MC9S12DP256 Port Integration Module (PIM) Block User Guide V02.07

Original Release Date: 31 JUL 2000 Revised: 04 MAR 2002

Motorola, Inc

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Revision History

Version Number	Revision Date	Effective Date	Author	Description of Changes
V02.00	19 FEB 2001			Initial version for 2nd Barracuda revision started from Integration Guide PIM_9DP256 V01.00. Summary of changes: - Added Port A, B, E, K, and BKGD pin. - Added MODRR register. - Moved priority information into Table 2-1 and removed Table 4-1 - Removed reference to IPBus from Block Diagram
V02.01	28 MAR 2001	28 MAR 2001		- Updated due to requirements in SRS supplement
V02.02	17 JUL 2001	17 JUL 2001		- 1st official version by Technical Publishing
V02.03	03 AUG 2001	03 AUG 2001		 Capitalized all pin names to match Barracuda DUG. Added full register names in memory map table. Corrected typo in PPSJ description.
V02.04	11 OCT 2001	11 OCT 2001		- Updated references w.r.t. new family name HCS12.
V02.05	31 OCT 2001	31 OCT 2001		- Minor cleanup.
V02.06	12 NOV 2001	12 NOV 2001		- Removed subsection on unbonded port pins on 80 pin package. Shall be stated in DUG.
V02.07	04 MAR 2002	04 MAR 2002		- Document format updates.

Table of Contents

Section 1 Introduction

1.1	Overview.	.9
1.2	Features	.9
1.3	Block Diagram	0

Section 2 External Signal Description

2.1	Overview	.11
2.2	Signal properties	.11

Section 3 Memory Map and Registers

3.1	Overview
3.2	Module Memory Map
3.3	Register Descriptions
3.3.1	Port T Registers
3.3.2	Port S Registers
3.3.3	Port M Registers
3.3.4	Port P Registers
3.3.5	Port H Registers
3.3.6	Port J Registers

Section 4 Functional Description

4.1	General
4.1.1	I/O register
4.1.2	Input register
4.1.3	Data direction register
4.1.4	Reduced drive register
4.1.5	Pull device enable register
4.1.6	Polarity select register
4.2	Port T
4.3	Port S
4.4	Port M
4.4.1	Module Routing Register
4.5	Port P

4.6	Port H
4.7	Port J
4.8	Port A, B, E, K, and BKGD pin48
4.9	External Pin Descriptions
4.10	Low Power Options
4.10.1	Run Mode
	Wait Mode
4.10.3	Stop Mode

Section 5 Resets

5.1	General	51
5.2	Reset Initialization	51

Section 6 Interrupts

6.1	General	53
6.2	Interrupt Sources	53
6.3	Recovery from STOP	53

List of Figures

Figure 1-1	PIM_9DP256 Block Diagram
Figure 3-1	Port T I/O Register (PTT)
Figure 3-2	Port T Input Register (PTIT)20
Figure 3-3	Port T Data Direction Register (DDRT)20
Figure 3-4	Port T Reduced Drive Register (RDRT)21
Figure 3-5	Port T Pull Device Enable Register (PERT)21
Figure 3-6	Port T Polarity Select Register (PPST)22
Figure 3-7	Port S I/O Register (PTS)
Figure 3-8	Port S Input Register (PTIS)23
Figure 3-9	Port S Data Direction Register (DDRS)23
Figure 3-10	Port S Reduced Drive Register (RDRS)24
Figure 3-11	Port S Pull Device Enable Register (PERS)24
Figure 3-12	Port S Polarity Select Register (PPSS)25
Figure 3-13	Port S Wired-Or Mode Register (WOMS)25
Figure 3-14	Port M I/O Register (PTM)26
Figure 3-15	Port M Input Register (PTIM)
Figure 3-16	Port M Data Direction Register (DDRM)27
Figure 3-17	Port M Reduced Drive Register (RDRM)27
Figure 3-18	Port M Pull Device Enable Register (PERM)28
Figure 3-19	Port M Polarity Select Register (PPSM)
Figure 3-20	Port M Wired-Or Mode Register (WOMM)
Figure 3-21	Module Routing Register (MODRR)
Figure 3-22	Port P I/O Register (PTP)
Figure 3-23	Port P Input Register (PTIP)
Figure 3-24	Port P Data Direction Register (DDRP)
Figure 3-25	Port P Reduced Drive Register (RDRP)
Figure 3-26	Port P Pull Device Enable Register (PERP)
Figure 3-27	Port P Polarity Select Register (PPSP)
Figure 3-28	Port P Interrupt Enable Register (PIEP)
Figure 3-29	Port P Interrupt Flag Register (PIFP)
Figure 3-30	Port H I/O Register (PTH)
Figure 3-31	Port H Input Register (PTIH)
Figure 3-32	Port H Data Direction Register (DDRH)

Port H Reduced Drive Register (RDRH)	36
Port H Pull Device Enable Register (PERH)	36
Port H Polarity Select Register (PPSH)	37
Port H Interrupt Enable Register (PIEH)	37
Port H Interrupt Flag Register (PIFH)	38
Port J I/O Register (PTJ)	38
Port J Input Register (PTIJ)	39
Port J Data Direction Register (DDRJ)	39
Port J Reduced Drive Register (RDRJ)	40
Port J Pull Device Enable Register (PERJ)	40
Port J Polarity Select Register (PPSJ)	41
Port J Interrupt Enable Register (PIEJ)	41
Port J Interrupt Flag Register (PIFJ)	42
Illustration of I/O pin functionality	44
Interrupt Glitch Filter on Port P, H and J (PPS=0)	47
Pulse Illustration	47
	Port H Pull Device Enable Register (PERH)

List of Tables

Table 2-1	Pin Functions and Priorities1	1
Table 3-1	PIM_9DP256 Memory Map	7
Table 3-2	Pin Configuration Summary1	9
Table 3-3	CAN0 Routing	9
Table 3-4	CAN4 Routing	0
Table 3-5	SPI0 Routing	0
Table 3-6	SPI1 Routing	0
Table 3-7	SPI2 Routing	0
Table 4-1	Implemented modules on derivatives4	5
Table 4-2	Pulse Detection Criteria	7
Table 5-1	Port Reset State Summary5	1
Table 6-1	Port Integration Module Interrupt Sources	3

PIM_9DP256 Block User Guide V02.07

Section 1 Introduction

1.1 Overview

The Port Integration Module establishes the interface between the peripheral modules and the I/O pins for all ports except AD0 and AD1.

This section covers:

- Port A, B, E, and K related to the core logic and multiplexed bus interface
- Port T connected to the timer module
- The serial port S associated with 2 SCI and 1 SPI modules
- Port M associated with 4 CAN and 1 BDLC module
- Port P connected to the PWM and 2 SPI modules, which also can be used as an external interrupt source
- The standard I/O ports H and J associated with the fifth CAN module and the IIC interface. These ports can also be used as external interrupt sources.

Each I/O pin can be configured by several registers in order to select data direction and drive strength, to enable and select pull-up or pull-down resistors. On certain pins also interrupts can be enabled which result in status flags.

The I/O's of 2 CAN and all 3 SPI modules can be routed from their default location to determined pins.

The implementation of the Port Integration Module is device dependent.

1.2 Features

A standard port pin has the following minimum features:

- Input/output selection
- 5V output drive with two selectable drive strengths
- 5V digital and analog input
- Input with selectable pull-up or pull-down device

Optional features:

- Open drain for wired-or connections
- Interrupt inputs with glitch filtering

1.3 Block Diagram

Figure 1-1 is a block diagram of the PIM_9DP256.

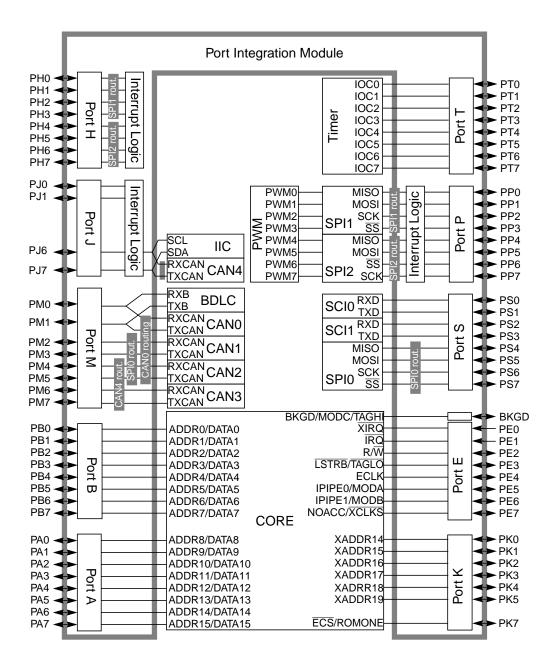


Figure 1-1 PIM_9DP256 Block Diagram

Section 2 External Signal Description

2.1 Overview

This section lists and describes the signals that do connect off-chip.

2.2 Signal properties

Table 2-1 shows all the pins and their functions that are controlled by the PIM_9DP256. If there is more than one function associated with a pin, the priority is indicated by the position in the table from top (highest priority) to down (lowest priority).

Port	Pin Name	Pin Function	Description	Pin Function after Reset
Port T	PT[7:0]	IOC[7:0]	Enhanced Capture Timer Channels 7 to 0	GPIO
FULL		GPIO	General-purpose I/O	GFIO
	PS7	SS0	Serial Peripheral Interface 0 slave select output in master mode, input in slave mode or master mode.	
		GPIO	General-purpose I/O	
	PS6	SCK0	Serial Peripheral Interface 0 serial clock pin	
	F 30	GPIO	General-purpose I/O	
	PS5 PS4	MOSI0	Serial Peripheral Interface 0 master out/slave in pin	
		GPIO	General-purpose I/O	
		MISO0	Serial Peripheral Interface 0 master in/slave out pin	
Port S		GPIO	General-purpose I/O	GPIO
	PS3	TXD1	Serial Communication Interface 1 transmit pin	
		GPIO	General-purpose I/O	
	PS2	RXD1	Serial Communication Interface 1 receive pin	
	F 52	GPIO	General-purpose I/O	
	PS1	TXD0	Serial Communication Interface 0 transmit pin	
	P51	GPIO	General-purpose I/O	
	PS0	RXD0	Serial Communication Interface 0 receive pin	
	F 30	GPIO	General-purpose I/O	

Table 2-1 Pin Functions and Priorities

Port	Pin Name	Pin Function	Description	Pin Function after Reset	
		TXCAN3	MSCAN3 transmit pin		
	PM7	TXCAN4			
		GPIO	General-purpose I/O		
		RXCAN3	MSCAN3 receive pin		
	PM6	RXCAN4	MSCAN4 receive pin		
		GPIO	General-purpose I/O		
		TXCAN2	MSCAN2 transmit pin		
		TXCAN0	MSCAN0 transmit pin		
	PM5	TXCAN4	MSCAN4 transmit pin		
		SCK0	Serial Peripheral Interface 0 serial clock pin		
		GPIO	General-purpose I/O		
		RXCAN2	MSCAN2 receive pin		
		RXCAN0	MSCAN0 receive pin		
	PM4	RXCAN4	MSCAN4 receive pin		
		MOSI0	Serial Peripheral Interface 0 master out/slave in pin		
Port M		GPIO	General-purpose I/O	GPIO	
		TXCAN1	MSCAN1 transmit pin	1	
		TXCAN0	MSCAN0 transmit pin		
	PM3	SS0	Serial Peripheral Interface 0 slave select output in master mode, input for slave mode or master mode.		
		GPIO	General-purpose I/O	1	
		RXCAN1	MSCAN1 receive pin		
		RXCAN0	MSCAN0 receive pin	1	
	PM2	MISO0	Serial Peripheral Interface 0 master in/slave out pin	1	
		GPIO	General-purpose I/O	1	
		TXCAN0	MSCAN0 transmit pin	1	
	PM1	ТХВ	BDLC transmit pin		
		GPIO	General-purpose I/O	1	
		RXCAN0	MSCAN0 receive pin	1	
	PM0	RXB	BDLC receive pin	1	
		GPIO	General-purpose I/O	1	

Port	Pin Name	Pin Function	Description	Pin Function after Reset			
		PWM7	Pulse Width Modulator channel 7				
	PP7	SCK2 Serial Peripheral Interface 2 serial clock pin					
		GPIO/KWP7	General-purpose I/O with interrupt				
		PWM6	Pulse Width Modulator channel 6				
	PP6	SS2	Serial Peripheral Interface 2 slave select output in master mode, input for slave mode or master mode.				
		GPIO/KWP6	General-purpose I/O with interrupt				
		PWM5	Pulse Width Modulator channel 5				
	PP5	MOSI2	Serial Peripheral Interface 2 master out/slave in pin				
		GPIO/KWP5	General-purpose I/O with interrupt				
	PP4	PWM4	Pulse Width Modulator channel 4				
		MISO2	Serial Peripheral Interface 2 master in/slave out pin				
Port P		GPIO/KWP4	General-purpose I/O with interrupt	GPIO			
FULF		PWM3	Pulse Width Modulator channel 3	GFIO			
	PP3	SS1	Serial Peripheral Interface 1 slave select output in master mode, input for slave mode or master mode.				
		GPIO/KWP3	General-purpose I/O with interrupt				
		PWM2	Pulse Width Modulator channel 2				
	PP2	SCK1	Serial Peripheral Interface 1 serial clock pin	-			
		GPIO/KWP2	General-purpose I/O with interrupt	-			
		PWM1	Pulse Width Modulator channel 1	-			
	PP1	MOSI1	Serial Peripheral Interface 1 master out/slave in pin	-			
		GPIO/KWP1	General-purpose I/O with interrupt	7			
		PWM0	Pulse Width Modulator channel 0				
	PP0	MISO1	Serial Peripheral Interface 1 master in/slave out pin				
		GPIO/KWP0	General-purpose I/O with interrupt				

Port	Pin Name	Pin Function	Description	Pin Function after Reset
	PH7	SS2	Serial Peripheral Interface 2 slave select output in master mode, input for slave mode or master mode.	
		GPIO/KWH7	General-purpose I/O with interrupt	
	DUIC	SCK2	Serial Peripheral Interface 2 serial clock pin	
	PH6	GPIO/KWH6	General-purpose I/O with interrupt	
	DUC	MOSI2	Serial Peripheral Interface 2 master out/slave in pin	
	PH5	GPIO/KWH5	General-purpose I/O with interrupt	
		MISO2	Serial Peripheral Interface 2 master in/slave out pin	
Dent	PH4	GPIO/KWH4	General-purpose I/O with interrupt	
Port H	PH3	SS1	Serial Peripheral Interface 1 slave select output in master mode, input for slave mode or master mode.	GPIO
	-	GPIO/KWH3	General-purpose I/O with interrupt	
	DUIO	SCK1	Serial Peripheral Interface 1 serial clock pin	
	PH2 -	GPIO/KWH2	General-purpose I/O with interrupt	
		MOSI1	Serial Peripheral Interface 1 master out/slave in pin	
	PH1	GPIO/KWH1	General-purpose I/O with interrupt	
	DUO	MISO1	Serial Peripheral Interface 1 master in/slave out pin	
	PH0	GPIO/KWH0	General-purpose I/O with interrupt	
		TXCAN4	MSCAN4 transmit pin	
	PJ7	SCL	Inter Integrated Circuit serial clock line	
		GPIO/KWJ7	General-purpose I/O with interrupt	
Port J		RXCAN4	MSCAN4 receive pin	GPIO
	PJ6	SDA	Inter Integrated Circuit serial data line	
		GPIO/KWJ6	General-purpose I/O with interrupt	
	PJ[1:0]	GPIO/KWJ[1:0]	General-purpose I/O with interrupt	
Port A	PA[7:0]	ADDR[15:8]/ DATA[15:8]/ GPIO	Refer to MEBI in HCS12 Core User Guide.	
Port B	PB[7:0]	ADDR[7:0]/ DATA[7:0]/ GPIO	Refer to MEBI in HCS12 Core User Guide.	

Port	Pin Name	Pin Function	Description	Pin Function after Reset	
	PE7	NOACC/ XCLKS/ GPIO			
	PE6	IPIPE1/ MODB/ GPIO			
Port E	PE5	IPIPE0/ MODA/ GPIO	Refer to MEBI in HCS12 Core User Guide.		
FUILE	PE4	ECLK/GPIO	Relet to MEDI III HC312 Cole Oser Guide.		
	PE3	LSTRB/ TAGLO/ GPIO			
	PE2	R/W/ GPIO			
	PE1	IRQ/GPI			
	PE0	XIRQ/GPI			
Port K	PK7	ECS/ ROMONE/ GPIO	Refer to MEBI in HCS12 Core User Guide.		
	PK[5:0]	XADDR[19:14]/ GPIO			
-	BKGD	BKGD/ MODC/ TAGHI	Refer to MEBI and BDM in HCS12 Core User Guide	Э.	

PIM_9DP256 Block User Guide V02.07

Section 3 Memory Map and Registers

3.1 Overview

This section provides a detailed description of all registers.

3.2 Module Memory Map

Table 3-1 shows the register map of the Port Integration Module.

Address offset	Use	Access
\$00	Port T I/O Register (PTT)	RW
\$01	Port T Input Register (PTIT)	R
\$02	Port T Data Direction Register (DDRT)	RW
\$03	Port T Reduced Drive Register (RDRT)	RW
\$04	Port T Pull Device Enable Register (PERT)	RW
\$05	Port T Polarity Select Register (PPST)	RW
\$06	Reserved	-
\$07	Reserved	-
\$08	Port S I/O Register (PTS)	RW
\$09	Port S Input Register (PTIS)	R
\$0A	Port S Data Direction Register (DDRS)	RW
\$0B	Port S Reduced Drive Register (RDRS)	RW
\$0C	Port S Pull Device Enable Register (PERS)	RW
\$0D	Port S Polarity Select Register (PPSS)	RW
\$0E	Port S Wired-Or Mode Register (WOMS)	RW
\$0F	Reserved	-
\$10	Port M I/O Register (PTM)	RW
\$11	Port M Input Register (PTIM)	R
\$12	Port M Data Direction Register (DDRM)	RW
\$13	Port M Reduced Drive Register (RDRM)	RW
\$14	Port M Pull Device Enable Register (PERM)	RW
\$15	Port M Polarity Select Register (PPSM)	RW
\$16	Port M Wired-Or Mode Register (WOMM)	RW
\$17	Module Routing Register (MODRR)	RW
\$18	Port P I/O Register (PTP)	RW
\$19	Port P Input Register (PTIP)	R
\$1A	Port P Data Direction Register (DDRP)	RW
\$1B	Port P Reduced Drive Register (RDRP)	RW
\$1C	Port P Pull Device Enable Register (PERP)	RW
\$1D	Port P Polarity Select Register (PPSP)	RW
\$1E	Port P Interrupt Enable Register (PIEP)	RW
\$1F	Port P Interrupt Flag Register (PIFP)	RW
\$20	Port H I/O Register (PTH)	RW

Table 3-1	PIM	_9DP256	Memory	Мар
-----------	-----	---------	--------	-----

\$21	Port H Input Register (PTIH)	R
\$22	Port H Data Direction Register (DDRH)	RW
\$23	Port H Reduced Drive Register (RDRH)	RW
\$24	Port H Pull Device Enable Register (PERH)	RW
\$25	Port H Polarity Select Register (PPSH)	RW
\$26	Port H Interrupt Enable Register (PIEH)	RW
\$27	Port H Interrupt Flag Register (PIFH)	RW
\$28	Port J I/O Register (PTJ)	RW ¹
\$29	Port J Input Register (PTIJ)	R
\$2A	Port J Data Direction Register (DDRJ)	RW ¹
\$2B	Port J Reduced Drive Register (RDRJ)	RW ¹
\$2C	Port J Pull Device Enable Register (PERJ)	RW ¹
\$2D	Port J Polarity Select Register (PPSJ)	RW ¹
\$2E	Port J Interrupt Enable Register (PIEJ)	RW ¹
\$2F	Port J Interrupt Flag Register (PIFJ)	RW ¹
\$30 - \$3F	Reserved	-

NOTES:

1. Write access not applicable for one or more register bits. Please refer to detailed signal description.

NOTE: Register Address = Base Address + Address Offset, where the Base Address is defined at the MCU level and the Address Offset is defined at the module level.

3.3 Register Descriptions

The following table summarizes the effect on the various configuration bits, data direction (DDR), output level (I/O), reduced drive (RDR), pull enable (PE), pull select (PS) and interrupt enable (IE) for the ports. The configuration bit PS is used for two purposes:

- 1. Configure the sensitive interrupt edge (rising or falling), if interrupt is enabled.
- 2. Select either a pull-up or pull-down device if PE is active.

DDR	ю	RDR	PE	PS	IE ¹	Function	Pull Device	Interrupt
0	Х	Х	0	Х	0	Input	Disabled	Disabled
0	Х	Х	1	0	0	Input	Pull Up	Disabled
0	Х	Х	1	1	0	Input	Pull Down	Disabled
0	Х	Х	0	0	1	Input	Disabled	falling edge
0	Х	Х	0	1	1	Input	Disabled	rising edge
0	Х	Х	1	0	1	Input	Pull Up	falling edge
0	Х	Х	1	1	1	Input	Pull Down	rising edge
1	0	0	Х	Х	0	Output, full drive to 0	Disabled	Disabled
1	1	0	Х	Х	0	Output, full drive to 1	Disabled	Disabled
1	0	1	Х	Х	0	Output, reduced drive to 0	Disabled	Disabled
1	1	1	Х	Х	0	Output, reduced drive to 1	Disabled	Disabled
1	0	0	Х	0	1	Output, full drive to 0	Disabled	falling edge
1	1	0	Х	1	1	Output, full drive to 1	Disabled	rising edge
1	0	1	Х	0	1	Output, reduced drive to 0	Disabled	falling edge
1	1	1	Х	1	1	Output, reduced drive to 1	Disabled	rising edge

 Table 3-2
 Pin Configuration Summary

NOTES:

1. Applicable only on port P, H and J.

NOTE: All bits of all registers in this module are completely synchronous to internal clocks during a register read.

3.3.1 Port T Registers

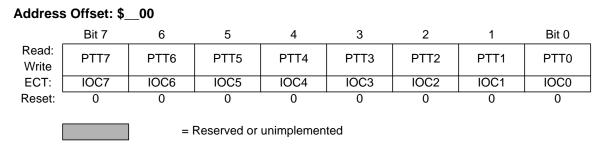


Figure 3-1 Port T I/O Register (PTT)

Read:Anytime.

Write:Anytime.

PIM_9DP256 Block User Guide V02.07

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register, otherwise the value at the pins is read.

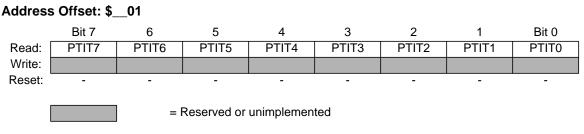
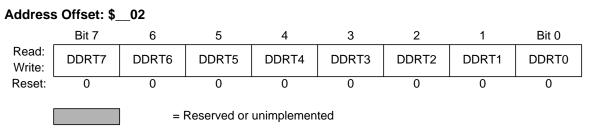



Figure 3-2 Port T Input Register (PTIT)

Read:Anytime.

Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This can also be used to detect overload or short circuit conditions on output pins.

Read:Anytime.

Write:Anytime.

This register configures each port T pin as either input or output.

The ECT forces the I/O state to be an output for each timer port associated with an enabled output compare. In these cases the data direction bits will not change.

The DDRT bits revert to controlling the I/O direction of a pin when the associated timer output compare is disabled.

The timer input capture always monitors the state of the pin.

DDRT[7:0] — Data Direction Port T

1 = Associated pin is configured as output.

0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read on PTT or PTIT registers, when changing the DDRT register.



Figure 3-4 Port T Reduced Drive Register (RDRT)

Write:Anytime.

This register configures the drive strength of each port T output pin as either full or reduced. If the port is used as input this bit is ignored.

RDRT[7:0] — Reduced Drive Port T

1 = Associated pin drives at about 1/3 of the full drive strength.

0 = Full drive strength at output.

Address Offset: \$04									
	Bit 7	6	5	4	3	2	1	Bit 0	
Read: Write:	PERT7	PERT6	PERT5	PERT4	PERT3	PERT2	PERT1	PERT0	
Reset:	0	0	0	0	0	0	0	0	
		=	Reserved or	unimplemen	ted				

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input. This bit has no effect if the port is used as output. Out of reset no pull device is enabled.

PERT[7:0] — Pull Device Enable Port T

- 1 = Either a pull-up or pull-down device is enabled.
- 0 = Pull-up or pull-down device is disabled.

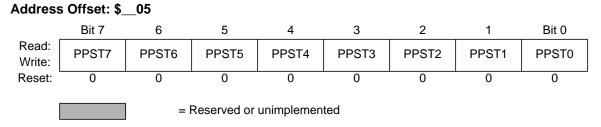
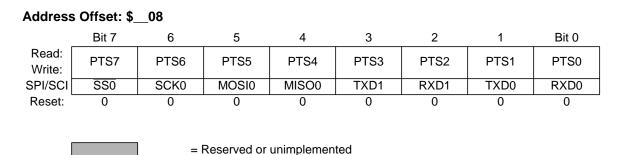


Figure 3-6 Port T Polarity Select Register (PPST)


Write:Anytime.

This register selects whether a pull-down or a pull-up device is connected to the pin.

PPST[7:0] — Pull Select Port T

- 1 = A pull-down device is connected to the associated port T pin, if enabled by the associated bit in register PERT and if the port is used as input.
- 0 = A pull-up device is connected to the associated port T pin, if enabled by the associated bit in register PERT and if the port is used as input.

3.3.2 Port S Registers

Figure 3-7 Port S I/O Register (PTS)

Read:Anytime.

Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register, otherwise the value at the pins is read.

The SPI pins (PS[7:4]) configuration is determined by several status bits in the SPI module. *Refer to SPI Block User Guide for details*.

The SCI ports associated with transmit pins 3 and 1 are configured as outputs if the transmitter is enabled. The SCI pins associated with receive pins 2 and 0 are configured as inputs if the receiver is enabled. *Refer* to SCI Block User Guide for details.

Address Offset: \$09									
	Bit 7	6	5	4	3	2	1	Bit 0	
Read:	PTIS7	PTIS6	PTIS5	PTIS4	PTIS3	PTIS2	PTIS1	PTIS0	
Write:									
Reset:	-	-	-	-	-	-	-	-	
			_						
		=	Reserved or	unimplemen	ted				

Figure 3-8 Port S Input Register (PTIS)

Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This also can be used to detect overload or short circuit conditions on output pins.

Address Offset:\$0A									
	Bit 7	6	5	4	3	2	1	Bit 0	
Read: Write:	DDRS7	DDRS6	DDRS5	DDRS4	DDRS3	DDRS2	DDRS1	DDRS0	
Reset:	0	0	0	0	0	0	0	0	
= Reserved or unimplemented									

Figure 3-9 Port S Data Direction Register (DDRS)

Read:Anytime.

Write:Anytime.

This register configures each port S pin as either input or output

If SPI is enabled, the SPI determines the pin direction. Refer to SPI Block User Guide for details.

If the associated SCI transmit or receive channel is enabled this register has no effect on the pins. The pin is forced to be an output if a SCI transmit channel is enabled, it is forced to be an input if the SCI receive channel is enabled.

The DDRS bits revert to controlling the I/O direction of a pin when the associated channel is disabled.

DDRS[7:0] — Data Direction Port S

1 = Associated pin is configured as output.

0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read on PTS or PTIS registers, when changing the DDRS register.

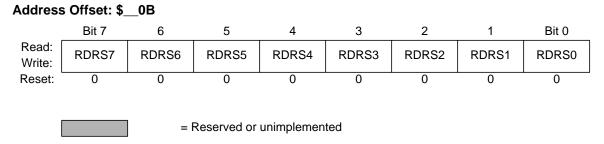


Figure 3-10 Port S Reduced Drive Register (RDRS)

Write:Anytime.

This register configures the drive strength of each port S output pin as either full or reduced. If the port is used as input this bit is ignored.

RDRS[7:0] — Reduced Drive Port S

1 = Associated pin drives at about 1/3 of the full drive strength.

0 = Full drive strength at output.

Address Offset: \$__0C

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	PERS7	PERS6	PERS5	PERS4	PERS3	PERS2	PERS1	PERS0
Reset:	1	1	1	1	1	1	1	1

= Reserved or unimplemented

Figure 3-11 Port S Pull Device Enable Register (PERS)

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input or as output in wired-or (open drain) mode. This bit has no effect if the port is used as push-pull output. Out of reset a pull-up device is enabled.

PERS[7:0] — Pull Device Enable Port S

- 1 = Either a pull-up or pull-down device is enabled.
- 0 = Pull-up or pull-down device is disabled.

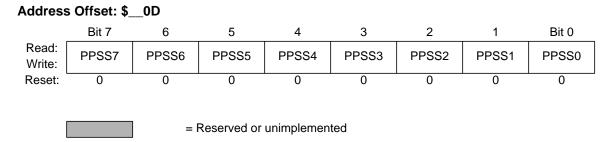


Figure 3-12 Port S Polarity Select Register (PPSS)

Write:Anytime.

This register selects whether a pull-down or a pull-up device is connected to the pin.

PPSS[7:0] — Pull Select Port S

- 1 = A pull-down device is connected to the associated port S pin, if enabled by the associated bit in register PERS and if the port is used as input.
- 0 = A pull-up device is connected to the associated port S pin, if enabled by the associated bit in register PERS and if the port is used as input or as wired-or output.

Address Offset: \$__0E

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	WOMS7	WOMS6	WOMS5	WOMS4	WOMS3	WOMS2	WOMS1	WOMS0
Reset:	0	0	0	0	0	0	0	0

= Reserved or unimplemented

Figure 3-13 Port S Wired-Or Mode Register (WOMS)

Read:Anytime.

Write:Anytime.

This register configures the output pins as wired-or. If enabled the output is driven active low only (open-drain). A logic level of "1" is not driven. It applies also to the SPI and SCI outputs and allows a multipoint connection of several serial modules. This bit has no influence on pins used as inputs.

WOMS[7:0] — Wired-Or Mode Port S

- 1 = Output buffers operate as open-drain outputs.
- 0 =Output buffers operate as push-pull outputs.

3.3.3 Port M Registers

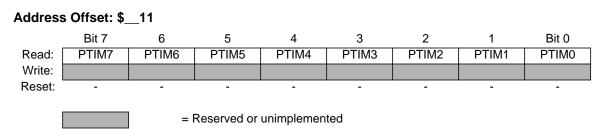
Address Offset: \$__10

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	PTM7	PTM6	PTM5	PTM4	PTM3	PTM2	PTM1	PTM0
CAN:	TXCAN3	RXCAN3	TXCAN2	RXCAN2	TXCAN1	RXCAN1	TXCAN0	RXCAN0
BDLC:							TXB	RXB
Reset	0	0	0	0	0	0	0	0

= Reserved or unimplemented

Figure 3-14 Port M I/O Register (PTM)

Read:Anytime.


Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register, otherwise the value at the pins is read.

The CAN function (TXCAN and RXCAN) takes precedence over the general purpose I/O function if the associated CAN module is enabled. *Refer to MSCAN Block Guide for details*.

The BDLC function takes precedence over the general purpose I/O function associated if enabled. *Refer* to BDLC Block User Guide for details.

If both CAN0 and BDLC are enabled the CAN functionality takes precedence.

Figure 3-15 Port M Input Register (PTIM)

Read:Anytime.

Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This can also be used to detect overload or short circuit conditions on output pins.

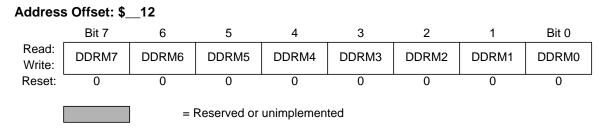


Figure 3-16 Port M Data Direction Register (DDRM)

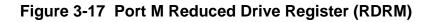
Write:Anytime.

This register configures each port M pin as either input or output.

The CAN/BDLC forces the I/O state to be an output for each port line associated with an enabled output (TXCAN[3:0], TXB). It also forces the I/O state to be an input for each port line associated with an enabled input (RXCAN[3:0], RXB). In those cases the data direction bits will not change.

The DDRM bits revert to controlling the I/O direction of a pin when the associated peripheral module is disabled.

DDRM[7:0] — Data Direction Port M

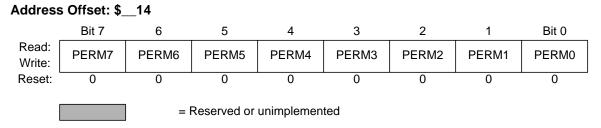

1 = Associated pin is configured as output.

0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read on PTM or PTIM registers, when changing the DDRM register.

= Reserved or unimplemented

Read:Anytime.

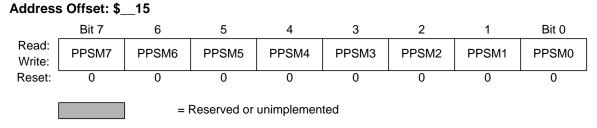

Write:Anytime.

This register configures the drive strength of each port M output pin as either full or reduced. If the port is used as input this bit is ignored.

RDRM[7:0] — Reduced Drive Port M

1 = Associated pin drives at about 1/3 of the full drive strength.

0 = Full drive strength at output.



Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input or wired-or output. This bit has no effect if the port is used as push-pull output. Out of reset no pull device is enabled.

PERM[7:0] — Pull Device Enable Port M

- 1 = Either a pull-up or pull-down device is enabled.
- 0 = Pull-up or pull-down device is disabled.

Figure 3-19 Port M Polarity Select Register (PPSM)

Read:Anytime.

Write:Anytime.

This register selects whether a pull-down or a pull-up device is connected to the pin. If CAN is active a pull-up device can be activated on the RXCAN[3:0] inputs, but not a pull-down. If BDLC is active a pull-down device can be activated on the RXB pin but not a pull-up.

PPSM[7:0] — Pull Select Port M

- 1 = A pull-down device is connected to the associated port M pin, if enabled by the associated bit in register PERM and if the port is used as a general purpose or BDLC input but not as RXCAN.
- 0 = A pull-up device is connected to the associated port M pin, if enabled by the associated bit in register PERM and if the port is used as general purpose or RXCAN input but not as BDLC.

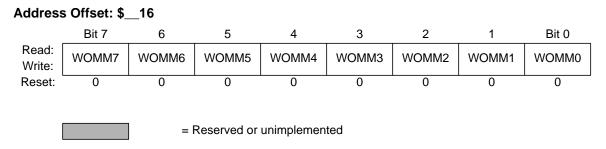



Figure 3-20 Port M Wired-Or Mode Register (WOMM)

Write:Anytime.

This register configures the output pins as wired-or. If enabled the output is driven active low only (open-drain). A logic level of "1" is not driven. It applies also to the CAN and BDLC outputs and allows a multipoint connection of several serial modules. This bit has no influence on pins used as inputs.

WOMM[7:0] — Wired-Or Mode Port M

- 1 = Output buffers operate as open-drain outputs.
- 0 =Output buffers operate as push-pull outputs.

Figure 3-21 Module Routing Register (MODRR)

Read:Anytime.

Write:Anytime.

This register configures the re-routing of CAN0, CAN4, SPI0, SPI1, and SPI2 on defined port pins.

MODRR[1:0] — CAN0 Routing

MODRR[1] MODRR[0]		RXCAN0	TXCAN0	
0	0	PM0	PM1	
0	1	PM2 ¹	PM3 ¹	
1	0	PM4 ²	PM5 ²	
1	1	Reserved		

Table 3-3 CAN0 Routing

NOTES:

- 1. Routing to this pin takes effect only if CAN1 disabled
- 2. Routing to this pin takes effect only if CAN2 disabled

MODRR[3:2] — CAN4 Routing

Table 3-4 CAN4 Routing

MODRR[3]	MODRR[3] MODRR[2]		TXCAN4	
0	0	PJ6	PJ7	
0	0 1		PM5 ¹	
1	0	PM6 ²	PM7 ²	
1	1	Reserved		

NOTES:

- 1. Routing to this pin takes effect only if CAN2 disabled and CAN0 disabled if routed here
- 2. Routing to this pin takes effect only if CAN3 disabled

MODRR[4] — SPI0 Routing

Table 3-5 SPI0 Routing

MODRR[4]	MISO0	MOSI0	SCK0	SS0
0	PS4	PS5	PS6	PS7
1	PM2 ¹	PM4 ²	PM5 ²	PM3 ¹

NOTES:

1. Routing to this pin takes effect only if CAN1 disabled and CAN0 disabled if routed here

2. Routing to this pin takes effect only if CAN2 disabled and CAN0 disabled if routed here and CAN4 disabled if routed here

MODRR[5] — SPI1 Routing

Table 3-6 SPI1 Routing

MODRR[5]	MISO1	MOSI1	SCK1	SS1
0	PP0	PP1	PP2	PP3
1	PH0	PH1	PH2	PH3

MODRR[6] — SPI2 Routing

Table 3-7 SPI2 Routing

MODRR[6]	MISO2	MOSI2	SCK2	SS2
0	PP4	PP5	PP7	PP6
1	PH4	PH5	PH6	PH7

3.3.4 Port P Registers

Bit 0
PTP0
1 PWM0
1 MISO1
0

Address Offset: \$__18

= Reserved or unimplemented

Figure 3-22 Port P I/O Register (PTP)

Read:Anytime.

Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register, otherwise the value at the pins is read.

The PWM function takes precedence over the general purpose I/O function if the associated PWM channel is enabled. While channels 6-0 are output only if the respective channel is enabled, channel 7 can be PWM output or input if the shutdown feature is enabled. *Refer to PWM Block User Guide for details*.

The SPI function takes precedence over the general purpose I/O function associated with if enabled. *Refer* to SPI Block User Guide for details.

If both PWM and SPI are enabled the PWM functionality takes precedence.

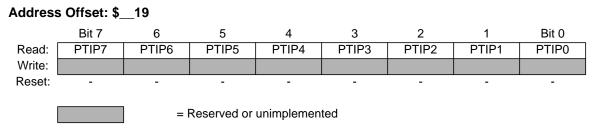


Figure 3-23 Port P Input Register (PTIP)

Read:Anytime.

Write:Never, writes to this register have no effect.

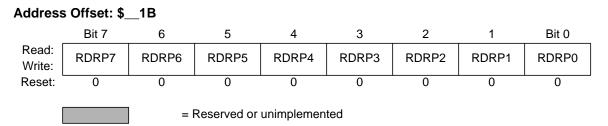
This register always reads back the status of the associated pins. This can be also used to detect overload or short circuit conditions on output pins.

Figure 3-24 Port P Data Direction Register (DDRP)

Write:Anytime.

This register configures each port P pin as either input or output.

If the associated PWM channel or SPI module is enabled this register has no effect on the pins. The PWM forces the I/O state to be an output for each port line associated with an enabled PWM7-0 channel. Channel 7 can force the pin to input if the shutdown feature is enabled.


If a SPI module is enabled, the SPI determines the pin direction. *Refer to SPI Block User Guide for details*. The DDRM bits revert to controlling the I/O direction of a pin when the associated PWM channel is disabled.

DDRP[7:0] — Data Direction Port P

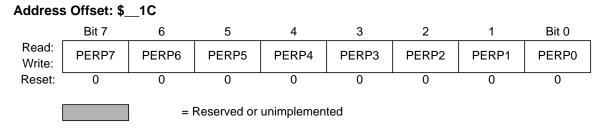
1 =Associated pin is configured as output.

0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read on PTP or PTIP registers, when changing the DDRP register.

Figure 3-25 Port P Reduced Drive Register (RDRP)

Read:Anytime.


Write:Anytime.

This register configures the drive strength of each port P output pin as either full or reduced. If the port is used as input this bit is ignored.

RDRP[7:0] — Reduced Drive Port P

1 = Associated pin drives at about 1/3 of the full drive strength.

0 = Full drive strength at output.

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input. This bit has no effect if the port is used as output. Out of reset no pull device is enabled.

PERP[7:0] — Pull Device Enable Port P

1 = Either a pull-up or pull-down device is enabled.

0 = Pull-up or pull-down device is disabled.

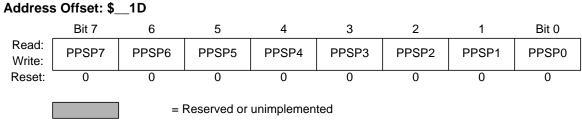
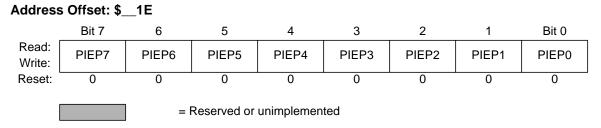


Figure 3-27 Port P Polarity Select Register (PPSP)

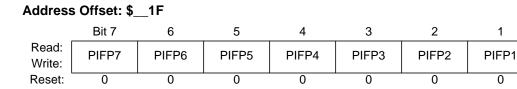

Read:Anytime.

Write:Anytime.

This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting a pull-up or pull-down device if enabled.

PPSP[7:0] — Polarity Select Port P

- 1 = Rising edge on the associated port P pin sets the associated flag bit in the PIFP register.A pull-down device is connected to the associated port P pin, if enabled by the associated bit in register PERP and if the port is used as input.
- 0 = Falling edge on the associated port P pin sets the associated flag bit in the PIFP register.A pull-up device is connected to the associated port P pin, if enabled by the associated bit in register PERP and if the port is used as input.


Write:Anytime.

This register disables or enables on a per pin basis the edge sensitive external interrupt associated with port P.

PIEP[7:0] — Interrupt Enable Port P

1 = Interrupt is enabled.

0 = Interrupt is disabled (interrupt flag masked).

= Reserved or unimplemented

Read:Anytime.

Write:Anytime.

Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge based on the state of the PPSP register. To clear this flag, write "1" to the corresponding bit in the PIFP register. Writing a "0" has no effect.

PIFP[7:0] — Interrupt Flags Port P

1 = Active edge on the associated bit has occurred (an interrupt will occur if the associated enable bit is set).

Writing a "1" clears the associated flag.

0 = No active edge pending.

Writing a "0" has no effect.

Bit 0

PIFP0

0

3.3.5 Port H Registers

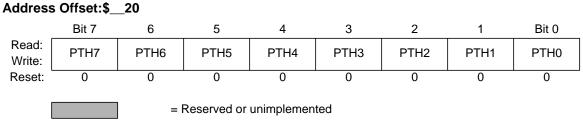


Figure 3-30 Port H I/O Register (PTH)

Read:Anytime.

Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register, otherwise the value at the pins is read.

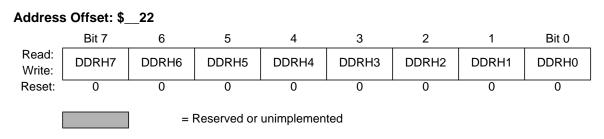

Address Offset: \$21									
	Bit 7	6	5	4	3	2	1	Bit 0	
Read:	PTIH7	PTIH6	PTIH5	PTIH4	PTIH3	PTIH2	PTIH1	PTIH0	
Write:									
Reset:	-	-	-	-	-	-	-	-	
= Reserved or unimplemented									

Figure 3-31 Port H Input Register (PTIH)

Read:Anytime.

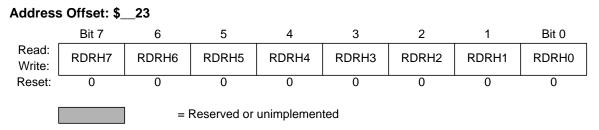
Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This can also be used to detect overload or short circuit conditions on output pins.

Read:Anytime.

PIM_9DP256 Block User Guide V02.07

Write:Anytime.


This register configures each port H pin as either input or output.

DDRH[7:0] — Data Direction Port H

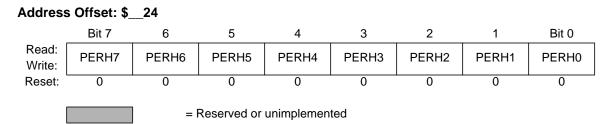
1 = Associated pin is configured as output.

0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read on PTH or PTIH registers, when changing the DDRH register.

Figure 3-33 Port H Reduced Drive Register (RDRH)

Read:Anytime.


Write:Anytime.

This register configures the drive strength of each port H output pin as either full or reduced. If the port is used as input this bit is ignored.

RDRH[7:0] — Reduced Drive Port H

1 = Associated pin drives at about 1/3 of the full drive strength.

0 = Full drive strength at output.

Figure 3-34 Port H Pull Device Enable Register (PERH)

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input. This bit has no effect if the port is used as output. Out of reset no pull device is enabled.

PERH[7:0] — Pull Device Enable Port H

1 = Either a pull-up or pull-down device is enabled.

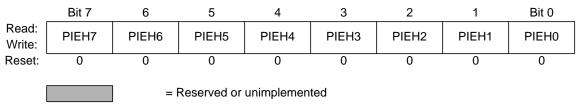
0 = Pull-up or pull-down device is disabled.

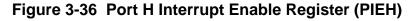
Address Offset: \$25								
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	PPSH7	PPSH6	PPSH5	PPSH4	PPSH3	PPSH2	PPSH1	PPSH0
Reset:	0	0	0	0	0	0	0	0

= Reserved or unimplemented

Figure 3-35 Port H Polarity Select Register (PPSH)

Read:Anytime.


Write:Anytime.


This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting a pull-up or pull-down device if enabled.

PPSH[7:0] — Polarity Select Port H

- 1 = Rising edge on the associated port H pin sets the associated flag bit in the PIFH register. A pull-down device is connected to the associated port H pin, if enabled by the associated bit in register PERH and if the port is used as input.
- 0 = Falling edge on the associated port H pin sets the associated flag bit in the PIFH register. A pull-up device is connected to the associated port H pin, if enabled by the associated bit in register PERH and if the port is used as input.

Read:Anytime.

Write:Anytime.

This register disables or enables on a per pin basis the edge sensitive external interrupt associated with port H.

PIEH[7:0] — Interrupt Enable Port H

- 1 = Interrupt is enabled.
- 0 = Interrupt is disabled (interrupt flag masked).

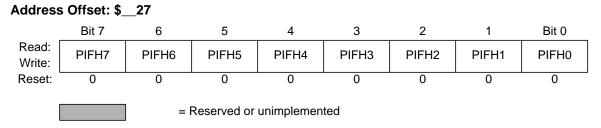
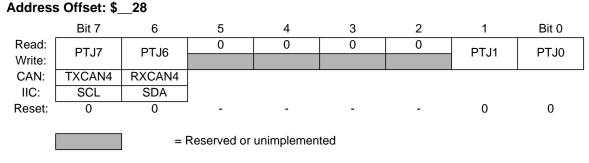


Figure 3-37 Port H Interrupt Flag Register (PIFH)

Write:Anytime.

Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge based on the state of the PPSH register. To clear this flag, write "1" to the corresponding bit in the PIFH register. Writing a "0" has no effect.

PIFH[7:0] — Interrupt Flags Port H


1 = Active edge on the associated bit has occurred (an interrupt will occur if the associated enable bit is set).

Writing a "1" clears the associated flag.

0 = No active edge pending.

Writing a "0" has no effect.

3.3.6 Port J Registers

Figure 3-38 Port J I/O Register (PTJ)

Read:Anytime.

Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port register, otherwise the value at the pins is read.

The CAN function (TXCAN and RXCAN) takes precedence over the general purpose I/O function if the associated CAN module is enabled. *Refer to MSCAN Block Guide for details*.

The IIC function takes precedence over the general purpose I/O function associated with if enabled. If both CAN4 and IIC are enabled the CAN functionality takes precedence. *Refer to IIC Block User Guide for details*.

If the IIC module is enabled the SDA and SCL outputs are configured as open-drain outputs.

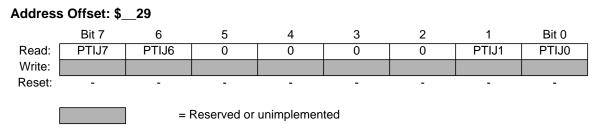


Figure 3-39 Port J Input Register (PTIJ)

Read:Anytime.

Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This can be used to detect overload or short circuit conditions on output pins.

Figure 3-40 Port J Data Direction Register (DDRJ)

Read:Anytime.

Write:Anytime.

This register configures each port J pin as either input or output.

The CAN forces the I/O state to be an output on PJ7 (TXCAN4) and an input on pin PJ6 (RXCAN4). The IIC takes control of the I/O if enabled. In these cases the data direction bits will not change. The DDRJ bits revert to controlling the I/O direction of a pin when the associated peripheral module is disabled.

DDRJ[7:6][1:0] — Data Direction Port J

1 = Associated pin is configured as output.

0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read on PTJ or PTIJ registers, when changing the DDRJ register.

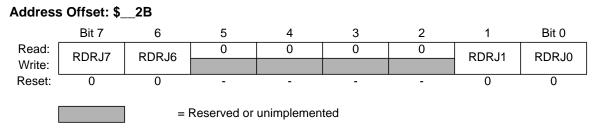
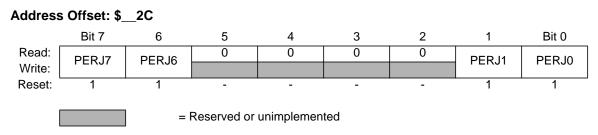


Figure 3-41 Port J Reduced Drive Register (RDRJ)


Write:Anytime.

This register configures the drive strength of each port J output pin as either full or reduced. If the port is used as input this bit is ignored.

RDRJ[7:6][1:0] — Reduced Drive Port J

1 = Associated pin drives at about 1/3 of the full drive strength.

0 = Full drive strength at output.

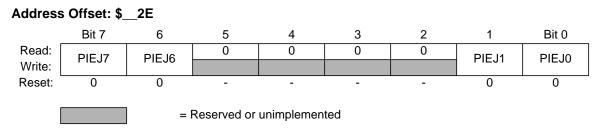
Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input or as wired-or output. This bit has no effect if the port is used as push-pull output. Out of reset a pull-up device is enabled.

PERJ[7:6][1:0] — Pull Device Enable Port J

- 1 = Either a pull-up or pull-down device is enabled.
- 0 = Pull-up or pull-down device is disabled.



Write:Anytime.

This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting a pull-up or pull-down device if enabled.

PPSJ[7:6][1:0] — Polarity Select Port J

- 1 = Rising edge on the associated port J pin sets the associated flag bit in the PIFJ register. A pull-down device is connected to the associated port J pin, if enabled by the associated bit in register PERJ and if the port is used as input.
- 0 = Falling edge on the associated port J pin sets the associated flag bit in the PIFJ register. A pull-up device is connected to the associated port J pin, if enabled by the associated bit in register PERJ and if the port is used as general purpose input or as IIC port.

Figure 3-44 Port J Interrupt Enable Register (PIEJ)

Read:Anytime.

Write:Anytime.

This register disables or enables on a per pin basis the edge sensitive external interrupt associated with port J.

PIEJ[7:6][1:0] — Interrupt Enable Port J

- 1 = Interrupt is enabled.
- 0 = Interrupt is disabled (interrupt flag masked).

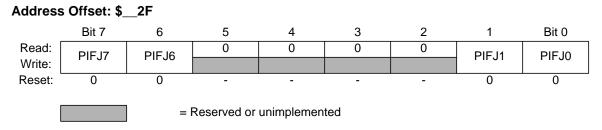


Figure 3-45 Port J Interrupt Flag Register (PIFJ)

Write:Anytime.

Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge based on the state of the PPSJ register. To clear this flag, write "1" to the corresponding bit in the PIFJ register. Writing a "0" has no effect.

PIFJ[7:6][1:0] — Interrupt Flags Port J

1 = Active edge on the associated bit has occurred (an interrupt will occur if the associated enable bit is set).

Writing a "1" clears the associated flag.

0 = No active edge pending.

Writing a "0" has no effect.

Section 4 Functional Description

4.1 General

Each pin can act as general purpose I/O. In addition the pin can act as an output from a peripheral module or an input to a peripheral module.

A set of configuration registers is common to all ports. All registers can be written at any time, however a specific configuration might not become active.

Example:

Selecting a pull-up resistor. This resistor does not become active while the port is used as a push-pull output.

4.1.1 I/O register

This register holds the value driven out to the pin if the port is used as a general purpose I/O.

Writing to this register has only an effect on the pin if the port is used as general purpose output. When reading this address, the value of the pins is returned if the data direction register bits are set to 0.

If the data direction register bits are set to 1, the contents of the I/O register is returned. This is independent of any other configuration (**Figure 4-1**).

4.1.2 Input register

This is a read-only register and always returns the value of the pin (Figure 4-1).

4.1.3 Data direction register

This register defines whether the pin is used as an input or an output.

If a peripheral module controls the pin the contents of the data direction register is ignored (Figure 4-1).

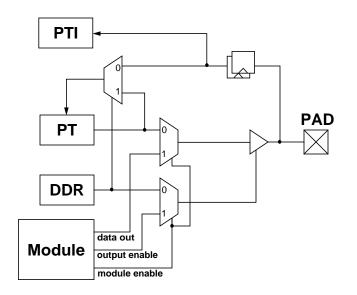


Figure 4-1 Illustration of I/O pin functionality

4.1.4 Reduced drive register

If the port is used as an output the register allows the configuration of the drive strength.

4.1.5 Pull device enable register

This register turns on a pull-up or pull-down device.

It becomes only active if the pin is used as an input or as a wired-or output.

4.1.6 Polarity select register

This register selects either a pull-up or pull-down device if enabled.

It becomes only active if the pin is used as an input. A pull-up device can be activated if the pin is used as a wired-or output.

4.2 Port T

This port is associated with the Enhanced Capture Timer module.

In all modes, port T pins PT[7:0] can be used for either general-purpose I/O, or with the channels of the Enhanced Capture Timer.

During reset, port T pins are configured as high-impedance inputs.

4.3 Port S

This port is associated with the serial SCI and SPI modules.

In all modes, port S pins PS[7:0] can be used either for general-purpose I/O, or with the SCI and SPI subsystems.

During reset, port S pins are configured as inputs with pull-up.

The SPI pins can be re-routed. Refer to 4.4.1 Module Routing Register.

4.4 Port M

This port is associated with the J1850 and 4 CAN modules.

In all modes, port M pins PM[7:0] can be used for either general purpose I/O, or with the CAN and J1850 subsystems.

By default, pins PM0 and PM1 are shared between the CAN0 and the BDLC (J1850) module. If CAN0 is enabled the pins become CAN transmit and receive pins. If BLDC is enabled and CAN0 is disabled, pins become active BDLC transmit and receive pins.

During reset, port M pins are configured as high-impedance inputs.

The CAN pins can be re-routed. Refer to **4.4.1 Module Routing Register**.

4.4.1 Module Routing Register

This register allows to re-route the CAN0, CAN4, SPI0, SPI1, and SPI2 pins to predefined pins.

NOTE: The purpose of the Module Routing Register is to provide maximum flexibility for future derivatives of the MC9S12DP256 with a lower number of MSCAN and SPI modules.

Number of modules	MSCAN modules				SPI modules		
Number of modules	CAN0	CAN1	CAN2	CAN4	SPI0	SPI1	SPI2
4	Х	Х	Х	Х	-	-	-
3	Х	Х	-	Х	Х	Х	Х
2	Х	-	-	Х	Х	Х	-
1	Х	-	-	-	Х	-	-

Table 4-1 Implemented modules on derivatives

The CAN0 transmit and receive pin can be routed to PM[3:2] or PM[5:4] if CAN1 and CAN2 are disabled, respectively. PM[5:4] or PM[7:6] can be taken by CAN4, if CAN2 and CAN3 are disabled, respectively.

CAN0 has priority over CAN4 if both modules are trying to access PM[5:4] at the same time and CAN2 is not enabled.

The SPI0 pins can be routed to PM[5:2] if no other module uses these pins. If the SPI0 module is routed on PM[5:4] and used in bidirectional master mode with disabled \overline{SS} output, PM[3:2] are free to be used with CAN or GPIO.

The SPI1 and SPI2 pins can be routed to PH[3:0] and PH[7:4], respectively.

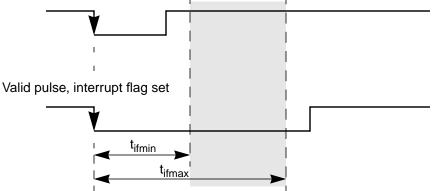
4.5 Port P

This port is associated with the PWM and 2 SPI modules.

In all modes, port P pins PP[7:0] can be used for either general purpose I/O, or with the PWM and SPI subsystems.

The pins are shared between the PWM channels and the SPI1 and SPI2 modules. If the PWM is enabled the pins become PWM output channels with the exception of pin 7 which can be PWM input or output. If SPI1 or SPI2 are enabled and PWM is disabled, the respective pin configuration is determined by several status bits in the SPI modules.

During reset, port P pins are configured as high-impedance inputs.


The SPI pins can be re-routed. Refer to 4.4.1 Module Routing Register.

Port P offers 8 I/O pins with edge triggered interrupt capability in wired-or fashion. The interrupt enable as well as the sensitivity to rising or falling edges can be individually configured on per pin basis. All 8 bits/pins share the same interrupt vector. Interrupts can be used with the pins configured as inputs or outputs.

An interrupt is generated when a bit in the port interrupt flag register and its corresponding port interrupt enable bit are both set. This external interrupt feature is capable to wake up the CPU when it is in STOP or WAIT mode.

A digital filter on each pin prevents pulses (**Figure 4-3**) shorter than a specified time from generating an interrupt. The minimum time varies over process conditions, temperature and voltage (**Figure 4-2** and **Table 4-2**).

Glitch, filtered out, no interrupt flag set

	Mode					
Pulse	STO	5	STOP ¹			
		Unit		Unit		
Ignored	t _{pulse} <= 3	bus clocks	t _{pulse} <= 3.2	μs		
Uncertain	3 < t _{pulse} < 4	bus clocks	3.2 < t _{pulse} < 10	μs		
Valid	t _{pulse} >= 4	bus clocks	t _{pulse} >= 10	μs		

NOTES:

1. These values include the spread of the oscillator frequency over temperature, voltage and process.



Figure 4-3 Pulse Illustration

A valid edge on an input is detected if 4 consecutive samples of a passive level are followed by 4 consecutive samples of an active level directly or indirectly.

The filters are continuously clocked by the bus clock in RUN and WAIT mode. In STOP mode the clock is generated by a single RC oscillator in the Port Integration Module. To maximize current saving the RC oscillator runs only if the following condition is true on any pin:

Sample count <= 4 and port interrupt enabled (PIE=1) and port interrupt flag not set (PIF=0).

4.6 Port H

Port H offers 8 I/O ports with the same interrupt features as port P.

During reset, port H pins are configured as high-impedance inputs.

Port H pins can be used with the routed SPI modules. Refer to 4.4.1 Module Routing Register.

4.7 Port J

This port is associated with the fifth CAN and the IIC module.

In all modes, port J pins PJ[7:6] and PJ[1:0] can be used for either general purpose I/O, or with the CAN and IIC subsystems.

By default, pins PJ6 and PJ7 are shared between the CAN4 and the IIC module. If CAN4 is enabled the pins become CAN transmit and receive pins. If IIC is enabled and CAN4 is disabled, the pins become IIC open-drain output pins.

During reset, port J pins are configured as inputs with pull-up.

The CAN pins can be re-routed. Refer to 4.4.1 Module Routing Register.

Port J offers 4 I/O ports with the same interrupt features as port P.

4.8 Port A, B, E, K, and BKGD pin

All port and pin logic is located in the core module. Refer to S12_mebi Block User Guide for details.

4.9 External Pin Descriptions

All ports start up as general purpose inputs on reset.

4.10 Low Power Options

4.10.1 Run Mode

No low power options exist for this module in run mode.

4.10.2 Wait Mode

No low power options exist for this module in wait mode.

4.10.3 Stop Mode

All clocks are stopped. There are asynchronous paths to generate interrupts from STOP on port P, H and J.

Section 5 Resets

5.1 General

The reset values of all registers are given in section **3.3 Register Descriptions**.

5.2 Reset Initialization

All registers including the data registers get set/reset asynchronously. **Table 5-1** summarizes the port properties after reset initialization.

	Reset States							
Port	Data Direction	Pull Mode	Red. Drive	Wired-Or Mode	Inter- rupt			
Т	input	hiz	disabled	n/a	n/a			
S	input	pull-up	disabled	disabled	n/a			
М	input	hiz	disabled	disabled	n/a			
Р	input	hiz	disabled	n/a	disabled			
н	input	hiz	disabled	n/a	disabled			
J	input	pull-up	disabled	n/a	disabled			
A								
В	Refer to MEBI in HCS12 Core User Guide for details.							
E								
К								
BKGD pin	Refer to BDM in HCS12 Core User Guide for details.							

Table 5-1 Port Reset State Summary

Section 6 Interrupts

6.1 General

Port P, H and J generate a separate edge sensitive interrupt if enabled.

6.2 Interrupt Sources

Interrupt Source	Interrupt Flag	Local Enable	Global (CCR) Mask	
Port P	PIFP[7:0]	PIEP[7:0]	l Bit	
Port H	PIFH[7:0]	PIEH[7:0]	I Bit	
Port J	PIFJ[7:6] PIFJ[1:0]	PIFJ[7:6] PIFJ[1:0]	l Bit	

Table 6-1 Port Integration Module Interrupt Sources

NOTE: Vector addresses and their relative interrupt priority are determined at the MCU *level.*

6.3 Recovery from STOP

The PIM_9DP256 can generate wake-up interrupts from STOP on port P, H and J. For other sources of external interrupts refer to the respective Block User Guides.

User Guide End Sheet

FINAL PAGE OF 56 PAGES