and motor-driver
printed-circuit boards into the base of the Armdroid and
connecting the stepper-motor wires to the driver board
completed the assembly operation.

Using the Armdroid

A machine-language cassette for the TRS-80 Model |
Level II microcomputer comes with the Armdroid. The
menu-driven program, named Learn, allows you to
familiarize yourself with the operation of the robot arm
and to create, modify, and save motion sequences,

The manual suggests reading through the software
description quickly and proceeding to the “Introductory
Demonstration Sequence” section, which tells you to
load Learn and enter the learn mode by typing an “L".

i

INTR

ODUCING

The master @@y
printer interface
at a very low cost

For the first time ever a truly affordable Apple interface offers all
the most sophisticated text and graphics capabilities on Epson®,
Okidata®, Centronics®, and IDS® printers. With the easy to use
PKASO Interface, you simply slip it into your Apple Computer®
attach the cable to your printer, and enjoy all these features:

° Broadest range of text printing using your software ¢ HiRes
graphics with up to 40 creative options ° LoRes and HalfTone
graphicsin 16 levels of gray ¢ SuperRes plotting with up to 2160
X 960 points per page ¢ User created or software defined charac-
ters and symbols ¢ Full text and graphics dump of absolutely any
screen image.

Gray scale printing Apple //l compatibility

At Interactive Structures we've built our reputation on innova-
tion, quality and service, and we're doing it again with the new
PKASO series. The PKASO Interface will bring out the best

in your Apple Computer, your data printer and your program.

It will perform with all popular languages such as BASIC and
ASSEMBLER. It will print both text and graphics with PASCAL.
And it's the first and only Apple interface to offer all this plus
support for the Apple Z-80 CP/M System and for full Apple ///
operation.

Snapshot screen dump

Don't settle for less. And don't pay more. Call us now for the
name of the PKASO dealer near you. Circle 210 on inquiry card.

Interactive Structures, Inc.
112 Bala Avenue

P.O. Box 404

Bala Cynwyd, PA 19004
(215)667-1713

Appte Computer s aregntered ltade name ol Apple Computer Inc
tpswonn areyisieied tiade name ol b pson AmeicaIne. Ohidata i o
trgiMered trade name of Ohidats Corporanon Centioni s i aregn
tered tiade name o Centronw s Dara Computer Corpuranon

DS v 8 tegitered lrade name of Integral Dota Sysems. Ing

Photo 5: The hand and wrist assembly has three finge.
fingers are opened and closed in unison under program ¢

The wrist allows both rotation and up-and-down motior
hand.

This mode lets you manually operate the robot whil
gramming it to follow the same motions automatic

The program asks you if you want to start again
tinue from the present position, or exit the proj
Type “S” to clear the memory and free the arm. Th
is free when no torque is applied to the stepper m
This allows you to initialize the Armdroid's positic
hand using the large gears in the shoulder. When yc
satisfied with the starting position, press the spac
The program applies torque to the arm, effectively
fening and locking the arm in place.

You can now move the arm using the Q, W, E, R,
and 1 through 6 keys to manually control the move
of the different parts of the arm. If you're like me, i
take a couple of tries to predictably move the arm, 1
the wrist, and open and close the hand under m:
control. Type a “0” to get out of the learn mode.

Now the miracle of lifel Press “G” for go, and the.
droid takes the shortest path to your initial starting
tion. The program then asks “O" (once) or “F" (fore

_Forever seems like a long time for something you ha
tried yet, so type “O",

Wowl The arm is doing just what you taught it t
And without the long pauses for head scratching and
taking! You are returned to the menu.

To look at the sequence of commands that were se
the stepper motors, type “D” for display. A table ap
on the screen showing the stepper increment v.
stored in memory.

To extend the sequence of movements, simply re
the learn mode, and type “C"” for continue. You can
additional motions by using the manual-control }
Once again, you must type “0” to return to the r
mode.

After testing the new sequence, you may decide
some of the motions need to be fine tuned. This ca
done using the edit mode.

Photo 6: The Armdroid has a maximum reach of 19 inches from
the shoulder base.

Three cassette-tape commands allow you to save your
Armdroid sequence for a rainy day. “W" (write) saves the
sequence in memory on the tape, “R” (read) retrieves the
sequence from tape, and “C” (check) verifies that the data
on the tape is the same as that in memory.

Colne Robotics has graciously included the source
listing for the Armdroid control software in the manual.
The Z80 assembly-language source is well documented
and should prove to be a valuable learning tool for the
student of robot technology. The source code is also
useful to those who wish to modify the control software
for a specific application.

I understand that Colne Robotics is developing similar
software for other microcomputers, such as the Com-
modore PET, the Apple 11, and the Sinclair ZX81. Watch
their advertisements for further details.

Documentation

The 87-page manual is broken down into four sectio
The introduction section is nine pages long and str:
from the purpose of an experimental robot arm. Disc
sions on the economic and social impact of indust;
robots, complete with tables and formulas, seem m.
like padding than useful information.

The second section deals with the mechanical assem!
of the Armdroid. As noted above, some deficiencies a
inaccuracies in the instructions exist. A hand-holdi:
step-by-step approach would benefit the novice build

The next section details the electronics of the Ar
droid. This section was not too bad, but again a step-t
step approach would be helpful.

The final section describes the software package
cluded with the arm. This chapter of the manual was
easiest to use, due in part to the quality of the Learn p
gram itself. And I applaud the inclusion of the progr:
listing as an aid to understanding the ins and outs
microprocessor-controlled robotics.

It should be noted that my review is based on a “p.
liminary” manual for the Armdroid. I have been re:
sured that the manual will be revised to eliminate some
the limitations that I have noted above.

Conclusions
®The Armdroid is a low-cost manipulator with go
dexterity and maneuverability.

- ®The software delivered with the arm is easy to use a:

serves as a powerful tool in understanding robot oper
tion,

®The Armdroid kit is not for the inexperienced builde
unless the manual is improved.

ol feel I have learned a lot about the mechanics, ele
tronics, and software of robots, thanks to the people
Colne Robotics. m

Apple LOQO

by Harold Ableson

294

The name Logo describes not only the evolving
family of computer languages detailed in this book,
but also a philosophy of education that makes full
and innovative use of the teaching potential of
modern computers. Apple Logo presents the Apple 11
user with a complete guide to the applications of this
unique system and also includes a description of TI
Logo for users of the Texas Instruments 99/4
computer.

The designers’ vision of an unlimited educational
tool becomes a reality for the Apple II user who
begins to work with this procedural language. Logo
enables even young children to control the computer
in self-directed ways (rather than merely responding to
it), yet it also offers sophisticated users a general pro-
gramming system of considerable power.

May 1982 . BYTE Publicatiuns Inc

Apple Logo actually teaches programming tech-

" niques through ‘‘Turtle Geometry’'—fascinating

excrcises involving both Logo programming and
geometric concepts. Later chapters illustrate more ad-
vanced projects such as an ““INSTANT"’ program for
preschool children and the famous ‘‘DOCTOR'’ pro-
gram with its simulated **psychotherapist.”’

ISBN 0-07-00425-0
240 Pages

Softcover, spiral-bound
$14.96

: Call Toll-Free 800/268-6420

BYTE Bookas 70 Main Street ‘.J !
Paterborough, N.H. 03468 nll

Circle 57 on Inquiry ¢

Cd

LNE ROBOTICS

The

Colne Robotics

ARMDRARODTIOD

Construction and Operation Manual

Published by

COLNE ROBOTICS LIMITED
1 Station Road
Twickenham
Middlesex Tw1 q4LL

(C) copyright 1981

CONTENTTZ

\

Introduction

NN o

Mechanics

1 Description

2 Technical Hints

3 Tools

.4 Mechanical Parts

5 Assembly
Electronics

3.1 Description
3.2 Component List
3.3 Assembly

Software

Introduction
Loading

[¥ S~ NN SN SN SN SN N
L3
NSO WwWN

Applications

General Description
Command Explanation
Introductory Demonstration Sequence *4=5¥ e
Detailed Software Description

Page No,
*1-1%
2_1
2_2
2_3
*2-4% — *xD_g%
*2-0% ~ x2.]14%
3_1 - *3-3*
¥3-3 * =~ %33 &
¥3-4 - %x3-5%
k4-1% W
_*é—l*: f@
4_1-.

¥4-1l* = kd=dw

Kq-g* - K4-4B*
X4-48* - *4-58%

INTRODUCTION

The development of Armdroid I arose as a result of a survey of
industrial robots. It became apparent that educationalists and
hobbyists were starting to show interest in medium and small
sized robotic devices. There was however no robot on sale any-
where in the world at a price suitable to these markets. The
Armdroid micro-robot now fulfils this role, providing a
fascinating new microcomputer peripheral.

Purchase of the robot in kit form enables the assembler to
understand its principles and allows for modification, although
of course the machine may also be purchased ready assembled.

" This manual has been compiled as a guide to the construction and

operation of your Armdroid micro-robotic arm, and should be
followed carefully. There are separate sections covering both
the mechanical and electronic aspects of the robot, as well as
the specially written software.

1_1

M

N

MECHANICS

2.1 Description

The ARMDROID consists of five main parts.

The base
The base performs not just its obvious function of supporting
the rest of the arm. It also houses the printed circuit boards
and the motor that provides the rotation.

The Shoulder

The shoulder, which rotates on the base by way of the main
bearing, carries five motors and their reduction gears which
mesh with the reduction gears on the upper arm.

The Upper Arm

The lower end of the upper arm carries the gears and pulleys
that drive the elbow, wrist and hand. It rotates about a
horizontal axis on the shoulder.

The Forearm

The forearm rotates about a horizontal axis on the upper arm
and carries the wrist bevel gears.

The Wrist and Hand

The two wrist movements, the rotation about the axis of the hand
("twist") and the rotation of the hand about a horizontal axis

("up and down"), depend on a combination of two independant
movements. The twist is accomplished by rotating both bevel

gears in opposite directions, while the up and down movement

is done by turning the gears in the same direction. Combinations
of the two movements can be got by turning one bevel gear more than
the other. '

The three fingered hand with its rubber fingertips has a
straightforward open and shut movement.

2.4 ASSEMBLY

Description of item

Base
Base Eearing support column
Base motor
Base niotor short pulley 20 tooth
Base reduction gear Spindle
Turned thick wide Wwasher 16mm x 2mm
Reduction gear
Base belt (medium length) 94 teeth
Base switch support 12mm x 1lmm
Base switch
Shoulder pan
Shoulder bearing ring
Base gear (large iﬁternal dim)
Bearing adjusting ring
Hand motor support bracket
Hand motor
Hand switch bracket
Motors - Upper arm
Fore arm
Wrist action

Motor pulleys - Upper arm

Fore arm short 14 tooth

Part No

ol
02
03b
04b
05
06
07
08m
09
10
11
12
13
14
15
O3h
16
O3u
03f
O3w
O4u

04f

Wrist action long 20 tooth O4w

Hand short 20 tooth

*2 - 4

O4h

DESCRIPTION OF ITEM

Shoulder Side Plates
Switch stpport bhar lo7mm x M3 at ends

Support kar spacers M3 clearance X

Motor support bracket stiffener
107mm x M3 at ends

Support Bar spacers

Reduction gears

Reducticn gear spindle 96mm x 6mm

Drive belts long = 114 teeth
medium = 94 teeth
short = 87 teeth

Upper Arm Drive Gear
small internal dim no drum

Upper arm side plates
Upper arm brace
Gears wrist action
hand action
fore arm
Idler pulley
Shoulder pivot 96mm x 8mm spindle
Fore arm side plates
Fore arm brace
Fore arm pulley

2...5

Fart No

017
019
018/16
018/12

0l9
018/54
01l8/41
020
021

08/1 Hand
08/m Fore/Upp
08/s Wrist ac

021
022
023
024
025
026
027
029
030
031
032

DESCRIPTION OF ITEM

Elbow Idler pulleys hand
wrist

Elbow spindle 65mm x 6mm
Wrist bevel gear carrier
Wrist guide pulleys

Wrist bevel gears (flanged)
Wrist pivots

Hand bevel gear (no flange)
Finger support flange

Hand pivot

Finger tip plates

Finger cable clamp

Small finger spring

Finger tip pivot

Middle finger plates
Middle finger pivot

Large finger spring

Finger base

Long finger pins l6mm x 3mm
Short finger pins 13mm x 3mm
Small finger pulleys

Large finger pulleys

Large hand sheave pulley
Small hand sheave pulley
Hand sheave pin

Finger tip pads

Base pan

*) — g%

Part No.

033
034
035
036
037
038
039
040
041
041
042
043
044
045
046
047
048
050/1
050/s
051
052
053
054
055
056

057

DESCRIPTION OF ITEM Part No.

Board Spacers 018/41/54
Spacer bars_ for boards 058
Rubber feet 059
Cable springs wrist action short 060
Cable springs grip, elbow long 061

PREPARATION AND FIXINGS ETC

DESCRIPTION OF ITEM Item No.

Magnets 101
Bearing adjustment ring grub screws

M4 x 8mm 102

NB + self made pPlug to protect the

fine bearing thread

Turned cable clamps 6 x 6mm M3 tapped 103
Cable clamp grub screws M3 X 4 pointed head 104/105

Crimped type cable clamps
crimped eyelets 106

Gear Cable grub screws M4 x 6mm flat head 107

Bushers 8mm bore long with flange
= shoulder 108

Shoulder pivot spindle spacer 108a

émm bore short with flange
= elbow 109

8mm bore long with flange ,
= wrist 110

8mm bore no flange
main gear inserts 111
Gear to sheet metal screws M3 x 6

slot hd CSK 112

Spring piiiar and base switch
M3 x 10 cheese head 113

Base bearing to shoulder pan _
M4 x 16 CSK socket head 114

*2 ~ 7%

DESCRIPTION ITEM Item No.
Motor bolts, Base bearing to base
M4 x 10 Elbow spindle hex hd 115 |

Hand to finger, hand to bevel gear 116
M3 x 6 cheese hd

Shoulder spindle ’ 117
M5 x 10 hex hd

General sheet metal fixing) 118
M3 x 6 hex hd

M4 Nuts 119
M4 Washers 120
M4 Shakeproofs elbow spindle 121
M5 shakeproofs shoulder spindle 122
M3 Nuts 123
M3 washers = switches 124
émm steel balls - base bearing 125
Magnetic reed switches 0olo
Driver board 126
Interface board 127
Edge connector 128
émm Washers 129
Roll pins ‘ 136
4 . 5mm circlips ‘ 131
3mm circlips 132
Elbow spacer 133

2_8

2.5 ASSEMBLY
Preparation

Study the parts list, drawings and the parts themselves until

you are sure you have identified them all. Assemble the tools
suggested in the list of tools (2.3). Read carefully

technicla hints section. Solder 12 in o ribbon cable to each
motor. Glue magnets (l0l) into the slots in the reduction gears,
noting that the hand gear (25) needs no magnet. Check that the
adjusting ring 14 of the main bearing screws easily onto its
base. Clean both if necessary. Insert bushes into the arms,

if necessary using a vice, but taking care not to distort the
sheet metal. :

Construction

Fit base bearing support (2) column inside base (1). (M4 bolts,
nuts.) NB NUTS INSIDE BASE

Bolt 1 motor (shorter cable) inside base. (M4 hex bolts, washers
on motor side = nuts on inside). Fit pulley to spindle base of
motor with the grub screw at the top (046). Fit base reduction
gear spindle (07) to base. (Thick turned washer, M4 hex bolt)

Fit reduction gear and belt. Place a small drop pf oil on the —-:.
reduction gear spindle before fitting reduction gear.

When fitting belts they should be placed fully on the motor spindle
and worked gently onto the reduction gear, a small section of their
width at a time. (see general hints on lubrication)

Fit base switch support. (M3 hex bolt) NB DRAWING FOR POSTITION.
Fit base switch and run wires through adjacent hole. (M3 x 10
cheesehead, washer)

Fit bearing ring (12) (long spigot down) through shoulder base pan
(11) from inside. The base gear (13) fits on the lower face of the
with the magnet at 2o'clock as seen from inside the pan with the
flange at the top. (M4 countersunk x 1l6mm bolts, nuts)

(This step and the next are simpler with some help from an
assistant). Put shoulder base pan (gear side up) on to 3in support
(books etc,) so that the bearing support column can be inserted.
Practise this movement to make sure all is well. Smear vaseline
from a fridge, or grease on the bearing track of the flange, and
using tweezers to avoid melting the vaseline carefully place 24 bal
bearings round the flange, embedding them into grease. There will
be a slight gap when all the balls are in place. Invert the base
and inser the threaded bearing support column inside the bearing
ring taking care not to dislodge any of the balls so that the base
pan meshes with the base gear. Keep the two parts level in the
same relationship by taping the parts together with a piece of wood
a2 spanner 5Smm thick between the motor pulley and the shoulder

base pan.

*2 = 0%

Large rubber bands can be used instead of tape. An assistant
to hold the parts for you will be useful here.

Turn the assembly the other way up (the base is now on the bench
with the shoulder base pan above it. Put more grease round the
bearing track and embed 24 more ball bearings in it. Gently

lower the adjusting ring (14) on to the threaded base and then
screw the finger tight, remove with tape, adjust the ring until
the base pan moves freely without play then tighten the grub screw,
inserting a small wood plug to protect the bearing thread. (M4
grub screws) (102). The bearing may need adjusting after some

use as it beds in.

Fit hand motor bracket (15) to shoulder base pan (M3 bolts) then
the hand motor O3h(M4) and the hand motor pulley. Then fit the hand
reed switch_bracket (M3) and the switch (M3 x 10 cheesehead bolts).

Fit motors to the shoulder side plates (17) and feed the cables
through the holes towards the inside. The bolts which are next
to the reduction gears should be placed nut out to prevent the
reduction gears catching on the end of the bolts. Fit correct
pulleys (O4u/f/w) to the motor spindles noting which pulleys from
the drawing, tighten the grub screws.

Fit the shoulder plates. This is simplified by loosely tightening
the end bolts to support the weight. Feed the motor cables down
through the main bearing (M3).

Slide switch support (19) bar through spacers (18), switches (101)
and motor support bracket (see drawing for correct order of spacers).
You will need to be able to adjust the position of the reed switches
after the arm is fitted so that they clear the gear wheels

ie tangential to shoulder pivot. Fit the motor support stiffener bar
and spacers. Leave nuts finger tight. (M3 nuts).

Assemble reduction gear support bar (21), assemble with the correct
length drive belts (08s/m/l) over each gear, reduction gears facing
in correct direction and the thin metal M6 washers at either end.
(see drawing) Slide gently into position and bolt in the support
bolts (M4 a 1Omm) Fit the belts round the motor pulleys.

Put upper arm drive gear on the outside of the upper arm side plate.
The magnet should be at 1 o'clock, viewed from the gear side of the
arm. (M3 CSK screws x 6mm) Fit a brace to one upper arm side
piece (22), then fit the other side piece to the brace. Fit all
bolts and nuts before tightening any of them. Check 8mm shoulder
spindle (29) slides freely through accute bushes in upper arm side
pieces and through bores of drive gears, pulleys and spacers.
Assemble by sliding shaft from one side and threading gears,

pulleys and spacers on in the correct order of orientation - use
drawing.

*2 - 10%

Fit pulley (32) to the outside of the forearm side plate (30)

(M3x6mm) (countersunk screws). Fit a brace to one forearm side
plate, then fit the other side plate to the brace. Check for

squareness before finally tightening bolts.

Put elbow pivot through bushes and an 8mm bar through wrist bushe
(M3 bolts, nuts) Check fit before assembly. Assemble the pulley
(33) on the elbow spindle (34), lubricate and fit it to the large
arm, and bolt through into spindle. (M4 bolts, washers)

Assemble the wrist bevel gear carrier (35) and wrist pulleys (36)
and then tap the roll pins gently home with a small hammer,
supporting aluminium gear carrier to prevent distortion.

Fit the wrist gears on the bushes (37) from the outside. Fit
bevel gear carrier (35) between the wrist bevel gears (37), line
up holes in end of wrist pivot (38) bores with tapped hole in
carrier by peering down pivots. If you do not have a srcew gripg
Oor magnetic driver use a little piece of masking tape or sellotar
to fix M3 cheesehead screw to the end of your screwdriver in such
a way that it will pull off after tightening - check gears pivot
freely on pivots and that the whole assemble can pivot in oilite
bushes (drops of oil on faces of gears and pivots)

Screw the finger support flange (40) to the hand bevel (39).

(M3 x 6mm cheesehead screws) Screw the hand pivot (41) to the be
gear carrier (35). Tighten on a drop of loctite if available,
gently by turning a pair of pliers inside it. The bevel gears sh
be positioned with their grub screws pointing towards the hand wh
the hand and the forearm are in line (see drawing).

Assemble the fingertip (42) and cable clamp (43) with the small
spring (44) on the pivot (45), and clip together with large
circlips on the cable clamp. The spring should be positioned so
that the "back" of the spring is on the knuckleside of the
fingertip, thus tending to open the hand.

Assemble the middle finger (46) and its pivot (47) with the large
spring (48). Fix to the finger base (49) with the long pin (50/
(l6mm x 3mm) ans two small circlips (see drawing). Fix one
circlip to the pin before one begins to assemble.

Join the fingertip to the middle section with the short pin (50/5
(13mm x 3mm) and two small circlips.

Cut off one end of the tip spring about 8mm-10Omm beyond its hole.
Level with its hole bend the spring through a right-angle to secu
it. Repeat at the other end. Trim the inner end of the middle
finger spring flush with the end of the finger end and treat the
outer end as above.

®2 — 11%

Fit the small pulley (51) to the finger middle section using a short
pin (13mm x 3mm) and two small circlips. Fit the larger pulley (52)
to the finger base with a long pin (l6mm x 3mm) and two small

circlips.

Screw the finger base to the finger support flange. Make sure that
the fingers are evenly spaced and do not interfere with each other,
and then tighten. (M3 x 6mm cheesehead)

Assemble the large and small hand sheave pulleys using the large
circlip on hand sheave pin (55).

*2 =]12%

CABLE THREADING

Slide arm into shoulder, you will need to align the reduction
pulleys between the main drive gears as you lower the arm into
place, and assemble using M5 hex head bolts and shakeproof
washers. Tighten and check the reduction gears "mesh" correctly
and the arm moves freely.

Connect grip action cable tail to shoulder base pan via the spring
correctly placed over the pulley and tension using the normal meth
with the cable clamp.

Glue strips of rubber to finger tips using superglue.

The driver and interface board should be bolted to the base pan
using the spacer bars (58) and spacers. Bolt base pan (57) to
base (M3 x 6mm hex head).

Hints: Useful tools are:

a) 2 or 3 'bulldog clips' to maintain the tension in the cable
over completed sections of each cable while the remainder
is threaded. Masking tape can also be used for this purpose

b) Ends of the cable can be prevented from fraying by placing
a drop of 'superglue' on the end of area where it is to be
cut. The excess should be wiped off on a pice of paper.

NB. This process also stiffens the end which is useful when

threading the cable through the pulleys.

c) Ensure all grub screws are in position but are not obstructi
the cable holes. Also check there are no burs remaining
from machining blocking the holes.

d) The cables can be threaded before the arm is bolted for the
shoulder which eases the problems of access considerably.
The 'grip action' cable tail can be taped or clipped to the
arm and connected and tensioned with its spring after the
arm is fitted to the shoulder,

e) When tensioning the cable, if it is passed through the clamp
and back, then connected to the spring adequate tension can
applied by pulling the 'free tail' and then nipping it with
grub screw. A frined will be useful if around, but it is
quite possible without. The correct tension can be easily
judged, as when completed the coils of the spring should be
just separated, though this is not critical.

2 - 13

£) During threading the correct 'route' can be ascertained
from the expanding drawings. It is very important these
should be followed exactly especially the position of the
grub screws when they are tightened on the cable. If this is
wrong it will effect the performanc of the arm.

g) Care should be taken to avoid the cable kinking or crossing
itself on the drums. '

h) Experience has shown that the best order to thread the
cables and lenths to use. (Excess can be trimmed easily

later but makes tensioning simpler)
First - Wrist cables one at a time l.47m (each)

Second - Elbow cable (set up the spring
pillar first - M3 x 1lOmm cheesehead
and 2 M3 hex full nuts) attach
crimped cable clamp to forearm first
using M3 x 10 chhese head and two

nuts as a cable pillar 0.95m
Third _ Single finger cable (fix to the

hand sheave pulley using M3 x 6mm

cheesehead and crimped cable clamp 0.18m

Fourth = Double finger cable (loop over
small hand sheave pulley on grip
action pulley and adjust so that
G A P is even when pulleys are
evenly positioned) O.36m

Fifth = Grip action cable (start at end
fixed in cable drum and stick
other end to arm while fitting
it to the shoulder then tension
with the spring to the shoulder
base pan. 1.3 m

i) Ends using the crimped cable eyelets should be threaded
through the eyelet and a small thumb knot tied to prevent
the cable slipping before crimping the bracket using
crimping or ordinary pliers. So not crimp too light
or you may cut through cable, though KEVLAR is very tough.

2 - 14

BILL OF MATERIAL

.\\

ErY¥

[TV

HIGWNN DNIMVHA

'i ;\l\ L]
j gjl@'g 2 \
: o 54\ A
| ﬁ’% $)J// | /, / -
/ ~ é_/v 4

N\

A2/RB1 /1

BHEEE

:s;

DRAWN ;..o cswovnposnnes
Wi

COLNE ROBOTICS [a2/Rev1.

P
‘gE¢
Zzsog
lﬂ(lﬂlEﬂ.

I a a

o

.............
................ ONIMYHQ 3DN3YI43Y SNOISIA3Y
z/isé/eyl sD11L.090Y ANTOD P e N P I
HIBWNN ONIMYHA Tt “'Q3A0HddY
AN3W1HVd3a
.............. .
z“é 03303HD 30HO YoM
ol
T R NMYHQ . oooeeeeeeeen gy 123ro¥d
................ a3nss creosreetttttt Q3INDIS3Q T N HANY
ANIY,

9.

W

A
HIBWNN DNIMYHA

IAVIY3LVW JO 18

...............

::::::::::::

§A9%/cY] SOILOFOY ANTOD [owewr -

kA

/

HIGWNN ONIMVHO

AVIH3LYW JO g

.......................

..............

zzzzzzzzzz

$21109d0d INTOD |

mmmmmmmmmm

zzzzz

......................
,,,,,,,,,,

] o

........................

v/ _mm\w<_

IVIH3LYN 40 1718

\

Y
/,

(508) (ze1)(sy

\,

L

/v
HIGWNN DNIMVYYHA

/

M_ nm\N< WU —-—no m Om m Z |— OU a3AoMddv (. ONIMYYQ 3DN3H333H mzo_.msmz
H3IBWNN ONIMVYHA it 03A0HddY Fv33 lsana] sata ~O1LaDS 30
................. NMVYQ 1N3W1dvYd3a
awvel] Q3I®IIHD St ioN HIGHO NHOM
................ canssi T NMYMO) e 53004
- Tttt QINDISIA e e ee e ennaans -oN "H1AY

/,
Q® (2 s_v
m,»\

s / _mm\N<_ »J
: o

It

,Im)

|

e r— [efmdm]

IVIE3LVYW 40 18

/Tv
HIGWNN DNIMVYHQ

/

ELECTRONICS

3.1 Description

The Interface

To enable the Armdroid to function with as wide a range of
microprocessor equipment as possible, the interface is designed
round a standard 8-bit bidirectional port. This may be latched
or non-latched. If non-latched, the interface will normally

be used to input data to the micro.

In the output mode the port is configured as follows. The eight
lines are defined as four data bits (D8-D5), three address bits
(D4-D2) and one bit (Dl) to identify the direction of data
travel on the port. Four data lines are provided so that the
user can control the stepper motor coils direct from computer.

The address bits are used to channel the step pattern to the
selected motor. The three address bits can define eight states,
of which 1-6 are used to select one of the motors, while states
O and 7 are unallocated.

Dl indicates the direction of data travel, to the motors when
Dl is low, from the microswitches, if installed, when D1l is
high. The transition of D1 from high to low generates a pulse
Which causes the step pattern to be latched into the addressed
output latch.

In the input mode D8 - D3 are used to read the six microswitches
on the arm. These reed switches and magnets provide a "zero"
point for each of the movements of the arm, which can be used as
reference points for resetting the arm in any position before a
learning sequence begins.

D2 is spare. It is an input bit which can be buffered and used
for an extra input sensor, allowing the user to connect a
'home brew' transducer to the system.. i

The interface circuitry consists of twelve TTL components which
decode the data and route it out to the selected motor driven
logic. ICl and IC2 buffer the data out to the decoder and
latches. 1IC6 decodes the three input address bits to provide
eight select lines, six of which are for the latches IC7 ~ ICl2.

INTERFACE ONLY

D1 is buffered and fed into a monostable (IC4) to generate

a clock pulse. This causes the decoder to provide a latch
pulse for approximately 500ns to the addresses motor control
latch. Dl is tied to pull-up resister (R1l) so that the line
is high except when are output from the microprocessor. The
buffers ICl and IC2 are enabled by the buffered output of bit
1 so that data are fed to the latch inputs only when bit 1 is
low. The bit 1 buffer is always enabled because its enable

is tied low.

The microswitch inputs are buffered by IC5 which is enabled

by the complemented output of bitl, so that when bitl is high
IC5 is enabled, and the contents of the microswitches will be
input to the microporcessor. This allows the user to operate
the arm under bit interupt control, giving instant response to
a microswitch change and avoiding having to poll the micro-
switches. The six microswitch inputs are pulled up; thus the
switches can be connected via only one lead per switch, with
the arm chassis acting as ground.

THE MOTOR DRIVERS

the motor drivers are designed so that the arm can be driven
from the output of the computer interface circuitry.

The six motor driver stages need two power supplies: 15v at
about 3A and 5v at 150 MA.

The four waveforms QA-QD are then fed into ICt's 13-16 which
are 7 x Darlington Transistor IC's. These provide the high
current needed to drive the stepper motor coils, the driving
current being about 300 MA at 1l5v.

3_2

INTERFACE DRIVER BOARD

ITEM VALUE QUANTITY
Resistors
R1 1KO 1.
R2 10K
R3-8 2K2 resitor

network 1
R9 iK8
R10O 1K8
R11 1K8 3
R12 ' 15K 1
R13 10K 2
R14 l18ohm 5w 1
R15-R20 1KO 6
Capacitors
Cl 100p polystyrene 1
Cc2 1.0vf Tant 1
C3-Cl5 1lOnf ceramic 13
Semiconductors
ICl 74LS 125
IC2 ' 74LS 125 2
IC3 ' 741LS 04 1
IC4 74LS 123 1
ICS 74LS 366 1
IC6 . 74LS 138 1
IC7-ICl2 74LS 175 6
ICl3-ICl6 ULN2o03A 4
ICl7 UA 7805 1
ZD1 BZX 13v ZENER 1
Miscellaneous

MXJ 10 way edge connector

5 way PCB plug and socket connector
Through Pins

16 pin IC sockets

14 pin IC sockets

4 way modified PCB plug and socket

*3 o 3%

GENERAL ASSEMBLY SEQUENCE FOR THE PC BOARD

A Fit all of the through pin to the board.

B Fit and screw the 5v regulator to the board.

c Identify and fit the resistors and the 13v zener to the
board. The black band v points to the motor connectors
(on the zener D1ODE).

D Identify and fit all capacitors to the board.

E Solder the 2k2 resistor network, IC sockets, and the
4 and 5 way PCB plugs to the board.

G Solder the 10 way socket to the board.

NOTE:

Refer to the oVerlay diagram and parts list to ensure that the
resistors, capacitors, IC,s and other parts are inserted into
the correct locations on the PC Board.

BASIC BOARD CHECKS

A Check the board for dry joints and re-solder any found.

B Hold the board under a strong light source and check the
underside to ensure there are no solder bridges between

the tracks.

FITTING THE PC BOARD TO THE BASE OF THE ROBOT

The PCB should be fitted to the base plate using the nylon
pillars provided.

MOTOR CONNECTION

Connect the motors to the 5way sockets, ensuring correct 15v
polarity, via the ribbon cable, refering to the diagram provided
to ensure correct connection. .

POWER CONNECTION

Connect the power to the modified 4way socket ensuring correct
Polarity as shown below.
‘ Polarising pin

Pin 1 on I/P cdnnector=0v l5v = Brown = Pin 2 on I/P connector

NOTE

A number of diagrams are given, explaining in detail the inter<
connections between the motors and the PCB, if the motors are
eennected in the manner shown then the software provided will

map the keys 1-6 and g,w,e,r,t,y to the motors in the following way-.

GRIPPER. 2, w, = left wrist. 3, e, = right wrist.
shoulder. .- 6, y, = base.

1, aq,
4, r, = forearm. 5, t,

as shown in the diagram, the two middle pins of the stepper motors
should be connected together and to 15v. :

*3 _ 4%

Motor Connection And Designation Layouts

Ribbon Cable To Stepper Motor
Connections-

Qa Black or Green
Ob Red or Purple

Qc Brown or Blue

Qd Orange or Grey
+15v Yellow or white

& q
_| - -
(od 0Oa
E Wh +15v
| Qe OBip,
ol i Motor Assignments To Functions
Motor 1 = Grip
Motor 2 = Left Wrist
Motor., 3 = Right Wrist
Motor 4 = Elbow .
Motor 5 = Shoulder
Motor 6 = Base
IC17 7865
15v R1l4
o .18 5w ! l] 3V

To rest of board
ZD1 BZX 13v

N » X pin 9 IC,s 13,14,15,16.

* 3 =§ *

ARMDROID CABLE

D7
11l other cap 10nf - D8
D5
D6

D3 d_

D4
D1
D2

ov - -'<

x . " o \ XISy /
_ 6) 1 o _ M 0 ﬂl)&“ﬂ&u
- o - s u _ \ T .ﬂ.\.(/\/_s...(.
=0 ﬂl = - _ ™ 1 ot ..-n'\/\Q(\
20 e - i aa | _ s u u _ “, ? = T AN
ST L E - : VAV
ao 9T WM T - i A < u SLITIVE IV ZL—LH Sms u w w M— \— ‘_ v .mI\/\J\/H_/d.IJI
- ¢ " Seind 5 \u : z30 130 .I\ﬂ\/u._\-/.“an
X Q_B y l—n.au-wmm.mu_mm / u-l B F. p
_ 6 s 3108 g ,/ L K
WS TS ows Cws u ™ ko \\

=)

{%]

U 9 T
o o g
N|H‘O
|~ ~

_r'hq

]

N
INF—n
l"g
h=—>l
I~:—>g
":——’i
IQE-—-—.-a

[
n
i
5 3

£
[
m .
€T 4 _ € v 991 B3
€ 3}
[4
|.nl_

[}
@0 %H h v) r .-|O>? T
Sm——— ons
mo mjﬁ mjﬂ Y z £ w_
sp— o1 s
2% . - =] ¥
V_ﬂm,_o T e [P T % o = N
. y ’ : N [Aol)
. u M 2 TS N— Mﬂ JJ _ J T e— -
b ' T F13 S T—SS b —
no OH -h _i. ’ : w
PO T ma 2__ ; ; Sk me
&e—Qz0

@

g g
(> e |
|~
| U=
] HA
(N M| <
5
e
Iy
"
N\ I\
N
A A
N

]
(e}
a]
—
iJw)
-
=1
O
N
M
/
N
v

Qo

%
8

vi| cL

2070T] i

=

1 Elt]
ol o =
8

y,
2
FA
B
S

9OTT]
POZT i)
=0ET] 7 T] 21) .
07T € o /._
o s 3 .
vt [T F T 1) \H__) o
J! 4 =k] M_
Ova

Z, .
h“—k

-
—1

i

ZﬁmwﬂHD LINDYID Q¥V0oeE JDVIIILNI JTIONIS

4. SOFTWARE

4.1 Introduction

A machine code program, LEARN , to drive the ARMDROID has been
specially written. It was designed for the Tandy TRS-80 Model 1
Level 11, and the loading instructions given here apply to that
computer. But the program can be easily adapted to any 2780
microprocessor with the necessary port, and versions made

available for the leading makes with variations of these instructions
where appropriate. But of course users can write their own software
in whatever language they choose.

4.2 Loading

When in Basic type SYSTEM, press ENTER, answer the '*' with LEARN and
then press ENTER again. The cassette tape will take about 1%
minutes to load. Answer the next '*' with / 17408 and press ENTER.

4.3 General Description

LEARN is a menu-oriented program for teaching the ARMDROID a
sequence of movements which it will then repeat either once or as
many times as you like. The program is divided into four sections,
one for learning the sequence and for fine-tuning it, one to save
the sequence on tape and load it again , one for moving the arm
without the learning function, and finally two exit commands.

We suggest that, if this is your first encounter with the program,
you should read quickly through the commands without worrying too
much about understanding all the details. Then go to Section 4.5
and follow the 'Sequence for Newcomers'. This will give you a good
idea of what the program does. After that you can begin to discover
some of the subtleties of planning and fine-tuning sequences of
movements.

4.4 Explanation
L (EARN)

Stores-a sequence of manual movements in memory. The arm is moved
using the commands explained under M(ANUAL) . You can exit the commanc
by pressing O (zero) , press G(0), and the arm will repeat the
movement you have taught it.

On pressing L(EARN) you will be asked whether you want the S (TART)
again or C(ONTINUE) from the current position. The first time press
S(TART) . The arm is then free to be moved by hand without the
motors' torque preventing you. Move it to a suitable starting
position, then press the space bar. You will find that you cannot
now move the arm by hand.

To add a sequence already in memory press C(ONTINUE) instead of
S (TART) .

Using the manual commands, move the arm to another position. As it
goes the computer is adding up the steps each motor is making, either
forward or back, and storing the data in memory. (holding the space
bar down during manual control slows the movement)

Exit by pressing O (zero).
D (ISPLAY)

Displays the sequence stored in memory. The sequence can be edited
with the E(DIT) command. '

The six columns of figures correspond to the six motors, and the
order is the same as that of the 1-6/Q-Y keys (see M(OVE). The
first row (RELPOS) shows the current position. Each row represents
a stage of the movement, and the actual figures are the number of
steps each motor is to make, positive for forward, negative for
reverse. The maximum number of steps stores in a row for one motor
is +127 or -128, so if a movement consists of more than this number
it is accomodated on several rOwWS.,

Movements of the arm can be fine—tuned'by editing (see E(DIT))
the figures on display until the arm is positioned exactly.

Scrolling of the display can be halted by pressing 0 (zero). To
continue scrolling, press any other key. To display the figures
one after the other, keep pressing O. ‘

E(DIT)
Allows the user to change the figures in the memorised sequence,

[runcate a sequence .by pressing R(OW COUNT), then ENTER, then the
wumber of the last row you want performed, and finally ENTER. This
>lears the memory from the next step pnwards, so you should only do
chis if you do not want the rest of the sequence kept in memory .

3y pressing #(OTOR STEP), you can change any of the numbers in any
cow and column. : . ‘

> (ET ARM)
ets the current position of the arm as the 'zero' or starting position.

hen pressed from the Menu, it simply zeroes the first row of the
isplay.

(ET ARM) has another function. During a L (EARN), pressing S (ET ARM)

t any moment when the arm is at rest will ensure that the movements
efore and after are separated from each other instead of being merged.
his is the way to make quite sure that the arm passes through a
articular point during a sequence. Try the same two movements

ithout pressing S(ET ARM), and note the difference in the display.

k4 - 2%

r—

It is important to realise that, if a sequence has been memorised
and S(ET ARM) is pressed from the Menu when the arm is not in its
original starting position, pressing G(0) will take the arm througt
the sequence but from the new starting point. This can be useful
for adjusting the whole of a sequence (perhaps slightly to right o1
left), but it can lead to the arm running into objects if the new
starting point is not selected with care.

W (RITE)

Writes a memorised sequence to cassette tape.

R (EAD)

Reads a previously written sequence from cassette tape into memory
C (HECK)

Compares a sequence written to cassette tape with the same sequenc
still in memory, to verify the tape.

G(0)
Moves the arm through a memorised sequence, either once or repeate

It is important to make sure that the starting point in memory is
the right one, or the sequence may try to take the arm into
impossible positions. (see S(ET ARM)

T(O START) -
Takes the arm back to the zero or starting position.
F (REE)

Removes the motors torque from the arm, thus allowing it to be
moved by hand. -

M (ANUAL)

Gives the user control of the movements of the arm direct from the
keyboard. It is used (a) for practising manual control before
L(EARN)ing, (b) for trying new combinations of separate movements
and (c) for moving the arm to a new starting position before press
S(ET ARM). Holding the space bar down slows the movement by a fac
about 3.

The motors are controlled with the keys 1-6/Q-Y. The keys operate
pairs, each pair moving a motor forwards and backwards. Any combi]
of the six motors may be moved together (or of course separately)
but pressing both keys of a pair simply cancels any movement on
that motor.

The geometry of the arm is designed to give the maximum flexibilit
combined with maximum practicality. A movement of one joint atfec
only that joint: with some designs one movement involuntarily
produces movement in other joints.

4_3

It is a feature of the ARMDROID that it has a so-called 'parallelogram'
operation. Starting with the upper arm vertical, the forearm
horizontal and the hand pointing directly downwards, the shoulder
joint can be rotated in either direction and the forearm and hand
retain their orientation. Equally the forearm can be raised and
lowered while leaving the hand pointing downwards. Moving the arm
outwards and down by rotating both the shoulder joints together

still leaves the hand vertical. This is of vital importance

for simplifying the picking and placing of objects.,

The motors controlled by the keys are:

1/Q: Gripper

2/W: Wrist left
3/E: Wrist right
4/R: Forearm

5/T: Shoulder
6/Y: Base

B (OOT)
Returns the computer to the program start and clears the memories.

Q(UIT)

Returns the computer to TRS80 System level.

®4 = 4%

ARM TRAINER MK2AL
DIRECT FULL STEP MOTOR CONTROL
FOR TRS8Q MODEL 1, LEVEL 11
BY ANDREW LENNARD

k%% July 1981 **x

S

S

c T 1
T E M
T E M

T E M

E Q U
vV A R
c O N

A T E S

I

S

A B L ES

T A N T

S

4.5

1.

2

10.

1

12,

INTRODUCTORY DEMONSTRATION SEQUENCE

After loading the program, the screen shows the menu. Press
L to enter L (EARN).

Screen: START AGAIN OR C(ONTINUE) FROM PRESENT POSITION,
(.) TO EXIT. Press S

Screen: " ARM RESET

ARM NOW FREE TO MOVE

TYPE SPACE BAR WHEN READY, OR FULL STOP TO EXIT"
Now move the arm so that both arm and forearm are vertical
with the hand horizontal. For coarse movements grasp the
forearm or upper arm and move it. For fine adjustments
and for movements of the hand, it is better to use the large
white gear wheels in the shoulder joint. Press the space
bar and the arm will become rigidly fixed.

Screen: "*** TORQUE APPLIED ***"

You can now move the arm using the 1-6/Q-Y keys as explained
in the manual section. Try just one movement alone at
first. Now press O (zero) to exit from L(EARN). The arm
will return to the starting position, and the Menu appears
on the screen.

Screen: Menu. Press D for D(ISPLAY).

Screen: Display and Menu. The numbers of steps you applied
to each motor have been memorised by the computer, and these
steps are now displayed see D (ISPLAY) section for
explanation. Press G for G(O) .

Screen: "DO (F) OREVER OR (0O) NCE?. Press 0 (letter O),
and the arm will repeat the movement it has learnt.

Screen: "SEQUENCE COMPLETE" and Menu. Press L.

Screen: as 2 above. This time press C. Now you can
continue the movement from this position, using the 1-6/Q-Y
keys as before. Now press O (zero) . Again the arm returns
to its original position.

Screen: Menu. Press D

Screen: Display and menu. Your new movement.has been added
to your first. Press G.

Screen: as 7 above. This time press F. Each time a
sequence is started a full point is added to the row on the
screen. To stop press full point. '

This is a very simple demonstration of how complex movements
can be built up, learnt as a sequence and then repeated endlessly
and with great accuracy.

k4 - §%

STEM

RT
RSN

NAD

TCHR

TSTR
SON
.SOF
)HDR
.ADC
LDR
RBYA
[NUS
>AC
JMBA

AXLE

LRsC ePu DAk g

EQUATES

EQU ¢4 ; ARM PORT NUMBER 65‘7421?£+9
EQU @/CAH '

FQU 0282 i SYSTEM RESTART (402D H)
EQU gﬂﬁﬂ } SYSTEM PRINT CHARACTER

e’ U SYAH

EQU @P49H § SYSTEM GET CHARACTER

EQU @@2BH ; SCAN KEYBOARD

EQU 28A7H ; SYSTEM PRINT STRING

EQU @212H ; CASSETTE ON

EQU @LlF8H : CASSETTE OFF

EQU @296H ; READ HEADER ON CASSETTE

EQU @235H ; READ CHARACTER FROM CASSETTE
EQU @287H ; WRITE HEADER TO CASSETTE

EQU @264H ; WRITE CHARACTER TO CASSETTE
BQU '- ; ASCII MINUS

EQU '=' - ; ASCII SPACE

EQU @DH s ASCII NEW LINE

EQU 3¢H ; ASCII NUMBER BASE

EQU 1¢ y UPPER BOARD FOR ARST ROW COUNTER
Clepl. SCRECN

ORG 1749 8 3 = 440@ TRSB@ HEX ADDRESS

3 FOR START OF PROGRAM

®q4 - 6%

VAKIABLES USED
TN

[1AN

STRFG

KEYP

FORFG

counTt
CURQW

ARRAYS |\

NUMAR

POSAR

TBUF

DRBUF

IOTEF

DEFB
DEFB
DEFB
DEFB
DETE

DEFB
DEEFB

EQu Sl

PEFS

DEFS

DEFS

DEFS

CEFS

1)
0
%)
%)

24"

olelol
ol

1g

1<

6

6

6

DEFS N*6

Has value cf cne if number input negati:
If ""AN = zero then steps are stored

If STRFG non zero then store TBUF arrav
Set if Key pressed in KEYIN Routine

Set if sequence to be done forever

Number of moter slices stored
Pointer to next free mctor slice

Store used for Binary to ASCII Conversic
Routine CTEAS

Each two bytes of this six element array
contain on value which is used to

keep track of each motors motion,

hence the array can be used to reset

the arm, moving it into a defined

start position.

Eacl: 16 bit value stores a motor

steps in two's complement arithnetic.

6 Bytes, each relating to a mctor.

A number from 1-4 is stcred in

each bytes and this is used tc

index the FTABL (see constant definition

tihen learning a move sequence the

six rmotors notions are stored in this
six byte array. Zach bvte relates

to a mctor and holds a motor step
count in the range =128 to +127

If the motcr changes directior or a
count. exceeds the specified range then
the whole TBUF array is stored irn

the ARST array and the TBUF array

is cleared.

TBUF means temnporary buffer.

F'ach byte relates to the previous
direction of a motor.

A six byte array used by DRAMT tc

tell which mctors are being driven, and
in which direction.

Bit zero set if motor to be driven

Pit one set if motcr in reverse

Byte zero if motor should not be driven.

This array holds the sequence that

the user teaches the system. The array
consists of H*G6 bytes where 1!l is

the number of rcius needed to store the
sequence.,

NTS USED

= T

HACF —STEHWNW G-

DEFE 192 ;

DEFB 14¢ ; (2
DEFB 48 p e
CLFE 96 ; S

L <

FTABL is a small table which defines the
order of the steps as they are sent out
to the arwr. To drive each motor the
DRANT routine adds the motors offset
which is obtained from CTPOS and adds
this to tlie FTABL start address -1. This
will now enable the DRAMT routine to

fetch the desired elenent from the FTABL

array, and this value is then sent to
the motor via the output port.

4_8

(AL2)

CONSTANTS AND ARRAYS

STRINGS
SIGON DEFM 7 *** COLNE ROBOTICS ARM CONTROLLER
* ok k!
DEFW PPBDH -
RELYQ DEFB @DH
DEFM '"REALLY QUIT? (Y/N)'
DEFW 110
SIGOF DEFW @D@DH
DEFM 'YOU ARE NOW AT TRS8@ SYSTEM LEVEL'
DEFW /1o
ECOMS DEFM 'EDIT (M)OTOR STEP, OR (R) OW COUNT?'
DEFW PPPDH
COUTS DEFM 'NEW UPPER ROW BOUND IS?'
DEFB 010
EDSTR DEFM 'ROW NUMBER?'
DEFB 2
BADMS DEFM '**%* BAD INPUT VALUE ***!
DEFW PPBDH
MOTNS DEFM 'CHANGE STEPS ON WHICH MOTOR?'
DEFB 010
NVALS DEFM 'REPLACEMENT STEP VALUE?'
DEFB 2 -
QUESS DEFM 'LRN, READ, CHECK,WRITE, GO, DISP, BOOT, MAN,
QUIT, SETA, TOST, EDT, FREE
DEFW @PPDH
RORNM DEFM 'DO (F)OREVER OR (O)NCE?'
DEFB 10
CASRD DEFM 'TYPE SPACE BAR WHEN READY, OF FULL STOP TO EXIT
DEFB 010
QMESS DEFM ' PARDON''
DEFW PBBDH
BOOTS DEFB @DE
DEFM '"WANT TO RE-START (Y/N)?"'
DEFB o
RELNS DEFM 'START AGAIN OR (C)ONTINUE FROM CURRENT POSITION
(.) TO EXIT :
DEFW PPPBDH
DISPS DEFB @DH
DEFM ' *** MOVEMENT ARRAY DISPLAY **% !
DEFB @DH
DEFW PBPDH
NODIS DEFM '*** NO SEQUENCE IN STORE **x!
DEFB @DH
DEFW PPPBDH
OVFMS DEFM 'NO MORE ARM STORE LEFT, DELETE OR SAVE?'
DEFW @PPDH
DOMNMS DEFB @DH
DEFM ' SEQUENCE COMPLETE'"
DEFW PPPDH
RDMEG DEFM "®%% READ ERROR *##*1
DEFW @PPBDH '
TAPOK DEFM '**x*x TAPE OK *%*!
DEFW PPPDH
STRST DEFM 'APM RESET'
DEFU P@PPDH

NOTOR DEF'M '"ARM NOW FREE TO MOVE'

TORMS

POSST

DEFB
DEFB
DEFM
DEFW
DEFM
DEFB

PPBDH

@DH

' %% % TORQUE APPLIED ***'
PPPDH

' RELPOS="

o)

COMMAND INDEX

STARM..... ... Program entry point

LEARN..... 4.—/3 Learn a sequence command

EDIT..... ! 4-/% ... Edit a sequence command

READ...... 4"/@ Read in sequence from tape command
WRITE..... r o Write sequence to tape command
CHECK..... A g L. Check stored sequence command
BOOT...... 7.‘.1.7. Re-start system command

FINSH: « « s « 4/'— '9.... Exit from system command
SETARM....7.%2.... Set start position command
TOSTM..... 4’2’0 ... Move arm to start position command
FREARM ...4.- 7o, ... Free all arm joints

MANU...... 4 7.22.... Go into manual mode

GO 77, .. Execute stored sequence command
DISPLAY... 92l ... Display stored Sequence command

¥4 - 11%*

MAIN

LOOP

; Program start

STARM

QUES1

CALL
LD
CALL
CALL
CALL
CALL
LD
CALL
CALL
CALL
CP
JR
CP
JP
Cp
Jp
Ccp
JP
CP
JP
cp
JP
CP
Jp
cPp
JP
CP
JP
CP
JP
CP
JP
CP
JP
CPp
JP
Cp
JP
LD
CALL
JP

"CLRSC

HL , SIGON
PSTR
PNEWL
INIT
DELT

HL ,QUESS
PSTR
GCHRA
PNEWL
NL
Z,QUES1
IIJI

Z ,LEARN
1 I;l
Z,EDIT
L] E{I

Z ,READ
'W"

Z ,WRITE
l(: 1

Z ,CHECK
] S 1

Z ,SETAM
lTI
Z,TOSTM
] (;l

Z,GO
l[)l
Zz,DISP
IBI

Z ,BOOT
|b4l

Z ,MANU
IF]

Z ,FREARM

IQI

Z ,FINSH
HL ,QMESS
PSTR
QUES1

S0 Se N8 So N8 N6 we we N9 Se S0 Se ~o

~e

o

*4

No N0 No S0 mo NO w0 S N0 w8 No Ne SO No Se w6 w0 S So S¢S S S W0 s =e

Clear the TRS8@ Screen
Point to sign on message
Print it

Print a new line

Set up system

Small delay

Point to menue string
Print it

Get response and print it
Print new line

Is response a newline
Yes then ignore

Is response an 'L'

Yes do learn section

Is it an 'E'
Yes do edit
Is it an 'R’

Yes then do read command
Is it a 'W!'
Yes do write command

Is it a 'C!

Yes do check routine
Is it an 'S'

Yes then do arm set
a |T| .

Yes then move arm to start

a 'G'

Do execute movements stored

a 'D'

Yes then display ARST array

a 'B'

Yes then restart system

an 'M'

Yes the Manual control of arm
a 'r!
Yes then
a) c)!

Yes then
Point to
Print it
Try for next command

clear all motors

guit program
'PARDON' message

_12*

THE LEARN ROUTINE

. This section deals with the recording
; of an arm seguence

LEARN

WAITL

WAIT2

NOINT

STLRN

CONLN

LD
CALL
CALL
CALL
CP
Jp
CP
JR
CPp
JR

CALL
JR
CALL
CALL
LD
CALL
CALL
CALL
CP
JPZ
CP
JR
CALL
JR
LD
LD
OR
J¥
XOR
LD
CALL
OR
JR
CALL
JP

HL ,RELNS
PSTR
GCHRA
PNEWL

! LI

Z ,QUES1
ISI
Z,WAIT1
IC1

Z ,NOINT

PNEWL
LEARN
MOVTO
INIT

HL ,CASRD
PSTR
GCHRA
PNEWL

] 1
QUES1
SPAC

NZ ,WAIT2
TORQUE
STLRN

HL, (COUNT)

A,L

H

% ,NOSTR
A

(MAN)A
KEYIN

A

NZ ,CONLN
MOVTO
QUES1

*4

~e ~6 Ne ~b o we ~8 w5 w8 wo we w6 WO SO N8 W& Se S0 S8 Ne Se @ Ss Ne Se e Ne Ns Se NS¢ NS¢ Se Se %o W =e

Point to learn message
Print the message

Get response and print it
Print a new line

Response a
Back to main loop if uger types a
Response an
Learn sequence from start

a 'c'

Continue learning from end of

seguence

output a new line

Bad answer so try again
Move arm to start position
Clear variables

Point to waiting message

Print it

Get response and print it
Print new line character
Response a
Exit to main loop if so

ISl

Is it a space?

If not then bad input, try again
Switch motors on
Do rest of learn
Get current count

Is it zero?

Yes then can't add to nothing
Clear manual flag

Because we are in learn mode
Drive motor.s and store sequence
Zero key pressed

No then continue

Move arm to start position
Back to main loop

13*

EDIT FUNCTION

EDIT

EDSRT

EDMOT

EDOK

LD
LD
OR
JP
LD
CALL
CALL
CALL
cp
JR
Ccp
JR
LD
CALL
CALL
Jp
LD
BIT
Jp
LD

7PUSH

" OR
SBC
POP
JR
LD
Jp
LD
CALL
CALL
JR
LD
BIT
JR
LD
OR
JR
LD
INC

,~PUSH
SBC

“_POP
JR
DEC
ADD

,~PUSH

~ ADD

~—pop

HL, (COUNT)
A,L

H

Z ,NOSTR
HL ,ECOMS
PSTR
GCHRA
PNEWL

'bdl

Z ,EDMOT
] I{l

NZ ,EDSRT
HL,COUTS
PSTR
GINT

NZ ,BADC
A,H

7,A
NZ.,BADC
BC, (COUNT)
HL

A

HL,BC

HL

NC ,BADC
(COUNT) ,HL
QUES1

HL ,EDSTR
PSTR
GINT

NZ ,BADC
A, H

7,A

NZ ,BADC
A,H

I;

Z,BADC
BC, (COUNT)
BC

HL

HL,BC

HL
NC,BADC
HL

HL ,HL

HL

HL ,HL

BC

~o N0 Se So N8 w0

~o w0 w8 w0 So

~o w0 S Wb we w0

o Se Se No N0 No N5 Wo N0 N0 We S5 N5 W we Ne Se N0 Se S S0 ™o e =0 wo wo S0 So

x4

Get row count

Test for zero
Yes then nothing in store
Print edit message

Get response

Print a new line

Is response an 'M'

Yes then edit motor

Is response an 'R'

No then try again

HL = New row count message
Print it

Get 16 bit signed integer

Non zero return means bad input

Test top bit of HC

If negative then bad input
Get count value

Save response

Clear carry flag

See if response ¢ current count

Restore response

Replace count with response
Back to main loop

Print 'row number'
Get integer response
Bad answer

. No negative row count

allowed
or zero row count

Get row count into BC

Move count up one

Clear carry flag

Subtract count from response
Restore response

If greater than allowed error
Move response down one
Double HL

Save it

Row count x 4

BC = row count X 2

= 14*

PEDIT

MOTAS

BADNM
BADC

ADD
LD
ADD
PUSH
LD
CALL
CALL
JR
LD
OR
JR
LD
CP
JR
CP
JR
POP
DEC
LD
LD
ADD
PUSH
LD
CALL
CALL
JR
LD
CP
JR
BIT
JR
JR
OR
JR
BIT
JR
LD
POP
LD
JP
POP
LD
CALL
JP

HL, BC

BC ,ARST
HL , BC

HL

HL ,MOTNS
PSTR
GINT

NZ , BADNM
AH

A

NZ , BADNM
A,L

1

C, BADUM
5

NC , BADNM
HL

A

C,A

B,d

HL ,BC

HL

HL ,NVALS
PSTR
GINT

NZ , BADNM
A,H

@FFH

NZ ,PEDIT
7,L

7 , BADNM
MOTAS

A

3Z , BADNM
7,L

NZ ,BEADNM

A,L

HL

(HL) ,A
QUES1

HL
EL,BADMS
PSTR

' QUES]

*4

HL = Row count x 6

Get store start address
Add row offset

Save resulting pointer
Print

Motor number string

~Get Answer

Bad answer
Response too large

No motor number < 1 X

, .

No motor number > 6
Restore = Memory pointer
Motor offset @ —» 5

Add to memory pointer

Now we point to motor in store

Save pointer

Print new step value
Get response
Bad answer

We have a positive response
New negative step value too
large

Step value OX

New positive step value too
large

so exit

else ok

Get step value

Restore memory pointer
Place step value in store
Go do next operation

Print error message and

return to main loop

= 15*

BN

READ ROUTINE

. Reads stored sequence from

; into memory

READ

ROWNR

RDBYT

RDERR

LD
CALL
CALL
CALL
CPp
Jp
CPp
JR
XOR
CALL
CALL
CALL
CALL
LD
CALL
LD
OR
Jp
LD
LD
PUSH
LD
LD
CALL
LD
ADD
LD
INC
DJINZ
POP
CALL
CP
JR
DEC
LD
OR
JR
CALL
JP
LD
CALL
JP

HL ,CASRD
PSTR
GCHRA
PNEWL
|‘l

% ,QUES]
SPAC

NZ ,READ
A

CASON
DELS
RDHDR
READC
B,A
READC
C,A

B
Z,NOSTR

(COUNT) ,BC

HL,ARST
BC

E,@

B,6
READC
(HL) ,A
ALE

E,A

HL

RDBYT

BC

READC

E

NZ , RDERR
BC

A,B

c

NZ , RO¥NR
CASOF
TAPEF

HL , RDMSG
PSTR
QUES1

°
’
-
’
°
’
°
’
°
‘
°
’
°
’
°
'
°
’
°
14
°
¢
°
7
°
¢
°
4
4
°
[
°
’
o
’
°
4
°
’
°
’
°
1
°
’
°
’
°
’
°
v
°
’
’
°
[
°
1}
’
°
¢
°
[
°
’
.
4
°
’
.
’
°
’
°
'

*4

cassette

Point to wait message
Print it

Get response

Print new line

Is response a dot?
Yes then exit

Is it a space?

No then try again
Clear A=Drive zero
Switch on drive zero
Short delay

Read header from tape
Read first character
Put in B ’

Read second character
Place in C

BC now equals count
Count zero, so exit
set count = read count
Point to start of store
Same count

E = Check sum for a row
B = Column Count

Read a row element
Store it

Add it to check sum
Store in check sum
Inc memory pointer

Do next element
Restore row count
Read check digit

Same as calculated?
No then error
Decrement row count
See if row count

is zero

No then read next row
Switch cassette off
exit

Error message for tape
Print it

Go to main loop

- 16*

WRITE ROUTINE

; Writes a stored sequence to tape

WRITE

BADWI

ROWNW

WRBYT

LD
LD
OR
Jp
LD
CALL
CALL
CALL
CP
JP
CP
JR
XOR
CALL
CALL
CALL
CALL
LD
LD
CALL
LD
CALL
CALL
LD
PUSH
LD
LD
LD
CALL
CALL
CALL
ADD
LD

- INC

DJINZ
CALL
POP
DEC
LD
OR
JR
CALL
Jp

BC, (COUNT)

A,B

o

7 ,NOSTR
HI.,CASRD
PSTR
GCHRA
PNEWL

] 1

7 ,QUES1
SPAC

NZ ,BADWI
A

CASON
DELT
WRLDR
DELT

BC, (COUNT)

A,B
WRBYA
A,C
DELT
WRBYA
HL ,ARST
BC
E,{
B,6

A, (HL)
DELS
WRBYA
DELS
AE
E,A
HL
WRBYT
WRBYA
BC

BC
A,B

C

NZ , ROWNW
CASOF
QUES1

~o wo wo No ~o

Ne N8 S0 wo w8 wg S S8 Se Se S So S =

~e

No SO WO S@ we S0 wo Seo S So

Get row count

If zero exit
print message

Get answer

Print new line

Is answer a dot
Yes then exit

Is answer a space
No then try again
Clear drive number
Switch on drive zero
delayv

Write Leader
delay

Get count into BC

Write higher byte

Get lower byte of count into A
delay

Write lower byte

Point to start of sequence of store
Save row count

Clear check sum

Six motor slots per row

Get motor slot N

delay

Write it

delay

add to check sum

Inc memory pointer
Do for all six motors
Write check sum
Restore row count
Decrement row count

Test if zero

No then try again
Switch cassette off
Back to main loop

17*

CHECK ROUTINE

; Checks tape with sequence in

CHECK

BADCI

ROWNC

CKBYT

TAPEF

LD
LD
OR
Jp
LD
CALL
CALL
CALL
CPp
Jp
CP
JR
XOR
CALL
CALL
LD
CALL
CP
JR
CALL
CP
JR
OR
JP
LD
PUSH

- LD

LD
CALL
CP
JP
ADD
LD
INC
DINZ
POP
CALL
cp
JP
DEC
LD
OR
JP
CALL
LD
CALL
Jp

BC, (COUNT)
A,B

C

Z ,NOSTR
HL,CASRD
PSTR
GCHRA
PNEWL
l.l

Z ,QUES1
SPAC

NZ ,BADCI
A

CASON
RDHDR
BC, (COUNT)
READC

B
NZ,RDERR
READC

c

NZ ,RDERR
5

7 ,NOSTR
HL ,ARST
BC

E,B

B,6
READC
(HL)

NZ ,RDERR
A,E

E,A

HL

CKBYT

BC

READC

E

NZ ,RDERR
BC

A,B

C

NZ , ROWNC
CASOF

HL , TAPOK
PSTR
QUES1

*4

store

°
!
°
’
-
‘
-
1
°
’
°
I’
.
1
’
-
'
°
!
°
’
°
’
°
4
.
1
°
’
°
‘
°
’
°
’
0
’
°
!
°
’
o
14
°
’
’
°
4
°
’
°
14
-
!
°
’
°
[
°
’
°
!
°
1
°
’
°
’
°
7
°
’
°
’
°
[
°
14
°
!
°
[
°
’
°
[}
°
’
°
‘
°
’

Get row count

If zero exit
Print wait message

Get answer

Print new line

Is response a '.'

Yes then go to main loop
Is it a space

No then try again

Clear cassette number
Switch drive zero on
Read header from tape
Get row count

Read first section

Same?

No then error

Read lower byte of count
Same?

No then error

zero count from tape

So exit

" point to start of memory

Save count _

Check sum is zer

Count is 6

Read a motor step element
Same as in store?

Not the same sO error

Add to check sum

Advance memory pointer

Do next row element

Restore Irow count

Read check sum

same as check sum calculated
No then error

Decrement count

Is count zero?

No then do next row
Sswitch cassette off
Print tape off message

and back to main 1oOp

18*

BOOT ANLD FINISH COMMANDS

: This routine restarts the program

EGCT LD HL ,BOOTS& . Frint "DO YOU REALLY
CALL PSTR WANT TO RESTART?"

~e

CALL GCHRA ; Get answer
CP 'y! ; User typed 'Y'?
JP Z ,STARM : Yes then restart program
CP 'N' : No 'N'?
JR NZ ,ECOT : Then try again

2= CALL PNEWL : else print new line and
JP QUES1 .+ back to main loop

: This is the exit from program Section to TRSEC
; system level

FINEH LD HL, RELY(Q ; Print "REALLY QUIT"
CLLL PSTR H
CALL GCHRA 3 Ge:t answer
CP 'y! . User typed a 'Y'
JR N2 ,TRYNO ¢ No then try 'N'
LD HL, SIGOF ; Print ending message
CALL PSTR ; and then
JP FINAD ; return to TRSBO System
TRYNO CP N’ ;: User typed an 'N'
JR " Nz ,FINSH ; No then try again
CALL PNEWL ;: Print a new line
Jp QUES1 s+ Back tc main locp

4 -19

OTHER SHORT COMMANDS
; SETKM c¢lears arm position array

SETAM CALL RESET ; Clear Arm array (POSAR)
JP QUES1 : Back to main loop

. TOSTM moves the arm back to its start position

TCSTM CALL MOVTO ; Steps motors till POSAR elements
JP QUEES1 . are zero then back to main loop

FREARM frees all motcrs for user to move arm
; by hand

FREARM CALL CLLRMT ; Output all ones tc motors
JP QUES1 : and now to main loop

. MANU allows the user to move the arm using
: the 1-6 keys and the 'Q' 'W' '‘E' 'R' 'T' 'Y' keys
: The movements made are not stored.

MANU LD a,l : Set in manual mode for the
LD (MAN) ,A ; keyin routine
MANUA CALL KEYIN . Now get keys and move nctcrs
Jp NZ ,MANUA; If non zero then mcve to be done
XOR A ; Clear manuval flag
LD (MAN) ,A ;
JP QUES1 : Back to main loop

k4 - 20%

THE GO COMMANC

~e ~o w0 ws =o

GO

ONECY

NORET

CHLL
CALL
XOR
LD
I.D
CALL
CALL
CELL
CP
JR
CF
JEk
LD
LD
LD
CALL
CALL
LC
OR
JR
CALL
CALL
CALL
JR
LD
CALL
JP

PNEWL
MOVTO
b
(FORFC) ,A
EL,RORNM
PSTR
GCERA
PNEWL

lol

7 ,ONECY
|Fl
NZ,GO

Al
(FORFC) ,A
A,'."
PUTCHR
DC2LL

A, (FORFG)
%

Z ,NCRET
DELT
MOVTO
DELLN
ONECY

HL , DONME-
PSTR
QUES1

This command catuses thke ccmputer tc step
through a stcred secuer.ce and make:s the arm
follow the steps stored, if the seqguerce is to
be done fcrever then the arm resets itself at
the end of each cycle.

Frint a new line
Move arm to start

Clear

Forever Flag FCPEG

Prir:.t

"CG ONCE OR FCREVER

Message

Get answier and print it

Print a new 1line
User typed an 'O'

Do sequence till end

User typed an 'F'
No then re-try
Set fcrever flag

to 1
Print

a '.
Using PUTCHR

Execute the sequence
Test FORFG,

if zerxro

then we do not want
to carry on sc exit

delay

Mcove arm to start

Delay approx 1 seccnd

Do next sequence

Print sequence done

and go to maiﬁ locp

*4_

21%

(@orRNW)

THE DISPLAY COMMAND

; This ccmrand allows the user tc display

. the motcr sequence 'so that he can then

. alter the contents of a sequence by using
. the edit command

DISE LD HL ,DISPS ; Point to header string
CALL PSTR . and display it
CALL POSDS . Print out the relative poesition
LD HL ,ARST . Point to sequence start
LD BC, (COUNT) . BC = hcw many rows to print
LD A,B '
OR C . 1Test if count is zero
JE NZ ,SETBC . No then jump to rest of
NOSTR LD HL,NODIS . display else print message
CALL PSTR : telling user nc display and
JP CUES1 . return to the main loop
SETBC Lk EC, 2P . Clear BC for row count
DCROW PUSH BC . Save it
PUSH HL : Save memcry position
LDj H,B ;
LD L,C ; HI, = row ccunt
NC HIL. ; Now rcw count =N+1
LC 1% ,NUMAR . 1X points to puffer fcr ASCII Strir
CALL CBTAS : Convert HL to ASCII
I.C HL ,NUMAR ; Point to ASCII string
CALL PSTR : now print it
LD A" :
CALL PUTCHK : Print a 1
POP BL . Restore memory pointer
LD B,6 . Motcr count to B (6 motore)
NEXTE LD A, (EL) . Get step valve
FUSH HL s Gave memory pointer
PUSH BC v save motor count
ETT 7,A . Test bit 7 of A for sign
~JR 2 ,NUMEFQ . I1f bit = @ then positive step
LD H,@FFH . Make H = negative number
JR EVAL ’ ; Do rest
NUMPO - LD B,z ; Clear H for pcsitive number
EVAL LD L,A . Get lcw order byte into L
LD 1X ,NUMAR . Point to result string
CALL CBTAN s Call conversion rocutine
LD PL ,MUMAR . HL points tc result
CALL PSTR ; Print resulting ccnversion
LD A, (381¢H) ; Get keyboard memory locaticn
BIT @A . Test for zerc kxey pressed
JR 2 ,NOSTP ; Not pressed, then skip
DOSTF CALL GCER . Wait till next character entered
CP 't . Is it a dot?
JR NZ ,NOSTP . No thern carry on
CALL PNEWI. . else print a new line
POP BC . and restore all the registers
POF HL . and the stack level

x4 - 22%

NOSTP

pop

JPp
POP
POP
INC
CALL

DJINZ
CALL
POP
INC
LD
CP
JR
LD
Cp
JR
CALL
JP

BC
QUES1
BC

HL
HnL -
PSPAC

NEXTE
PNEWL
bC

BC

A, (COUNT)

c . F .
NZ ,DOROW

A, (COUNT+1)
B

NZ ,DOROW
PNEWL

QUES1

x4 - 23%

~o w0 w0 so

~o w0 ~o

~e

°
r

Jump back to main loop
Restore column count
Restore memory pointer
Increment memory pointer
Print a space between
numbers

Do for six motors

Print a new line

Restore row count
Increment row count

Get lower count byte

Is it the same

No then do next row

Get higher order count byte
Same?

No then do next row else
print a new line and then
back to main loop’

SECTTION 3

SUBROUTINES INLCEX

DGALL. .. i % 4_7’é' Execut‘e a stcred seguence once
DRIVL.....- 4P‘2—7 ee....Drives all motocrs directed by TBUF
INIT...oon FTEE ... Set up system

MOVTC.. ... Ao lEa L. Use PGSAR to rest system arm
TORQUE: v s s . ”zc' Turn on off motors

CLEMT s < 5 « s » 4" la’ Turn off all motors

SETCT. S -2 > S Reset CTPOS elements to one
DRAMT...... < 731.......prive directed motors

STEPM. a8 ... Step motors via DRAMT

DNEWD....... F%35....... Delay on direction change

SRAMT 275 Update TBUF array during learn
KEYIN.....® ‘4 ‘35 Scan keyboard and build uvp motcrs to mcve

CBTAS co v« o e _g'] ve....Convert 16 bit 2's complement nurl.er to ASC.

CLRMF....cc < ,,.; A..... .Clear MOTBF array

CTBUF....... o S 5.5 SRS Clear TBUF, DRBUF & MOTBEF arrays

GINT « 4 s a 449Get 16 bit signed value frcm keyboard
POSDS: s ss v = 4/41’ Display relative position array élements
POSIC...... 4-945.... ..Increment relative positjcn array elements
STORE. A% ... Copy TBUF.to current ARST slice
KESET...0... 4<%Clear POSLE array

FUTCHK. 4~%C.Print a character

PSTR.coooeoo 4'45 . <« s« Print a string

PSPAC....... A-4&......Print a space

PNEWL..eooooo 4 —4'é Print a carriage return

x4 - 24%

SUBROUYINES INGEX (continued)

SCKBL e eeooosoaossocccosnsss Scan the keyboard

GCERE. o5+ 7 ’4Q vev......Cet a character erd print it
CLREC..cce 4’47 Clear the Screen

DELSW.oocooe .4. /4 ?Delay on valve in B

DELE .5 s = xs 4.’4? Delay approx @.@@l sec

DELT ...« .o %/4 2 v s mime e Delay approx @. @1l sec
DELLN.:occoo 4 /4%/ ve.....Dealy approx 1. ¢ sec

*4 25%

SUBRCUTINE DOALL

; This subroutine execvtes a sequence in store cnce.
; Forever flag FORFG is cleared if user types a '.'

DOALL ID BC, (COUNT) ; Get =sequence row count
LD A,B ;
OR c ; If count zero then
JR Z,HET2 ;. exit
LD HL ,ARST ; HL points to memory start
NMGCTS LD DE, TBUF ; DE points to temporary buffer
PCEH BC ;. Save count
LD EC , Z0P6 ; Motor count of six
LIR ; Copy memory slice into TBUF
PUSH HL ; Save new memory pointer
CALL DRIVL ; Drive all motors fcr this slice
CALL SCKBD ; See if keyboard input
POR HL ; Restore memory pointer
POP BC ; Resticre row count
CALL DNEWD ;
CP v ; User typed a '.'
JR NZ ,CARON ; No then continue
RET2 XCOR A ; Clear A
LD (FORFG) ,A ; Clear flag to halt routine above
RET i exit
CARON DEC BC : Decrement count
LD A,B ;
OR C ; Test for zero
JR NZ ,NMOTS ; No then carry on else
RET : return

¥4 - 26

——

SUEROUTINE DRIVL

; This routine is given TBUF,
. the motors that need to be driven, till TBUF = ¢

DRIVL
SCANW

TBZER

TBNZR

DGACN

SFCSE

SNEG

NCEL

NOFTI."

LD

Tl

LD
LD
Ok
JR
INC
DJNZ
RET
LD
LD
LD
LD
CP
JR
JP
LD
LD
DEC
JR
LD
LC

INC

JR
XOR
LD
CEC
DEC
DJINZ
LD
LD
CALL
DEC
Jr
RET

c,?

E,6

HL , TBUF
A, (HL)

A

NZ ,TBNZR
HL

TBZER

DE ,MOTBF + 5

HL,TBUF + 5

B,6

A, (BL)
@

Z ,NOEL
M, SNEG
A,3
(DE) , 2
(HL)
NCFIL
A,l._
(DE) ,A
(BL)
NCFIL
A

(DE) ,A
DE

HL
DOAGN
A,l
(REYP) ,A
STEPM
Cc

NZ ,SCANW

*4

S NE w6 we We wh WE ®el W N W WE We W WE WE W Ve [e me W ~e w0 w8 So wo w8 w0

o Se we w0 wo w8 “o

it then cirives all

Set BC = motor count

Point to TBUF

Get step value from TBUF

Is it zero?

No then continue

Point. to next TBUF location
Do next motor check

If no motor to step, then ret
DE points to last direction a:
HL points to TBUF

B = motor count

Get motcr step value

Is it zero?

Yes then skip

Is it negative ie, reverse

No positive, so load MOTBF (N
With 3

Decrerert motor count in TBUF
Complete the MOTBF array

Set MCTBF = 1 for

a positive drive

Decrement negative count

Do rest cf MOTBF

Clear MOTBF (N)

Move to next MOTBF element
Move to next TBUF element
oo for all six motors

Set key pressed flag

Step all motors once if

any to step

Do for maximum cf 128 cycles
then return

27%

SUBROUTINE INIT

~o wo =mo wo

— INIT

INIT clears the row count (CGUNT), resets the

MAN flaag,
The CUROW pointer ig recset
position array is cleared.

LD HL, ¥

LD _(COUNT) ,HL
XGR A

LD (MAN) ,A

ID HL ,ARST

LD (CURCW) ,HL
CALL CTREUF

CALL RESET

CALL CLEMT

RET

*4

clears tre TEUF, DRBOUF,

to

~o Seo wo So

~e w6 Neo wo S0 w0

28%*

& MOTBF arrays
the start of the ARET,

Set HL = ¢
and clear the
Clear 2

Now clear MAN
HL = start of arm store
CUROW = start of arm store
Clear TBUF, DRBUF & MOTEF
Clear the POSAR array

Free all motors

EXIT

row count

SUBROUTINE MOVTC

. This routine takes the POSAR array and uses it to drive
. all the motors until the ARM is in its defined start position

MOVTO PUSH AF y ®
PUSH BC . *
PUSH CE : * Save regicters
FUSH HL : *
zg;RESL 1C HL,POSAKR ; HL points to PCGEAR
‘ LD B,12 . B = count of 12
NRES1 LD A, (HL)) Get FCSAR elenerit
CR A : Is it zero?
JR NZ ,MTS& : No then ccntinue
=~INC HL . Point to next POSAR element
" DJINZ NRES1 . See if all zero
JR ENDSC . All zero sO end:
MTSA LD HL,FCSAR+1@ ; HL points to PCSEAR
LG DE,MCTBF+ 5 DE points to MOTBF
LC B,6 . B = count
RSCAN PUSH BC : Save count
. LD C, (HL) : Get lcwer byte
< INC HL . Rdvance HL pcinter
LD B, (HL) . Get high byte of POSAR elemer
LD A,C . Get low byte into B
OR B . cee if POSAR(N) 1is zerc
JR NZ ,DOMPL . no skip
LD (DE) ,A . 72ero MCTBF (N)
¥ DEC HL . advance POSAR poirter
JR NMDEK : Do nexi. motor
DOMEL LD A,B ; See direction tc move in
BIT 7,A .
JR 7 ,RMOT1. ; Go in revercse
INC BC . Go fcrward
1.D 2,1 . A = forward
JR DOIT1 . Do rest
RMOT1 DEC EC . Dec court for reverse
LD A,3 : Set reverse in A
DCIT1 LD (DE) ,A ; Store reverse in MOTBF (N)
\LD (HL) ,B ; Stcre updated POSAR cecunt
L DEC HL ‘ . in POSAR (N)
LD (L) ,C ; Store lower byte
NMDE [LEC HL 7
“DEC HL ;. point to next POSAR elemrer:t
DEC DE . Move to rext MOTBF elemrent
POP BC H Restore motor count :
DJINZ RSCAN . Do for next motcr
CALL DRAMT . Drive all motors to be ariv
"JR RES1 . Do till all FOSAR slots zer
ENDEC e BL ; %
POP DE P ¥
POP BC . * FRestore all registers
POP AF . *
RET . Return

x4 - 28a*

SUBROUTINES TORQUE, CLRMT AND SETDT

CLRMT
SETDT

N6 So so =

TCRQUE

TORQ1

TGRQ2

CLRMT

OTMT
CIMT

TOQCL

TORQUE switches

turns all
sets all CTPOS eiem
Fosition which equals 1,

PUSH
PUSH
PUSH
PUSH
LD
CALL
LD
LD
LD
LC
OR
JR
LD
LD
ID
SLA
OR
our
INC
INC
DJINZ
JR
PUSH
PUSH
PUSH
PUSH
LD
CALL
LD
LC
LD
SL2
CR
oGT
CJINZ
CALL
POP
POP
POP
POP
RET

of motors on and sets CTPOS(N)'s
motors off and sets CTPCS (1-6)

AF

BC

DE

ETL

HL, TORMS
PSTR
DE,CTPOS
HL ,MOTBF
B,6

A, (HL)

A

NZ ,TCRQZ
A,l

(DE) ,A
A,B

A

192
(PORT) ,A
DE

HL

TORQ1
TCQCL
AF

BC

DE

HL

HL , NOTOR

PSTR
D,@FZH
B,6
A,B

A

D

(EORT) ,a
CLMT
SETDT

HL

DE

BC

AF

*4

ents to start offset

Set clear motcr-

* % X+ %

Save Registers
Print TORQUE ON message

Point to FTABL offset array
Point to last drive table

B = motor count

¢et motor value

Is it zero?

No then skip

Reset CTPOS(N) to Position 1
in FTAEL

Get motor address in A

Shift it left for interface defn
or in FTABL pulse

Output it to selected motor
Advance points to next

motors

Do next motor

Exit with register restoration
* clear all motors torque

*

* Save Registers
*

Print "NO TORQUE" message

Pattern for mctors cff

B = Moter count

Get motor address in A

Ebift into correct bit position
Combine with coils off pattern

Output to selected motor

Do next motor

Clear CTPOS array to value of 1
*

o+

* Restcre Registers
*

Done, exit

- 29*

SETDT

NSET1

PUSH
PUSH
PUSH
LD
LD
INC
DINZ
POE
POP
POP
RET

BC
DE

HL

B,6
HL,CTPOS
(HL) ,1
HL

NSET1

HL

DE

BC

*q

TP OSe Se St No e e =

* Set CTPOS elements to Start
* Save used registers

*

Motor count to B

dL polnts to CTFCS array

Set CTPOS(N) to start position
Increment HiI,

Do set up next CTPCS element

*

* Restore used registers
*

30*

SUBROUTINE DRAMT

i FTAEL to outp

DRAMT

NMTDT

NORST
IGMTN

REVMT

ouTam

PUSE
PUSH
FUSH
PUSH
LD
LD
LD
LD
OR
JR
BIT
CALL
JR
INC
Cp
JR
LD
LD
INC
CEC
DJINZ
C2LL
CALL
POP
POP
POP
POP
RET
DEC
cp
JR
LD
JR
L@
PUSH
PUSH
PUSE
LD
LD
LD
ADD
ID
LD
SLA
CF.
cuT
POP
PGP
POP
RET

AF
BC—
DE
HL
B,6

DE,MOTEF +5

HL, CTPOS
A, (DE)
A

Z , IGMTN
1,A
ouTAM

Z , REVMT
A

5
C,NORST
a,l

(BL) ,A
HL

DE
NMIDT -
DELT
DELS

HL

DE

BC

AF

A
1
NC,NORST
A,
NOEST.

A, (HL)
AF

DE

HL

HL, FTABL-1

D,@
E,A
HL ,DE
A, (HL)
C,B

C

C
(PORT),A
HL

DE

AF

T Se So No e o~ ~eo =

~e

~e

e Ne wo we w»

* %

Save Registers

*

B = motor count.
Point to MOTBF array

HL points to FTABL offset array
Get MOTEF (N)

Is it zero?

If zero} then skip

Test direction

Step motor

If direction negative then jump
Increment table counter

Upper bound?

No then continue

Reset table offset

Store in CTPOS (N)

Incremer:t CTPOS pcinter
Decrement MOTBF pointer

Do for next motor

Delay after all pulses out

* .

*
4
* Restore Registers

*

Exit

Move table pointer on
Compare with lower boung

If no overflow then continue
Reset table offset

Do next motor

Get table offset 1-4

"

* Save Registers
k4

Get table start

DE now equals 1-4

Add to FTABI, -1 to get addrecss
Get motor Pulse pattern

Get address field in C and
shift it one to the left

Cr in the ulse pattern

. Output to interface circuitry
*

* Restore Registers
*

Return

DY -

SUBROUTINE STEPM

i This routine causes all motors that should be
i steppec¢ tc be so, and updates the motcrs relative

(i Ppositions from their start pcsitions.

STEPM PUSH AF ;%
PUSH HL - * Save Register
PUSH BC A
LD HL ,MOTBF ;i HL points to motor buffer
LD E,6 ; B = Ccunt

TFY@ LD A, (HL) ; Get motor value 3 or 1
OR A : Zero?
JR NZ ,CONTA ; No then continue

CCNT INC HL ; Point to next motor
DINZ TRY@ ; Do next motor
POP BC § *
POP HL H * Restore Regicters
POP AF : %
RET : Exit

CONTA PCP BC ; *
POP HL : * Restore registers

CALI. DRAMT Drive motors

CALL POSIC Increment relative position
PCF AF ; * Restore AF

RET Exit

-e ~o

~e

*4 - 32%

SUBROUTINE
3 This subroutine checks to see if any motors are
: changing direction , if so a delay is inserted

; into the sequence.

DNEWD

NCOMP

NDIR

CDDEL
NCDSG

PDIR

NXTCK

PUSH
PUSH
PUSH
PUSH
LD
OR
SBC
LD
LD
POP
PUSH
LD
LD
CP
LD
JP
CpP
JP
CALL
POP
POP
POP
POP
RET
CPp
Jp
JR
INC
INC
DJINZ
JR

DNEWD

AF
BC
DE

T e N6 Ne N8 N8 S0 NE Ne Se No Se So o we ~e

* o+ *

save used registers

*

Load BC with count

Clear carry

HC points to previous motor slice

Move HL to DE
Restore current row pointer
Save again

Get contents of this row

See if positive or negative

Get identical previous motor slot
if positive do for positive motor
Compare if both in same

direction then skip else

delay and '

*

*

* Restore registers

*

Now return

If previous motor . is negative
then delay, else do for next
motor slot

increment current row pointer
increment lost row pointer.
do for next motor

Return with no large (1 sec) delay

4 - 33

SUBROUTINE SRAMT

Se we So w0 Se =o

SRAMT

NTMOT

FORDR

CFORD

NODRV

LD
OR
JPp
LD
Lp
LD
LD
LD
DEC
DEC
DEC
LD
OR
JR
Ccp
JR
LD
CP
JR
CALL
LD
JR
INC
LD
Cp
CALL
LD
DJINZ
CALL
LD
OR
JPp

CREV1

CREVD

SETST

SETSC

LD
CP
JR
CALL
LD
JR
DEC
LD
Cp
CALL

LD

JR
PUSH
LD
LD
PGP
RET

RET..

Z

SRAMT is responsible for updating the TBUF

elerents and for setting the STRFG if a situation
exists where the TBUF array should be stored ir the
current ARST slot.

This will occur if any motor changes

A, (MAN)
A .

NZ ,STEDPM
(STRFG) ,A
B,6
1X,DRBUF+6
1Y ,MOTBF+6
HL,TBUF +6
1y

1X

HL
A, (lY +@)
A

Z ,NODRV

1

Z ,REVDR -
A, (1X+@)

1

NZ ,CFORD
SETST
(1y+@) ,¢
NCDRV
(HL)
A, (HL)
127

ETST
(1x+@) ,3
NTMOT
STEPM
A, (STRFG)
A
NZ , STORE

A, (1X+@)
3

NZ ,CREV1
SETST
(1Y+@) ,@3
NODRV
(HL)

A, (HL)
-128
Z,SETST
(1x+@) ,1
NODKV

AF

Al
(STRFG) ,A
AF

WO Ne w0 S N0 S0 S0 o

TE TE TO N0 N0 TO N Ve Ne N6 N0 NG N0 WO N0 N0 N6 N6 N0 N0 WO N0 WO Ve WO WO Wo N0 WO WO N0 W0 w6 S0 w6 S0 wo wo Ne w0 wo we

direction or a motor exceeds the allowed slct
boundary of -128 to 127.

Get manual flag

Is it zero?

Yes then just step motors
Clear the store flacg

B = motor ccunt

1X = previous direction buffe:
1Y = current buffer

HL = step buffer

move pointers

Get current motor directicn
No work to do

skip, if so

Reverse

Yes then skip

Get previous direction
Direction change?

No then advance TBUF (N) step
Set the store flag e
Clear MOTEF element. r
Do next motor

Jncrement mwotor step in TBUF
Get new value ,

Check against upper board
Limit reached then store flag
Set previcus direction

Do next motor

Step motors to be driven
Examine store flag

Zero?

No then do stcre operation
Exit

Get previous direction

_Direction reversed?

No then continue

Else set store TBUF in ARST f]
clear MOTEF element

Do next motor

Advance step count in TBUF (N)
Get element

Compare with upper negatlve bc
Limit reached so set store fle
Set Direction

Do next motor

Save AF

Set store flag STRFG

to one

Restcre AF

Continue

x4 - 34%

SUBROUTINE KEYIN

.
’
°
’
’
°
4
°
’

This routine scans the keybcerd checking for
the keys '1-6' and 'Q''W''E''R''T''Y' and 's':
and . It then drives the motors correspcncing
to the keys pressed. If in learn mode the
sequence is stared.

KEYIN CALL CLRNMF Clear MOTBF array
LD A, (384@H) Get TRS8¢ keyboard byte
BIT 7,A See if
JR Z ,IGDEL No space key so skip
CALL DELT *
CALL DELT * Slow motor driving
IGDEL XOR A Clear KEY PRESSED flag
LG (KEYP) ,A
LD A, (Z81@H)
BIT @,A Is the zero key pressed?

Z,TRYS

. ., JR No then skip
3/ £[73 P NOTNG

Go to do nothing

TRYS LD A, (38@4H) See if
’ BIT 3,A 'S' key pressed
e A, (381¢H) Restore memory value
JR Z,TRYN1 No then skip
LD A, (MAN) See if in manual mode
CR A
CALL Z ,STORE No then store TBUF
OR 1 Set not finished flag
TRYN1 LD BC, ¢ Clear MOTBF offset in BC
BIT 1,A See if 'l' key is pressed
JPp ~ Z,1RYN2 No then skip else
v CALL FORMT Set up motor 1 position in MOTBF
TRYN2 INC BC Increment MGTBF offset
BIT 2,A See if '2' key pressed
Jp Z,TRYN3 No skip
CALL FORMT Set second motor forward
TRYN3 INC BC Advance offset
BIT 3,A
Jp Z ,TRYN4 See if '3' key pressed, No skip
CALL FORMT Set forward direction on Motcr 3
TRYN4 INC BC Increment. c¢ffset in BC
BIT 4,4 See if key '4' is pressed
Jp Z ,TRYNS No then test key '5°

H
H
H
;
;
;
H
H
;
H
H
H
;
H
;
H
;
’
H
H
RET 7 and exit to caller
H
H
7
H
;
H
;
:
H
;
H
’
’
;
H
H
’
;
H
;

CALL FORMT Do forward direction fcr Motor 4
TRYNS5 INC BC Adver.ce offset

BIT 5,A Key '5' pressed

JP Z,TRYNG No skip

CALL FORMT Do set up for motcr 5
TRYN6 INC BC ; Advance offset

BIT 6,A i Key '6' pressed

Jp Z,1TrYQT i No then try 'Q'

CALL FORMT ; Do for motor 6

¥4 - 35+%

TRYQT

TRYQ

TRYW

TRYE

TRYR

TRYT

TRYY

SOMEN

NOTNG

FCRMT

BACMT
SETMT

DOMOT

LD
LD .
EIT
JP
CALL
INC
BIT
Jp
CALL
INC
LD
BIT
JR ;
CALL
INC
LD
B) I%\
IR
CALL
INC
BIT
JP
CALL
LD
INC
BIT
Jp
CALL
CALL
OR
RET
LD
OR
CALL
XOR
RET
LD
JR
LD
LD
ADD
PUSH
LD
OR
JR
XOR
LD
POP
RET
LD
LD
LD
POP
RET

A

BC, ¢

A, (38@4H)
1,A
Z,TRYW
BACMT

BC

7B~
A
BAC

BC

A, (38Q1H)
5,A
Z,TRYR
BACMT

BC

A, (3824H)
2,A

TRYT
BACMT

BC

4,A
Z,TRYY
BACMT

A, (38g8K)
BC

1,Aa

Z ,SOMEN
BACMT
SRAMT

l,

A, (MAN)
A

Z ,STOKRE *
A

E,3

SETMT
E,1 . .

HL , MOTBF
HL, BC

AF

A, (HL)

Z ,DOMOT
A

(HL) ,A
AF

(HL) ,E
A,l
(KEYP) ,A
AF

*4

Se So ~o

e

N6 So No we

~e

Ne No No s,

L LE LR T

~e

T e Ne Se Se Ne N0 o wo we we SO N8 Se Ne Se Ns so se N we S8 Se N wo s

~e

36%

Clear BC offset for moto;
See if 'Q! Key pressed

No then skip

Set motor 1 for backward
Advance pointer

See if 'w! key pressed
No skip CT#VE§

Do backward for motcr 2
Advance pointer offset
See if

'E' key pressed

No skip

Set motor 3 for backward
Advance pointer offset
See if

Key 'R' is pressed

No skip g@ = vRYT

Set motor 4 backwzard
Advance offset

Is key 'T' pressed?

No skip

Set mctor 5 backward

Is the 'Y' key pressed?
Avarce offset

No key

'Y' then skip :
Set mcter 6 for backward
Step mcters, maybe store.
Set zero key not pressed f
Return to caller

Zero was pressed so see
if in learn mode

Yes then store

Set zero flag and

Return to caller

Set fcr forward directicn
Do set motor slot in MOTBF
Set fcr reverse direction
Point to MOTBF

Add in motor offset

Save AF

Get byte

See if zero

Yes then set byte

Clear
byte in MQTBF user wants bc
directions clear byte

Restcre AF and return
Set byte [in MOTBF

and set

key presged flag
Restcre AF

exit from routine

SUBROUTINE CBTAS

i This subroutine makes a signed binary valuve in
into arm ASCII String and stcres the string
i in the lccations pointed tc by 1X

$ HL

CBTAS

PUTSN

POSNO
CONUM

NUMLP

SUBBA

GONEN

PUSH
PUSH
PUSH
PUSH
BIT
JR
LG
CPL
LD
LD
CPL
LD
INC
LD
LD
INC
JR
LD
JR
FUSH
LD
LD
LD
LD
OF.
SBC
Jp
INC
JR
ADD

LD

INC
INC
INC
DEC
JR

XOF.
LD

PCF
POP
POP
POP
PCP
RET

AF

HL

DE

1X

7,H

Z ,POSNO

A ,MINUS
(IX+@) ,A
IX

CONUM
A,SPAC
PUTSN
IY
1Y,BTOAT
A ,NUMEA
E, (1Y+Q)

"D, (1Y+1)

A
HL ,DE

C,CGONEN
A
SUEE2
BL ,CE

(1X+@) ,A
1X
1y
1y
E .
NZ , NUMLP
L, :
(LX+@) ,A
Iy
IX
DE
HL
AF

~e

Se we S wo

Te Te Mo S N0 Se SI N0 N0 N0 Se N6 N5 we w0 wo e TE O e W@ Ne S N0 N0 N0 N0 NI S0 NU SE N0 N N6 e wo w5 e

*4

~ Pointed

* % %

Save Registers

*

Test =ign of number

If zero then positive number

Complement number if negative

Now 2's complement negative
Flace minus sign in string

to by 1X

1X pointer

Do rest cf conversion

Place a space if number positive
Jump to copy space to remory
Save 1Y register

Point to subtraction table

Get ASCII ¢ in A

Advance

Get table value

Clear carry bit _
Subtract table value from value
input’

If carry then do for next digit
Inc count (ASCII in A)

Do next subtracticn

Restore value before last.
subtraction

Store ASCII Number in memory
Inc memory pointer

Point to next table valve

Test if E = @
No then try for next digit
Clear A and place in store

as EOS = End of string

*

*

* Restore all saved registers
* and

*

Exit

- 37*

BTOAT DEFW 19333 i Table of subtraction constants

DEFW 19¢gw i for conversion routine
DEFW 123 ;

DEFW 1¢

DEFW]

4 - 38%

CLEARING AND RESETTING ROUTINES

; CLRVNF

CLRMF

clears the MOTBF array

PUSH BC H
PUSH DE s
POP HL :
LD HL ,MOTBF FH
LD DE,MOTBF +1 ;
LD BC,5 H
LD (HL) , ¢ H
LDIR ;
POP HL H
POF DE H
POP BC H
RET H

*

* Save Registers uced

*

Point to MCTBF (@)

Point to MOTBF (1)

BC = Count

MOTBF (¢g) = @&

Copy through complete array
*

'* Restore Registers used

*
Exit

; CTBUF clears TBUF, DRBUF and MOTRF
; Note all must be in order

CTBUF

PUSH BC s
PUSH DE ;
PUSH HL :
Cc HIL ,TBUF H
LD DE,TBUF + 1 ;
LD BC,17 ;
LD (L) , @ i
LDIR : i
POP HL ;
POP DE ;
POF BC .
RET ;

*4

*

* Save Registers

4.

HL points to TBUF (@)

DE points to TBUF (1)

BC = Count of 17

Clear first element

Now clear next 17 elements
*

* Restore Registers
* _

Exit

39*

SUERCUTINE GINT

i This subroutine gets a si

i from-the TRS8@ Keylkcard.
i If a bad number istyped it returns with the
; Status flag - non zero.
i The 2's complement number is returned in HL

GINT

GINT1

PCSON

GINT2
NUM1

NUMET

PUSH
PUSH
XOR
SBC
LL
LD
CALL
Cp
JR
Cp
JP
CP
JR
LD
LD
JR
CPp
JR
CALL
CP
JR
ADD
PUCH
ADI
ADD
POP
ADD
Cp
JR
Ccp
JR
SUB
LD
LD
ALD
CJINZ
CALL
LD
OR
JR
LD
CPL
LD
LD

3C

DE

A

HL ,HL
B,5
(MIN) ,A
GCHRA
SI'ZC

Z ,GINT1
NI, |

Z2 ,PRET1
MINUS
NZ ,POSON
A,l
(MIN) ,A
GINT?2
|+l

NZ ,NUM1
GCHRA
NL

Z ,NUMET
HL,HL
HL.

EL ,HL
HL ,HL
DE -
HL,DE

@

C,EFRN2
|9| + l
NC,ERRN2

‘NUMBA

E,A
D,d
HL,DE
GINT2
PNEWL,
A, (MIN)

*4

gned 16 bit integer

*

* Save Registers

Clear A and carry

Zerc HL

Maximum of 5 characters
Clear MIN=Minus Flag

Get a character and display
Is it a space?

Yes then skip

s it a newline?

Done if new line, return ze
A minus number ?

No then see if positive

Set minus flag

Cet rest of number
Is number a positive number
See if numeric

Get next character
Newline?

Yes then exit
Double number

Save X 2

X 4.

X 8

Restore X 2

Now add tc get X 1¢

If number less than ASCIT @
If number greater than ASCTI
9 then error

Number input OK, so make int
Binary and

load into CE

Now add to total

Do for next Qigit

Prirt. a new'line

Is numkter negative?

No then finish off
else complement
Tke value in HL

(2's Complement)

40*

PRET1
PRETZ

ERRN2

CPL
LD
INC
XOR
PCP
POP
RET
CALL
LD
OR
SBC
OR
JR

H,a
HL

LE
BC

PNEWL
2,1

HL,HL

PRET?2

*4

Clear A and flags

i * Restore Registers

*

; and return

; Print a newline

i Set A to 1l

i Clear carry flag

;i Clear HL

; Clear carry flzag

i Return with ERROR CODE

41*

SUBFOUTINE POSDS

;i This routine displays the POSAR array for tre
i user to see how far the arm is from its
; "Home position"

POSDS PUSH AF P
FUSH BC N
PUSH DE i * Save 2ll registers
PUSH HL 7 *
LD HL,POSST ; Print "FELECS="
CALL PSTR 7 String
LD B,6 ;i Motor count into B
LD DE,POSAR ; Point to array contairinc offe

NPCEA LD A, (DE) i Get lower order byte into
LD L,A 7 L
INC DE ; Increment MEMOry pointer
LD A, (PE) i Get higher order byte into
LD H,a ;i H
INC DE 7 Increment to next number
LD 1X,NUMAR ; 11X points to result string
CALL CBTAS i Convert EL and leave in (1X)
L HL,NUMAR ; Point to result string
CALL PSTR ; Print it
CALL PSPAC i Print a space
DJINZ NPCSA i Do for next motcr
CALL PNEWI, i Print a new line, all done
FGP BL ;%
POP DE ;%
POP BC ; * Restore all Registers
POP AF HE
RET i Now return

*4 - a2+

SUBROUTINE PCSIC

i PCSIC incremente the signed 2's complenert 16 bit

i Mmctor step cffset counts. It does not check for overflcw,
» Lut this is very trlikely. The bace woulcd need tc

i ke rotated akcout 2¢ times to cause such an evert.

FCSIC PUSH . AF s *

PUSH BC ; *

PUSH DE ; * Save registers

PUSH HL .

LD B,6 i B = motor ccurt

LD E,MOTBF+5 ; Point to MCTEF

LD HL,POSAR+1@; Point to POSAR (relative position)
NPOS1 FUSH EC i Save motor count

LD C, (HL) ;i Get lcwer FCS:E kyte in C

INC HL i Point to Higher byte

LD B, (HL) i Get higher byte in B

LD A, (DE) i Cet directicn byte frem MCTEF

AND 3 i Cleer &11 higher bits from D7-D23

OR A ; Is it zero?

JR NZ ,NONZM H No skigp

DEC RL i Yes then move POSAR pointer bhack

JR NPOS2 i and ccrtirte witl next notor
NCNZM BIT 1l,A ;i Test direction bit

JR NZ ,RDPOS i Do for reverse directicn

INC BC’ i Advance element

JR STPCS i Restcre 16 bit POSAR element
RDPOS DEC BC ; Advance negative POSAR element
STPOS LD (HL) ,B i Store higher byte

DEC HL i Move rointer tc lower tyte

LD (HL) ,C: i Store lower byte
NPOS2 DEC HL i Back vp PCSAP pcinter to

DEC HL i next motor position slot

DEC DE i Backup MOTEF pcinter tc next sivi

P0p EC 7 Restcre Motor count

DJINZ NPOS1 ; . Do next motor

POP HL - 3 *

POP DE : % Restore used Registers

POP BC ;o*

POP AF 7 *

RET ; Done, Exit

+4 - 43"-

SUBROUTINE STORE

i STORE copies the TRUF array into the locations pointed to
i by CURCW. If the TEUF array is conpletely eEmpty then the
i copy 1s not done. The COUNT and the CUROW variables

i are both updated, and a check is made to ensure thet

i a store cverflow is caucght and the user told.

STORE PUSH BC : *
PUSH HL . * Save registers
LD HL , TBUF ; Point to TBUF
LD B,6 i B = motor count
STEST LD A, (HL) ; Get TRBUF (N)
OR A H Is TBUF elemrent zero
JR NZ ,STOR1 : No then do store
INC HL : Point to next elerert
DJINZ STEST i Go dc next elemert check
JR EXIT i All TBUF zero so exit
STOR1 LD (1X+@) ,@ s Clear DRBUF element
LD HL, (COUNT) ; Get current count value
INC HL ;i Advance it
LD A,H H See if cver or at 512 bytes
CP 1 3
JP NC,OVRFW ; Yes then overflow
LD (COUNT) ,HL ; Put back advanced count
LD DE, (CUROW) ; Get current row pointer in DF
LD HL, TBUF i Get TBUF pointer in HL
LD BC,3¢@6 i Count for six motors
LDIR : Copy TBUF to ARET (1)
LD (CUROW) ,LE ; Replace updated rcw pointer (
CALL CTBUF. i Clear Luffers
EXIT POP HL ;*
POP BC i * Restcre Registers
RET i Now retirn to caller
OVRFW LI LEL,CGVFMS' 7 Print overflow situation
CALL PSTR i Message
CALL GCHRA i Get response
CALL PNEWL ;i Print a new jJire
CP 'D! i User typed & 'D'
JP Z ,REDO i Yes then clear all
CP 's! ; User typed an 'S'
JR Z ,EXIT2 i- Yes exit with sequence saved
JR OVREW i Bad input, try again -
REDO CALL INIT i Clear all arrays etc
EXIT?2 POP HL ; ® -
POP BC i * Restore Registers
PGP BC i Throw away return address
JP CUES1 ; Back tc main loop

- 44%

SUBROUTINE RESET

: This subrcutine clears the

RESET

PUSH
P'USH
ruskH
I'D
LD
LD
1
LDIKR
LD
CALL
POP
POP
POP
RET

BC
DE
EL
HL,POSAR

DE,POSAR+1

(HL) ,@¢
BC,11

HL ,STRST
PSTR

HL

['E

BC

*4

POSAR array

<o S0 =

~e

No Se Se w8 Se No Neo wo

* ©Save Registers

*

Point to POSAR start

Point to next element

Clear first POSAR element
Eleven more row ccunts to clear
Clear POSAR array

Print "ARM RESET" message

and
*

* Restore Registers and
*

Return to caller

45%*

INFUT/CUTPUT ROUTIMES

;i PUTCHR prints a character

PUTCHR PUSH AF
PUSH DE
CALL PCHR
POF DE
PO¥ AT
RET

in A

!
’
°
’
’
’

’

ey

= i
i feras”

+u

(e

Seve AF
Save DE
Print charcacter in A
Restcre DE
Restore AF
Done, Exit

i PSTR prirts a string pointed

PSTE PGSH BC
PUSH DE
CA&LL PUTSTR
PCF CE
FGP BC
RET

to by HL

* Save recisters that are
* corrupted by the TES8¢
Print the string

* Restore Regicsters

Done, Exit

PSPAC prints a space character

ESPAC PUSH AF
LD A,20
CALL PUTCHK
POP AF
PET

we w8 S0 we wo

Save AF

A = Space character
Print it

Restcre AF

Done, Exit

; PNEWL prints a new line to the screen

PNEWL PUSH AF
LD A, @DH
CALL FUTCHR
POP AF
RET

SCKBL Scans the keyboard

i 2Zexro if character found

SCKBD PUSBH DE
CALIL KED
POP DE
RET

i GCHRA gets

GCHRA CAILL GCHR
CAIL PUTCHR
RET

Se No Se So wo

Save AF

A = Newline char:cter
Print it

Restore AF

Done, Exit

once and returns, non

N wo So we

°
’
°
’

°
’

*4

Save DE

See if character is there
Restore

Done, Exit

a character from keybcard and displays it

Get a character
Print it
Done, Exit

46*

-

CLEAR SCRELM KRCUTINE

; Simple scrolling type screen

CLREC PUSH
LD

UP1EW CALL
DJINZ
POP
RET

Dot

BC
B,l6
PNEWL
UP1RW
BC

*4

e Wb Neo wo wo “e

47 *

dour pe. Tt
il T3

clear

Save used register
Get screen row count
Print a new line

Do 16 times

Restcare Register
Exit

DELAY ROUTINES

LELSW
DELS1

DELS

DELT

DELLN

CDDD

PUSH
PUSH
NOP
NCP
POP
DINZ
PCF
RET
PUSH
LD
CALL
POP
RET
PUSH
LD
CALL
POF
RET
PUSH
LD
CALL
DJINZ
pPoOP
RET

BC
BC

BC
DELS1
BC

BC
B,2¢
DELSW
BC

BC
E,@
DELSW
BC

EC
B,20p
DELSW
DDDD
BC

*4

Se ws Ne& Se Ne =o

So w8 No o wo

48*

Delay for 18 * E + 1g M cy«¢
Save BC

Delay for 11 T state

4 T state delay

4 T state delay

Delay for 11 T states

Do delay times value in B
Restcre BC

Exit

Save BC

Set B for @.@@1 sec delay
Do delay i

Restore EC

Exit

Save BC

Set B for @.¢l sec delay (:
Dc delay -

Restore BC

Exit

Save BC

Set B for 1.2 sec delay (ag
Do delay

Do next delay section
Restore BC

Exit

G\\J\\Qm

FULL STEPPING AND HALF STEPPING THE MOTORS

Two tables are shown below, the first indicates the sequence for
full stepping the motors and the second table shows the pulse
pattern for half stepping the motors.

FULL STEPPING SEQUENCE

QA QB QcC ob STEP
1 ¢ 1 ¢ A 1 s
1 %)) 1 g9 2 Toa
@ 1) 1 s 3 &
@ 1 1 g £ 4 lr
HALF STEPPING PULSE SEQUENCE
QA QB QC Ob STEP
1 %) 1 @ 1)
1 1) @ @ 1.5 z
1;) @ 1 2 a
@ @ @ 1 2.5 o
@ 1 @ 1 3.9 5
0 1 0}) 3.5 4
& 1 1 " 4 a
) 1) 1 @ 4.5 .

The documental program contains a table FTABL which is shown
below. This table contains the step sequence for full stepping
also shown below is the new table FTABLH which contains the
sequence for half stepping. To use this table (FTABLH) in the
program it will be necessary to alter a few lines of code in the
DRAMT routine. The comparison with 5 CPI 5 should be changed

to a comparison with 9 and the program line LD A,4 should be
changed to LD A,8. The table FTABL should now be changed so

it appears as FTABLH

FULL STEP TABLE

' Step number
FTABL DEFB 192 ¢

CPr 1
DEFB 144 96+ 2
DEFB : 48 3 U 3
DEFB 96 6 S 4

HALF STEP TABLE

Step number

FTABLH DEFB 192 ¢ &" 1
DEFB 128 ¢ ¢# 1.5
DEFB 144 qpv¥ 2
DEFB 16 /6¥ 2.5
DEFB 48 3 i+ 3
DEFB 32 2pH 3.5
DEFB 96 G @ 4
DEFB 64 4o H 4.5

x4 - 49%

If you compare the table values with the tables
on the previous page you will note a difference,
this is because QB and QC are exchanged in the
above table due to the hardware switching these
two lines.

NOTE

REMEMBER WHEN WRITING PROGRAMS DIRECTLY DRIVE
THE ARM SO THAT THE QB AND QC OUTPUT BITS SHOULD
BE REVERSED, SO THAT THE TOP FOUR BITS ARE:-

D8 = QA
D7 = QC
D6 = OB
D5 = QD

4 =50

CONSTRUCTION OF A SUITABLE PORT FOR THE ARMDROID

A circuit diagram is given which describes in particular the
construction of an 8 bit bi-directional, non latched port. T
circuit as given is for the TRS8@% bus, but it should be
possible with reasonably simple modifications to alter it for
most 280 type systems.

The circuit described is a non latched port so the output
data will appear for only a short period on the 8 data lines.

As can be seen from the diagram, the circuit draws its 5 volt
power supply from the arm's interface port, and not from the
processor it is connected to.. The port was constructed this
way due to the fact that some commercial microprocessor syste
do not have a 5v output supply.

When the above circuit is connected to the arm's interface ca
the bottom bit is usually pulled high, thus if the user input
from the port at any time the data presented will mirror the
state of the reed switches.

To output data to the arm using this port the user should sen
the data to the port with the bottom bit cleared. The data
will then be latched through to the addressed arm motor latch

The components for the described port should be easily
available from most sources.

TRSB0 8 BIT INTERFACE (NON LATCHED BI-DIRECTIONAL)

READ OR WRITE FROM PORT (4)

q
| VOLTS
TRS30 BUS l(sse BUS DESCRIPTION) 5 VOLTS SUPPLY FROM ROBOT CONNECTOR
_ 4+ GND
A7 -T 1 IC la C) Colne Robotic;1
[2 ! 12
A6 @
" IC 2a
As Ic 1b :
AL o—
: 3 “ x ENABLE
& r's
il ‘35 2
Al %l 5 J
Az :l 5 It 1e 5
i - : 10) 3
| 1
l -
|
! IC 3a IC 3b
T el ! - A.J. LENNARD 20/6/198}
N e I 2 3 6
o 5
| DIRECTION ; e 0 VOLTS
' 11]9 ' o4 5 VOLTS
l 2 13 i . R
o , ®
D8 :l i 17 | —e D8
07 ol 16 o D7
06 > Ic 4 15 |, o
Di Lgi 3 14 ' Dz
D o— -
D3 Gl 7 13 [03
o 3 ; E g
oy & 9 1 | ﬁ:
.‘ T
TO
GND el — I RosoT 8 BIT
(:JNTERFACE
IC 1: 741527 Pin 1h: 5 Volts, Pin 7: GND /% 3#3 INPUT NOR
IC 2: 74LS20 Pin 1h: 5 Volts, Pin 7: GND ' /74 244 |NPUT NAND
IC 3: 74LS00 Pin 14: § Volts, Pin 7: GND 4%2 INPUT NAND
IC 4: 74LS245 Pin 20: 5 Volts, Pin 10: GND 9 .§& OCTAL BUS TRANSCEIVER

(Tri-state)

* _52«

CONNECTION OF ARMDROID TO PET/VIC COMPUTERS

PET/VIC USER PORT CONNECTOR

PIN NO PET/VIC ARMDROID
NOTATION NOTATION

C PAO D1

D PAl D2

E PA2 D3

F PA3 D4

H PA4 D5

J PAS D6

K PA6 D7

L PA7 D8

‘N GROUND GROUND

I/0 Register Addresses (User Ports)

VIA Data Direction control: 37138
" PET Data Directional control Register: 59459
VvIC I/0 Register Address: 37136
PET Data Register Address: 59471 ‘

The data direction registers in the VIA define which bits

on the respective user ports are input and which are to be
used as output bits. A binary one in any bit position defines
an output bit position and a zero defines that bit as an

input bit.

-5 *

SIMPLE BASIC ARM DRIVER FOR VIA (PET/VIC)

5L = 37136: Q = 37138
10 PRINT "VIC ARMDROID TEST"
20 PRINT
30 PRINT "HALF STEP VALUES"
40 T =8: C=2: S=10: M=1: T =]: Ag = vpo
S0 FOR I =1 TO T: READ W(I): PRINT W(I): NEXT I
60 POKE Q, 255
70 INPUT "MOTOR NUMBER (1-6)"; M

80 IF M«<l OR M=8 THEN 70 : P

90 INPUT "FORWARD BACKWARD"; A$
TES §O
100 IF A$ = "F" THEN D = O0: GOTO 130 d /
? Par‘ac//e(o
110 IF A$ = "B" THEN D = 1: GOTO 130 - 15312

120 GOTO 90

130 INPUT "STEPS"; S.

140 IF s<l THEN 130

150 0 = M + M +1
7160 FOR Y = 1 TO S*C
170 F = W(I) + O

180 POKE L,F

190 POKE L,P-1

200 IF D = O THEN 230

; 210 I =1+ 1: IF I=T THEN I = 1
220 GOTO 240

/

230 I =TI - 1: IF I=l THEN T =

"S240 NEXT Y
250 GOTO 70

260 DATA 192, 128, 144, 16, 48, 32, 96, 64

THE VALVES FOR L AND Q FOR THE PET ARE
Q = 59459 = DATA DIRECTION
L = 59471 = 1,/0

Xy _55%

MOTOR STEP RELATLIONSHIP PR DEGREE INCREMIENT

Below are shown the calculations for each joint to enable the
usecr to calculate the per motor step relationship to actual
deyrece of movement.

These constants will necessary for users wishing to formulate
a cartesian frame reference system or a joint related angle
reference system.

Base

Motor step angle x ratio 1 x ratio 2

7.5°% x 20 teeth x 12 teeth 224

72 teeth 188 teeth
4040 () 44%09,x10 %6§awﬂauj%AW’
= @¢.2314 degree step or 4.32152 steps per degree.

(V2

23045 F&/ 4. 20 BG00 2B/
Shoulder
7.5 x 14 teeth x 12 teeth 7’/ s
72 teeth ceth °fb' P
2.€2%5079 g0t wog% Qolliu (5t |
= #.162 degree per step or 6 17284 steps per degree
"6 0ZHoZD) 6 1114245702
Elbow

Same as shoulder joint
Wrists
Same as base joint calculations

Hand

7.5 x 2@ teeth x 12 teeth 4. 040!/ Fo0T }‘(O—?&‘(f“"/slé

72 teeth 138 teeth = (.231 degree per ste
BBl wg/4a4E5)

D
«x d x .231

(P.@524/2)mm

360 05252 /4¢T
=@.@¢262mm = hand pulley motion per step .
01616 074 ‘
Total hand open to close pulley movement = 2@.¢mm

Angle traversed by single finger = 5¢o

5¢° x @.9262mm

20 .@ mm

= ¢|gs;%;;R?£g§Fep or 15.2672 step per degree
A = 3.1415926

d = 26mm = pulley diameter

K4 - 56%

SOME EXTRA POINTS TO BEAR IN MIND

a)

b)

c)

Long Lead of LED goes to NEGATIVE
short lead of LED goes via 4.7 kohm Resistor

to POSITIVE

"Due to LED hole being slightly too large a grommot

will first have to be fitted to the LED and 1its holder
can then be super glued if necessary into the grommot.

The Torgue available 1is largely a function of speed
and hence the user can expect performance +o deteriorate
as speed 1is incresed. Tables are supplied earlier

in the manual.

FINAL NOTE

BEST WISHES AND GOOD LUCK

s xE
s et oy~ i

COLNE ROBOTICS CO. LTD.

ROAD, off RICHMOND ROAD, TWICKENHAM TW1 2PQ, ENGLAND
Telex: 8814066

BEAUFORT

Telephone: 01-892 81 97/8241

o

CHRISTCHURCH POLYTECHNIC

DIRECTORATE TEAM MEMO

CP 3244

TO: Bob Gilling L0ANE0R.
URGENT ACTION
FROM: John Hercus ACTION
susec: POWER SUPPLY : ARMDROID AL TONIORLY
DATE: 18/7/83
Please proceed to construct a power

supply as you suggest.

If you need an order number,
be obtained from Gay and
to 310 183.

this could
charge it

October 21 1983

The Manager

Colne Robotics Ltd
Beaufort Road

East Twickenham
Middlesex TW1l 4LL
ENGLAND,

Dear Sir,

Thank you for the cassette which arrived safely last term. We had by then
typed in the text from the manual so that cassette was useful to check this
for accuracy.

There were a number of errors in the text as given in the manual., These were
mainly missing labels, misspelt labels and most of these I picked up by
inspection and trial assembly. Others were picked up by operating the
program under monitor control. May I suggest that for future editions of

the manual that you Ssimply lump the source.eode from your editor-assembler,
preferably an assembled dump, rather than the manually typed version.

However, there are two major areas where there are problems with the program, .

(1) The WRITE/READ modules do not store the value of COUNT. As this is set
to zero by INIT, when the_stored‘sequence i% read in, COUNT is at zero.
If the sequence is then added to, the CUROWipointer (which gets its value
from COUNT) points to the first row, and the fresh data is written over the
existing data. I modified WRITE and READ accordingly.

(2) This is the most serious of the two... The EDIT module, when in the ROW
COUNT mode, does ncdt update CUROW (next row pointer) after the array has
been truncated. The consequence is that it still points to the same
pPlace. The following code was blaced Pefore JP QUESI just prior to EDMOT
to cure this. S v -

ADD HL, HL double the count

~

Calc. new CUROW
and save it

ADD HL, BC
LD (CUROW), HL
(7P QUESI)

I hope this will be of some value to you.

PUSH HL i . save it
ADD HL, HIL 3 Count * 4
POP BC ; Restore Count * 2
ADD HL, BC ;3 Count * 6
LD B, ARST i Get buffer pointer
7
;

Yours faithfully,

R. N. GILLING,

Tutor
Machine Tool Engineering Department.

June 10 1983

The Manager

Colne Robotics Ltd
1l Station Road
Twickenham
Middlesex TW1l 4LL
ENGLAND.

Dear Sir,

Reference my letter 13 April 1983,

If you refer to paragraph 2 of the above letter you will see
that I regarded the non supply of the cassette of software of

prime importance.

Please will you send this URGENTLY, by the fastest available

means.,

It is also important to indicate on the package that
part of a consignment not sent and that the cost has
been met. '

We have typed in the listing in the manual, but this
errors and we have had problems due to this and need
check our code.

Yours faithfully,

R N GILLING,

Tutor
Machine Tool Engineering Department,

this was
already

has many
to cross

Christchurch Polytechnic
PO Box 22-095
Christchurch

New Zealand

1 August 1983

The Manager

Colne Robotics Ltd
Beaufort Road
Twickenham
Middlesex TW1l 2PH
England

Dear Sir

Ref: Your letter dated 27 July 1983

Our computer is a Model 1 TRS-80 with 48 K memory on board. Unfortunately
this information was not given, so it appears in the original order.

Yours faithfully

R N Gilling
Tutor
Department of Machine Tool Engineering

RNG: CMD

COLMNE ROBOTICS CO. LTD.

BeAUFORT ACAHD, OFF RICHMOND ROAD,
EAST TWICKENHAR, MIDDK THE 2PH

TeLEX BB8LILOEE TeEL Ok 857 88537 UR 82L4

Mr. R.N. Gilling,

Tutor, Machines Tool Eng Dept.
Christchurch Polytechnic,
Madras Street,

Christchurch 1,
New Zealand. 27th July 1983

Dear Mr. Gilling,

Ref: Your Letter dated 10th June 1983

Please accept our apologies for not despatching the cassette,
unfortunately we cannot until we know which computer you have.
As soon as I have this information I can forward the cassette,
providing it works on the computer you have, which I will

- confirm with our technicans. If there are any problems I

Q_{ will contact you.

Yours sincerely,
for Colne Robotics Co. Ltd.

Mrs. E. Viner
Sales Administration

REGISTERED OFFICE: BEAUFORT ROAD, TWICKENHAM, MIDDLESEX

REG. NO: 1558867
DIRECTORS: J. REEKIE, A.F.l. MACMILLAN, J.M.P, WATSON

CULMNE ROBOTICS CO. ATD.

BeAUFORT ROAD, OFF AICHMOND ROAD,
EAST TMWICKENHAN, MIDDK TA 2PH
TeLEX BBLLOEE TEL O B42 8197 OR 2Lk

25 April 1983

R N Gilling

Tutor, M chines Tool Eng Dept
Christch ~ch Polytechnic
Madras Street

Christchurch 1

New Zealand

Dear Mr Gilling
We hope that our enclosures will ensure that you are soon able to
achieve full operation from your Armdroid and that you will gain

the same satisfaction that many other owners now have.

We are also enclosing some literature about other products which
we are developing and hope that these may be of interest.

You are the first Armdroid owner in New Zealand and we hope that
there will be many more in due course. We wonder whether you
could suggest to us any Companies in New Zealand who might be
interested in acting as agents and distributors for our products?
Your assistance in this matter would be greatly appreciated.

Yours sincerely

L0 FD |

A F I Macmillan
Director and General Manager

AEGISTERED OFFICE: BEAUFORT ROAD, TWICKENHAM, MIDDLESEX

YA AL ArFOonns

COLNE ROBOTICS CO. LT,

BEAUFORT ACAD, OFF RICHMOMND ROAD,
EAST THICKENHANM, MIDDX TWi cFPH

TeLer B8LLOEE TEL Ok 852 88537 UR 82L&

25 April 1983

R N Gilling

Tutor, Machines Tool Eng Dept
Christchurch Polytechnic
Madras Street

Christchurch 1

New Zealand

Dear Mr Gilling

Thank you for your letter of 13 April, I'm afraid that our
instruction manual is not as up to date in some respect as we
would hope, so I will reply to the questions you ask.

The omission

a) 6mm long x 8mm dia bore spacer
b) 3mm long x 8mm dia bore spacer

You will have received nine 1 mm steel washers which we now use
in place of the spacers (six for the 6mm spacer and three for the
3mm spacer) .

c¢) The magnets for the reed switch switcher are now only supplied
with the reed switch kit.

The items observed by your technician

a) The belts. If the belts appear to be tight, check you have
the pulleys the right way round, the pulley with the alloy
extension should operate the wrist gears. The motors can
be moved a little on their mountings to enable a small amount
of belt adjustment. They should not be to tight as this puts
extra load on the motors.

b) This is an omission in the manual
c) A useful point which will add to the new manual.

d) This could have been avoided by stringing the wrist drive
with the spring on the inside. :

REGISTERED OFFICE: BEAUFORT ROAD, TWICKENHAM, MIDDLESEX
REG. NO: 1558867

-~ = I Tt e

25 April 1983

R N Gilling

e) The metal bar on the hand gear (part 25) acts as a stop
against the composite gear spindle (part 21) to prevent
the hand from opening to far, when adjusting the hand
string tension make sure the stop is hard against the
spindle with the hand open.

I hope the above answers help you to get full use out of your
Armdroid, and if I can be of any other assistance do not hesitate
to get in touch with me.

Yours sincerely

N
N
D Boothroyd

for Colne Robotics Co Ltd

COLMNE RUOBOTICS CO. LTD.

BEAUFOART ROAD, OFF RICHMOND ROAD,
EAST TWICKENHAM, MIDDX T 2PH

TeELEX B8LLOEE Tel Ok 892 8157 OR 8L

25 April 1983

R N Gilling

Tutor, Machines Tool Eng Dept
Christchurch Polytechnic
Madras Street

Christchurch 1

New Zealand

Dear Mr Gilling
We hope that our enclosures will ensure that you are soon able to
achieve full operation from your Armdroid and that you will gain

the same satisfaction that many other owners now have.

We are also enclosing some literature about other products which
we are developing and hope that these may be of interest.

You are the first Armdroid owner in New Zealand and we hope that
there will be many more in due course. We wonder whether you
could suggest to us any Companies in New Zealand who might be
interested in acting as agents and distributors for our products?
Your assistance in this matter would be greatly appreciated.

Yours sincerely

‘j?ﬁ :7?157. 5377h¢~,=’*‘2‘*‘-_.

A F I Macmillan
Director and General Manager

REGISTERED OFFICE: BEAUFORT ROAD, TWICKENHAM, MIDDLESEX

REG. NO: 1558867
DIRECTORS: J. REEKIE. A.F.l. MACMILLAN .| M P WATSON

April 13 1983

The Manager

Colne Robotics Ltd
1 Station Road
Twickenham
Middlesex TW1l 4LL
ENGLAND.

Dear Sir,

The ARMDROID robot arm ordered by us on 27 September 1982 arrived on
31 March 1983. One of our technicians has assembled the kit, while I have
the responsibility to get the arm working under software control.

The most notable omission was of the cassette of software (containing, I
presume, the LEARN program). .Would you please send this out by airmail.

as we need this to check out that the finished arm and associated electronics
are working correctly.

Other less obvious omissions were:-

(a) 6mm long x 8mm dia. bore épacer.
(b) 3mm long x 8mm dia. bore spacer.
These go on shaft Pt No 29,

(c) The magnets to work the reed switches. Although not specifically
ordered, these appear in the parts list.

The following items were observed by the technician while assembling the arm
and the electronics:-

&) Four out of the six belts seemed to be of incorrect length.

(b) The circuit diagram for the intexface board did not match the printed
circuit board in several areas.

(c) 1In the instructions it wodld be useful to indicate that the wires are to
be soldered to the motors before fixing the motors in place.

(d) He found it nedessary to make spacers to hold the pulleys on the elbow
pivot from moving against the sides of the arm.

(e) One of the gears (either Pt 24, 25 or 26) has a small metal bar attached to
one face. This protrudes beyond the periphery of the gear,but was not shown
as such in any of the pages of the manual. He is not sure that where he has
placed this gear is correct. Could you inform us as to the functlon of
this bar and which position the gear should be in?

Apart from these problems, the arm appears to. be satisfactory and we look forward
to making good use of it.

Yours faithfully,

G ING
gu@or, chine Tool Engineering Department.

COLNE ROBOTICS CO. LTD.

(INAUGURAL NEWSLETTER SPRING 1983

The Armdroid army is now 1000 strong. ..

CHAIRMAN'S LETTER

Since the launch of Armdroid I in September 1981, Colne Robotics has been the focus of
considerable customer interest. We are now ready to introduce to our customers, new products
which will further establish Colne’s place as a leader in the field of micro-robotics.

In 1983 the company intends to increase the competitive attraction of Armdroid I, by
making available a low-cost computer vision system. This is designed to meet the growing world
interest in computer vision, but at very low cost. Coupled to the Armdroid this will
familiarize students, managers and development engineers with the software requirements for
visual recognition, orientation and robotic interfacing.

Other developments, such as Armdroid II, a small Turtle-type mobile robot, and X-Y plotters
— all at low cost — will follow throughout '83 to ensure that the company remains in the
forefront of micro-robotic technology. Please read on for further details of these exciting
new developments.

Many thanks to all our customers for their support and patience.

\

John Reekie
Chairman

|

Beaufort Road, off Richmond Road,
East Twickenham, Middx. TW1 2PH
Tel: 01-892 8197 or 8241 Telex: 8814066

ARMDROID | achieves worldwide sales in first twelve months

Colne Robotics’ low-cost robotic arm, the
Armdroid |, has achieved outstanding sales
success since its introduction in 1981,
Among our customers have been a variety
of schools, colleges and universities, as well
as many leading world companies. The
primary intention of buyers has been to use
the arm for education and training in
robotics as well as for the development of
software. However, Armdroid | has also
been put to such varied uses as radio-active
loading, clean-room packing, and the
dipping of components into dangerous
liquids. In quite a different setting, the arm
has been used to help the disabled.
Armdroid |’s success against competitors
worldwide is due to its mechancial
reliability, the wide range of software now

available, and of course to its markedly
lower cost. Overwhelmed by orders, Colne
Robotics was initially unable to meet the
demand for Armdroid I. Our move to a new
factory, coupled with recent backing by
Prutec (a subsidiary of Prudential
Corporation Ltd.) has enabled us largely to
overcome delivery lags.

A subsidiary company, Colne Robotics
Inc. in Florida, is starting production of
Armdroid | early in 1983, to supply the
large U.S. market. This has included major
companies such as Bell Telephones and
I.B.M., as well as educational establishments
— Princeton, M.I.T. and mary leading U.S.
colleges. We fully anticipate that U.S. sales
will reflect as strong an interest as that shown
by our customers on this side of the Atlantic.

THE LOW-COST ARMDROID Il — a 7-axis,

41b lift

Buyers of our small Armdroid | micro-
robotic arm have developed many different
applications for the robot. Its general use
in laboratories is outlined above. However,
Colne Robotics has frequently received
enquiries from customers for a faster and
more accurate robot, capable of lifting
heavier loads. .

To meet this demand we are developing

applications micro-robot with

Armdroid |1, which we believe will surpass
the performance of any other small robotic
arm in the world. In line with the low cost
of Armdroid |, the new robot will be
available remarkably cheaply, at less than
£1,500.

The outline specifications of this new and
improved Armdroid are as follows:

MECHANICAL SPECIFICATION
Load capacity 2 Kg

Stepping motors with gear reduction

Arm length to wrist pivot 600 mm Effort transmitted up arm by H.T.D. toothed belts
Spherical envelope with STD gripper 1340 mm
AXIS MOTOR ANGULAR ANGULAR
MOVEMENT SPEED
1 2 3 4
Base 70 Nem* 1270 180/ sec
Shoulder 70 Necm 1130 135/ sec
Elbow 7 70 Ncm 1140 180/ sec
Wrist yaw 40 Ncm 1180 180/ sec
Wrist pitch 40 Ncm 1135 220/ sec
Wrist roll 40 Ncm 1 200 250/ sec
Gripper 40 Ncm Designed to suit application

Accuracy of repetition £ .5 mm (theoretical)

*1 Ncm = Torque exerted by 1 Newton Force at 1cm radius

ELECTRONIC SPECIFICATION

On board microprocessor (Z280)
Key pad. Led display
On board EPROM learning program

Ability to communicate with other computers
Closed loop

Launch is planned for Summer 1983. Please let us have your name and address, and we will be happy

to keep you informed of developments.

COLVIS — Colne develops world’s first low-cost computer vision system

“Intelligence’” depends on the ability to acquire information about oneself
and one's surroundings. So think of the benefits to be gained from enabling a
computer or a robot to perceive such information for itself. Clearly, sensors
have an important role to play in robotics engineering and, with this in mind,
Colne Robotics has developed a revolutionary new computer vision system,
which permits a computer to see objects and remember their shapes.
Previous vision systems have been in the £20,000 — £40,000 price range, but
the Colne Robotics system, COLVIS, will be priced at only £395.

It consists of a solid-state
camera connected to a power-
ful micro-computer capable of
extracting and learning in-
formation from the image
produced. This information,
such as area, perimeter and
centre of gravity of the image,
is used to recognise the object
in view as well as to deduce its
position and orientation. The
system can be used in con-
junction with any micro-
computer which has, or can be
fitted with, an 8-bit, parallel
bi-directional port.

As with our existing
Armdroid | micro-robotic arm,
the vision system is aimed at
the educational market. A
versatile teaching-aid, equally
at home in the University
department or the classroom,
it is also appropriate to the
teaching carried out in
Technical Colleges and by
Industrial Training and
Development Organisations.

This new product con-
stitutes an invaluable low-cost
peripheral to existing robotic
arms which we expect to
interest all our present
customers, and attract many
new ones.

63 T
MR

¢+ COLYIS VISION PROCESSOR ##+

e ——T]
HEh PERY PZ/A HOLES OBCTS.
T L

B FALSE
{ FAE
{ RE
1 FALE
1 FALSE

s

Here is the V.D.U. display after COLVIS has learnt
5 objects.
parameters in the top R.H. corner and represented by the
picture within the square. The first object examined (coded
BLNK) was identified as false, as were the 2nd, 4th and 5th
objects. The third object, 2RNG, was recognised as true by
the similarity of its parameters to those selected.

It is seeking an object described by the selected

GOLDMANN PERIMETER AUTOMATED CONTROL — Colne Rohotics expands into the medical field

For many years the standard equipment for
clinically testing the peripheral vision of the
eye, has been the Goldmann perimeter
device. In conjunction with the Institute of
Ophthalmology, London, Colne Robotics
has developed an additional unit which
largely automates the testing procedure.
The unit consists of a microprocessor,
an E.P.R.O.M. and a stepper motor to drive

the mechanism. It substantially speeds up
the process of testing a patient, gives pre-
determined testing programs and auto-
matically re-tests areas of failed recognition.

The Colne Robotics unit has itself under-
gone exhaustive tests at Moorfields Eye
Hospital, London. Priced at £495, a
worldwide launch is scheduled for the unit
in March 1983.

