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Pointers

Consider the declaration,  
int i = 3 ; 
This declaration tells the C compiler to:  

a. Reserve space in memory to hold the integer value.  

b. Associate the name i with this memory location.  

c. Store the value 3 at this location. 
We may represent i 's location in the memory by the following memory map: 
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Figure 1 
We see that the computer has selected memory location 6485 as the place to store the value 3. This location number 6485 is not a number to be relied upon, because some other time the computer may choose a different location for storing the value 3.  

We can print this address through the following statement :  
printf ( "\nAddress of i = %u", &i ) ; /* o/p : 6485 */  

Look at the printf( ) statement carefully. '&' used in this statement is C's 'address of' operator. The expression &i returns the address of the variable i, which in this case happens to be 6485.  

The other pointer operator available in C is '*', called 'value at address' operator. It returns the value stored at a particular address. The 'value at address' operator is also called 'indirection'  operator.  

Observe carefully the following statements :  

printf ( "\nAddress of i = %u", &i ) ; /* o/p : 6485 */   

printf ( "\nValue of i = %d", i ) ; /* o/p : 3 */   

printf ( "\nValue of i = %d", *( &i ) ) ; /* o/p : 3 */  

Note that printing the value of *( &i ) is same as printing the value of i.  

Let us now see what are pointers and how they can be used in various expressions. We have seen in the above section that the expression &i returns the address of i. If we so desire this address can be collected in a variable by saying,   

j = &i ;  

But remember that j is not an ordinary variable like any other integer variable. It is a variable which contains the address of another variable ( i in this case ).  

Since j is a variable, the compiler must provide it space in memory. The following memory map illustrates the contents of i and j.  
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Figure 2   

As you can see, i 's value is 3 and j 's value is i 's address.  

But, we can't use j in a program without declaring it. And since j is a variable which contains the address of i, it is declared as,   

int *j ;  

This declaration tells the compiler that j will be used to store the address of an integer value - in other words j points to an integer.  

How do we justify the usage of * in the declaration,   

int *j ;  

Let us go by the meaning of *. It stands for 'value at address'. Thus, int *j would mean:  

1. value at address stored in j is an int   

2. j contains address of an int  

3. j points to an int  

4. j is a pointer which points in the direction of an int  

So we can conclude that pointer is a variable which contains address of another variable. 

More pointer types 
The way we have used an int pointer in the above example we can also build a char pointer, a float pointer, a long int pointer, etc. This is shown below:
  

char ch = 'A' ;   

float a = 3.14 ;   

long int j = 40000L ;  

char *dh ;   

float *b ;   

long int *k ;  

dh = &ch ;   

b = &a ;   

k = &j ;  
Pointer to Pointer 
If we store address of an integer pointer in a variable that variable becomes pointer to an integer pointer. And if we store address of a pointer to an integer pointer in a variable that becomes a pointer to a pointer to an integer pointer. This is shown in the following code segment: 

int i = 10 ;  

int *j ; // integer pointer  

int **k ; // pointer to an integer pointer  

int ***l ; // pointer to a pointer to an integer pointer  

  

j = &i ;  

k = &j ;  

l = &k ;  

  

// print 10 using i, j, k, l  

printf ( "%d %d %d %d", i, *j, **k, ***l ) ;  
Pointer Arithmetic
Following operations can be performed on a pointer:  

a. Addition of a number to a pointer. For example, 

int i = 4, *j, *k ;  

j = &i ;  

j = j + 1 ;  

j = j + 9 ;  

k = j + 3 ;  

b. Subtraction of a number from a pointer. For example, 

int i = 4, *j, *k ;  

j = &i ;  

j = j - 2 ;  

j = j - 5 ;  

k = j - 6 ;  

c. Subtraction of a pointer from a pointer. For example, 

int i = 4, j = 5, *p, *q, d ;  

p = &i ;  

q = &j ;  

d = q - p ;  

The following program catches the essence of all that we have said about pointers so far. 
  

main( )  

{  

float a = 3.14, *b ;  

char ch = 'z', *dh ;  

int i = 25, *j ;  

  

printf ( "%u%u%u%u", &a, &ch, &i ) ; /* prints addresses of a, ch and i */  

  

b = &a ; /* assigns address of a to b */  

dh = &ch ; /* assigns address of ch to dh */  

j = &i ; /* assigns address of i to j */  

  

printf ( "%u%u%u", *b, *dh, *j ) ; /* prints value at address stored in b,   

dh and j respectively */   

  

printf ( "%u%u%u%u", b, dh,j ) ; /* prints the value in b, dh, j which is  

the address of a, ch, j respectively*/   

b++ ;   /* makes the pointer b point to a location adjacent to variable a */  

dh++ ; /* makes the pointer dh point to a location adjacent to variable ch */  

j++ ;/* makes the pointer j point to the location adjacent to variable i */  

  

/* += -= operators can be used in pointer arithmetic */   

b+= 3 ; dh += 8 ;   

j-= 3 ;   

  

printf ( "%u%u%u%u", b, dh, j );  

}  

near, far and huge Pointer 
(The information that follows is specific to DOS operating system only)  

While working under DOS only 1 mb (10,48,580 bytes) of memory is accessible. Any of these memory locations are accessed using CPU registers. Under DOS the CPU registers are only 16 bits long. Therefore, the minimum value present in a CPU register could be 0, and maximum 65,535. Then how do we access memory locations beyond 65535th byte? By using two registers (segment and offset) in conjunction. For this the total memory (1 mb) is divided into a number of units each comprising 65,536 (64 kb) locations. Each such unit is called a segment. Each segment always begins at a location number which is exactly divisible by 16. The segment register contains the address where a segment begins, whereas the offset register contains the offset of the data/code from where the segment begins. For example, let us consider the first byte in B block of video memory. The segment address of video memory is B0000h (20-bit address), whereas the offset value of the first byte in the upper 32K block of this segment is 8000h.  
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Figure 3.   

Since 8000h is a 16-bit address it can be easily placed in the offset register, but how do we store the 20-bit address B0000h in a 16-bit segment register? For this out of B0000h only first four hex digits (16 bits) are stored in segment register. We can afford to do this because a segment address is always a multiple of 16 and hence always contains a 0 as the last digit. Therefore, the first byte in the upper 32K chunk of B block of video memory is referred using segment:offset format as B000h:8000h. Thus, the offset register works relative to segment register. Using both these, we can point to a specific location anywhere in the 1 mb address space.   

Suppose we want to write a character `A' at location B000:8000. We must convert this address into a form which C understands. This is done by simply writing the segment and offset addresses side by side to obtain a 32 bit address. In our example this address would be 0xB0008000. Now whether C would support this 32 bit address or not depends upon the memory model in use. For example, if we are using a large data model (compact, large, huge) the above address is acceptable. This is because in these models all pointers to data are 32 bits long. As against this, if we are using a small data model (tiny, small, medium) the above address won't work since in these models each pointer is 16 bits long.  

What if we are working in small data model and still want to access the first byte of the upper 32K chunk of B block of video memory? In such cases both Microsoft C and Turbo C provide a keyword called far, which is used as shown below,  

char far *s = 0XB0008000;  

A far pointer is always treated as 32 bit pointer and contains both a segment address and an offset.  

A huge pointer is also 32 bits long, again containing a segment address and an offset. However, there are a few differences between a far pointer and a huge pointer.   

A near pointer is only 16 bits long, it uses the contents of CS register (if the pointer is pointing to code) or contents of DS register (if the pointer is pointing to data) for the segment part, whereas the offset part is stored in the 16-bit near pointer. Using near pointer limits your data/code to current 64 kb segment.   

The following table captures the essence of these different types of pointers along with the pointer type supported by each memory model.
  
	Memory model
	Code Pointer
	Data Pointer
	Code size 
	Data size

	Tiny 
	near
	near
	<--------------- 64 KB 
	------------->

	Small
	near
	near
	64 KB
	64 KB

	Medium
	far
	near
	1 MB
	64 KB

	Compact
	near
	far
	64 KB
	1 MB

	Large
	far
	far
	1 MB
	1 MB

	Huge
	far
	huge
	1 MB
	*


* single data element (say an array) can occupy more than 1 segment. 
A far pointer (32 bit) contains the segment as well as the offset. By using far pointers we can have multiple code segments, which in turn allow you to have programs longer than 64 kb. Likewise, with far data pointers we can address more than 64 kb worth of data. However, while using far pointers some problems may crop up as is illustrated by the following program. 
main( )  

{  

char far *a = OX00000120;  

char far *b = OX00100020;  

char far *c = OX00120000;  

  

if ( a == b )  

printf ( "Hello" ) ;  

if ( a == c )  

printf ( "Hi" ) ;  

if ( b == c )  

printf ( "Hello Hi" ) ;  

if ( a > b && a > c && b > c )  

printf ( "Bye" ) ;   

}   

Note that all the 32 bit addresses stored in variables a, b, and c refer to the same memory location. This deduces from the method of obtaining the 20-bit physical address from the segment:offset pair. This is shown below.    

  

00000 segment address left shifted by 4 bits   

0120   offset address   

--------   

00120 resultant 20 bit address  

  

00100 segment address left shifted by 4 bits   

0020   offset address   

--------   

00120 resultant 20 bit address  

  

00120 segment address left shifted by 4 bits   

0000   offset address   

--------   

00120 resultant 20 bit address  

Now if a, b and c refer to same location in memory we expect the first three ifs to be satisfied. However this doesn't happen. This is because while comparing the far pointers using == (and !=) the full 32-bit value is used and since the 32-bit values are different the ifs fail. The last if however gets satisfied, because while comparing using > (and >=, <, <= ) only the offset value is used for comparison. And the offset values of a, b and c are such that the last condition is satisfied.  

These limitations are overcome if we use huge pointer instead of far pointers. Unlike far pointers huge pointers are `normalized' to avoid these problems. What is a normalized pointer? It is a 32- bit pointer which has as much of its value in the segment address as possible. Since a segment can start every 16 bytes, this means that the offset will only have a value from 0 to F.  

How do we normalize a pointer? Simple. Convert it to its 20-bit address then use the the left 16 bits for the segment address and the right 4 bits for the offset address. For example, given the pointer 500D:9407, we convert it to the absolute address 594D7, which we then normalize to 594D:0007.  

huge pointers are always kept normalized. As a result, for any given memory address there is only one possible huge address - segment:offset pair for it. Run the above program using huge instead of far and now you would find that the first three ifs are satisfied, whereas the fourth fails. This is more logical than the result obtained while using far.   

But then there is a price to be paid for using huge pointers. Huge pointer arithmetic is done with calls to special subroutines. Because of this, huge pointer arithmetic is significantly slower than that of far or near pointers.   

Tips: 

1. Addresses must always be printed using %u or %p.

2. If %p is used address is printed in segment:Offset form.   If %u is used only offset address is printed (specific to DOS).  

3. In DOS there are three types of pointers : 

near (2 bytes), far (4 bytes) and huge (4 bytes). > 

In Unix and Windows every pointer is a 4 byte entity.  

4. A pointer when incremented always points to an immediately next  location of its type. 

5. The only legal pointer arithmetic is : 

pointer + number,  

pointer - number,  

pointer - pointer.  

6. Don't attempt the following arithmetic operations on pointer. They won't work :  

a. Addition of two pointers  

b. Multiplying a pointer with a number  

c. Dividing a pointer with a number 
Pointers and Arrays

An array is a collection of similar elements stored in adjacent memory locations. 
  

int a[] = { 10, 13, -24, -35, 67 } ;  

float b[] = { 1.2, 3.44, -5.44, 6.7, 8.9 } ;  

long int c[25] ;  
If an array is defined and initialized at the same place mentioning its dimension is optional.  
If similarity and adjacency considerations are met we can build an array of anything, like say, an array of doubles,  an array of structures, an array of pointers etc.  
Size of an array is sum of sizes of individual elements of an array.  
Base address of an array if address of zeroth element of the array.  
Mentioning the name of the array fetches its base address.
  

int a[] = { 10, 13, -24, -35, 67 } ;  

printf ( "%u %u", a, &a[0] ) ; // both would give base address
Array can be passed to a function element by element. Alternatively we can pass the entire array to a function at one shot.
   

int a[] = { 10, 13, -24, -35, 67 } ;  

int i ;  

  

// passing the array element by element  

for ( i = 0 ; i < 5 ; i++ )  

display ( a[i] ) ;
  

// passing entire array  

show ( a, sizeof ( a ) / 2 ) ;  

To pass an entire array we simply need to pass its base address. Whenever we pass an entire array to the function we also need to pass the size of the array, since the function has no way to find  out how many elements are present in the array.  
Array elements can be accessed using the subscript notation or the pointer notation.  

int a[] = { 10, 13, -24, -35, 67 } ;  

int i ;  

  
// access using subscript notation  

for ( i = 0 ; i < 5 ; i++ )  

printf ( "%d", a[i] ) ;  

  
// accessing using pointer notation  

for ( i = 0 ; i < 5 ; i++ )  

printf ( "%d", * ( a + i ) ) ;  
Subscript notation is converted by the compiler into the pointer notation. Hence pointer notation would work faster since using it we would be able to save on  the conversion time.  
All four following expression are same:
  

a[i]   

* ( a + i )  

( * i + a )   

i[a]  

In the expression a[i]  

Out of a and i one must be an integer. The other may either be an array name or a pointer.  
An array of pointers is different than a pointer to an array.
  

int *a[10] ;    

int ( *b )[10] ;  

a is an array of pointers, whereas, b is pointer to an array. Incrementing a using a++ is illegal. On incrementing b it would start pointing to the  next location of its type.  
What would be the output of following program
  

main( )   

{   

  

int arr[ ] = { 0, 1, 2, 3, 4 } ;   

int *ptr ;   

for ( ptr = arr + 4 ; ptr >>= arr ; ptr-- )   

printf ( "%d ", arr [ ptr - arr ] ) ;   

 }  

Output  
4 3 2 1 0   

Explanation  
A picture is worth a thousand words. Going by this dictum, the following figure 1 should add clarity to your understanding  of the program.  
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Figure 1.   
Now things are getting really complicated, as the printf( ) would justify. Let us begin with the for loop. Firstly ptr is assigned the address 6012, the address of the fourth integer from the base address. Since this address is greater than the base address, the condition is satisfied and the control reaches printf( ) . What does arr [ ptr - arr ] evaluate to? ptr - arr means 6012 - 6004 , which yields 4, and hence arr[4] prints out the fourth element of the array. Then ptr-- reduces ptr to 6010. Since 6010 is greater than the base address 6004, the condition is satisfied and once again the control reaches the printf( ) . This time ptr - arr becomes 6010 - 6004 , i.e. 3. Thus arr[3] prints out 3. This process is repeated till all the integers in the array have been printed out. Possibly an easier way of understanding the expression ptr - arr would be as follows. Suppose ptr contains 6012 and arr contains 6004. We can then view the subtraction as ( arr + 4 - arr ) , since ptr is nothing but arr + 4 . Now I suppose its quite logical to expect the result of the subtraction as 4.   
What would be the output of following program 
main( )   

 {  

static int a[ ] = { 0, 1, 2, 3, 4 } ;  

static int *p[ ] = { a, a + 1, a + 2, a + 3, a + 4 }   

int **ptr = p   

printf ( "\n%u %d", a, *a )   

printf ( "%u %u %d", p, *p, **p )   

printf ( "\n%u %u %d", ptr, *ptr, **ptr ) ;
}  

Output   
6004 0  
9016 6004 0  
9016 6004 0  
Explanation   
Look at the initialisation of the  p[ ] . During initialisation, the addresses of various elements of the array  a[ ]  are stored in the array  p[ ] . Since p[ ] contains addresses of integers, it has been declared as an array of pointers to integers. Figure 2 shows the content  a[ ]  and  p[ ] . In the variable  ptr , the base address of the array  p[ ] , i.e. 9016 is stored. Since this address is the address of  p[0] , which itself is a pointer,  ptr  has been declared as pointer to an integer pointer. Let us understand the  printf( )  now. The first  printf( )  is quite simple. printf ( "\n%u %d", a, *a ) ; It prints out the base address of the array  a[ ]  and the value at this base address.   
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 Figure 2   
Looking at the figure 2, this would turn out to be 6004 and 0. When you execute the program, the address may turn out to be something other than 6004, but the value at the address would be surely 0.  

Now look at the second printf( ) .  
printf ( "\n%u %u %d", p, *p, **p ) ;   

Here  p  would give the base address of the array  p[ ] , i.e. 9016;  *p  would give the value at this address, i.e. 6004;  **p  would give the value at the address given by  *p , i.e. value at address 6004, which is 0. Now onto the last  printf( ) .   

printf ( "\n%u %u %d", ptr, *ptr, **ptr ) ;   

Here  ptr  contains the base address of the array  p[ ] , i.e. 9016;  *ptr  would give the value at this address, i.e. 6004;  **ptr  would give the value at the address given by  *ptr , i.e. value at address 6004, which is 0. 

What would be the output of following program
  

main( )   

{   

static int a[ ] = { 0, 1, 2, 3, 4 } ;  

static int   *p[ ] = { a, a + 1, a + 2, a + 3, a + 4 } ;  

int **ptr = p ;  

  

ptr++ ;  

printf ( "\n%d %d %d", ptr - p, *ptr - a, **ptr ) ;  

  

*ptr++ ;  

printf ( "\n%d %d %d", ptr - p, *ptr - a, **ptr ) ;  

  

*++ptr ;  

printf ( "\n%d %d  %d", ptr - p, *ptr - a, **ptr ) ;  

  

++*ptr ;  

printf ( "\n%d %d  %d", ptr - p, *ptr - a, **ptr ) ;  

}   

Output  
1 1 1  
2 2 2 
3 3 3 
4 4 4  

Explanation  
Figure 3 would go a long way in helping to understand this program.  

Here  ptr  has been declared as a pointer to an integer pointer and assigned the base address of the array  p[ ] , which has been declared as an array of pointers. What happens when  ptr++  gets executed?  ptr  points to the next integer pointer in the array  p[ ] . In other words, now  ptr  contains the address 9018. Now let us analyse the meaning of  ptr - p ,  *ptr - a  and  **ptr .  
 ptr - p   
Since  ptr  is containing the address 9018, we can as well say that  ptr  is containing the address given by  p + 1 . Then  ptr - p  is reduced to  ( p + 1 - p ) , which yields 1.  

 *ptr - a ;  
*ptr  means value at the address contained in  ptr . Since  ptr  contains 9018, the value at this address would be 6006. Now 6006 can be imagined as  ( a + 1 ) . Thus the expression becomes  ( a + 1 - a ) , which is nothing but 1.  
 **ptr   

ptr  contains 9018, so  *ptr  yields 6006, and hence  **ptr  becomes  *( 6006 ) , which yields 1. 
Thus the output of thefirst ; printf( )  becomes 1 1 1.   

Take a deep breath and then begin with the analysis of  *ptr++ . Here  *  and  ++  both are unary operators. Unary operators have an associativity of right to left, hence  ++  is performed before  * .  ++  increments  ptr  such that  ptr  now contains 9020. Then  *( 9020 )  is performed, which gives the value at 9020. But since this value is not assigned to any variable, it just gets ignored. Now with  ptr  containing 9020, let us once again analyse the expressions  ptr - p ,  *ptr - a  and  **ptr .   
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 Figure 3. 
ptr - p   

Since  ptr  contains 9020, it can be visualised as  ( p + 2 ) . Thus  ptr - p  would become  ( p + 2 - p ) , which gives 2.  

 *ptr - a   

 *ptr  would give value at address 9020, i.e. 6008, which is nothing but the address given by  a + 2 . Thus the expression becomes  ( a + 2 - a ) , which gives 2.  

 **ptr  

 *ptr  gives the value at address 9020, i.e. 6008, and  *( 6008 )  gives the value at 6008, i.e. 2.  

I hope your confidence is building and you are ready to meet head on the expression  *++ptr . Here, since  ++  precedes ptr , firstly  ptr  is incremented such that it contains the address 9022, and then the value at this address is obtained. Since the value is not collected in any variable, it gets ignored. Now having cooked enough pointer stew you can easily imagine that the output of the third  printf( )  would be 3 3 3.  

Finally, let us understand the expression  ++*ptr . Here obviously, the priority goes to the  * . Thus, this expression increments the value given by  *ptr . Since  ptr  contains 9022,  *ptr  gives value at 9022, i.e. 6010. This value is incremented to 6012.   

So  p[3]  now contains 6012, whereas value of  ptr  remains stationary at 9022. Let us now analyse the expressions  ptr - p ,  *ptr - a  and  **ptr .  

ptr - p   

ptr  contains 9022, therefore  ptr  can be imagined as  ( p + 3 ) . Thus  ( ptr - p )  becomes  ( p + 3 - p ) , which yields 3.  

*ptr - a  
*ptr  yields 6012 which can be thought of as  ( a + 4 ) . Thus the expression is reduced to  ( a + 4 - a) , which yields 4.
**ptr   

*ptr  yields 6012, therefore  **ptr  would yield the value at  *ptr , or the value at 6012, which is >4. 

Pointers And Multidimensional Array 
a. A 2-D array is a collection of several 1-D arrays stored in adjacent memory locations.

int a[][4] = { 
{ 10, 13, -24, -35 }
{ 12, -14, 25, -67 }
{ 23, 44,  44  0}
 } ;
b. If a 2-D array is defined and initialized at the same place mentioning its row dimension is optional. 
c. If a n-D array is defined and initialized at the same place mentioning its left-most dimension is optional. 
d. Base address of a 2-D array is address of zeroth element of the array. 

e. Zeorth element of a 2-D of integers is not the zeroth integer, but the zeroth 1-D array. 

f. In a 2-D array a[4][5], a as well as *a would fetch the base address. To reach the integer we have to use **a. 
g. All three following expression are same:

a[i][j] 
* ( a[i] + j )
* ( * ( a + i ) + j ) 
h. There are two ways to pass a 2-D array to a function. 
main( )  

{  

int a[][4] = {   

{ 10, 13, -24, -35 }  

{ 12, -14, 25, -67 }  

{ 23, 44,  44  0}  

   } ;  

  

display ( a, 12 ) ;  // one way  

show ( a, 3, 4 ) ;// another way  

}  

  

display ( int *p, int n )  

{  

int i ;  

for ( i = 0 ; i < n ; i++ )  

printf ( "%d", * ( p + i ) ) ;  

}  

  
show ( int ( *p )[4], int r, int c )  

{  

int i, j ;  

for ( i = 0 ; i < r ; i++ )  

{  

for ( j = 0 ; j < c ; j++ )  

printf ( "%d", * ( * ( p + i ) + j ) ) ;  

}  

}  
What will be the output of the following program 

main( )   

{   

  

static int a[3][3] = {   

1, 2, 3,   

4, 5, 6,   

7, 8, 9   

         } ;   

  

static int *ptr[3] = { a[0], a[1], a[2] } ;   

int **ptr1 = ptr ;   

int i ;   

printf ( "\n" ) ;  

  

for ( i = 0 ; i <<= 2 ; i++ )   

printf ( "%d ", *ptr[i] ) ;  

  

printf ( "\n" ) ;  

for ( i = 0 ; i <<= 2 ; i++ )   

printf ( "%d ", *a[i] ) ;   

  

printf ( "\n" ) ;  

for ( i = 0 ; i <<= 2 ; i++ )  

{   

printf ( "%d ", **ptr1 ) ;   

ptr1++ ;  

}   

}  

  

Output 
1 4 7
1 4 7
1 4 7 
Explanation 
ptr[ ] has been declared as an array of pointers containing the base addresses of the three 1-D arrays as shown in Figure 1. Once past the declarations, the control reaches the first for loop. In this loop the printf( ) prints the values at addresses stored in ptr[0] , ptr[1] and ptr[2] , which turn out to be 1, 4 and 7. 
In the next for loop, the values at base addresses stored in the array a[ ] are printed, which once again turn out to be 1, 4 and 7. The third for loop is also simple. Since ptr1 has been initialised to the base address of the array ptr[ ] , it contains the address 822. 
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 Figure 1. 

Therefore *ptr1 would give the value at address 822, i.e 404, and **ptr1 would give the value at address given by *ptr1 , i,e. value at 404, which is 1. On incrementing ptr1 it points to the next location after 822, i.e 824. Therefore next time through the for loop, **ptr1 gives value at 410 (which is obtained through *ptr1 ), i.e. 4. Similarly, last time through the loop, the value 7 gets printed.

Pointers And Strings 
a. A string is a collection of characters ending with a '\0'.

char str1[] = { 'A', 'j', 'a', 'y', '\0' } ;
char str2[] = "Ajay" ;

In "Ajay", '\0' is assumed.
b. If a string is defined and initialized at the same place mentioning its dimension is optional.
c. While returning the size of a string the sizeof operator counts '\0'.
d. Base address of a string is address of zeroth element of the string.
e. Following string library functions are frequently used:

char str1[] = "Ajay" ;
char str2[10] ;
char str3[] = "Kumar" ;

int l, m, n ;
l = strlen ( str1 ) ; // returns count of characters. Doesn;t count '\0'.
strcpy ( str2, str1 ) ; // copies contents of str1 into str2
strcat ( str3, str1 ) ; // appends contents str3 with that of str1
m = strcmp ( str1, str2 ) ; // compares two strings, returns zero if equal, non-zero otherwise
n = strcmp ( str1, "Ajay" ) ; // compares two strings, returns zero if equal, non-zero otherwise

If the two strings are unequal the ascii difference between first non-matching pair of characters is returned.
f. There are two ways to handle several strings:
- using a 2-D array of characters
- using an array of pointers to strings
char names[][20] = {  

"Ajay",  

"Atul",  

"Ramesh",  

"Sivaramakrishnan",  

"Sameer"   

    } ;  

  

char *n[] = {  

"Ajay",  

"Atul",  

"Ramesh",  

"Sivaramakrishnan",  

"Sameer"   

    } ;  

2-D array suffers from two limitations:
- Leads to lot of wastage of space
- Processing of 2-D array is tedious
 
Both disadvantages can be overcome using the array of pointers to strings. Array of pointers to strings suffers from the disadvantage that it always needs to be initialized, unless you decide to allocate space for each name dynamically using malloc( ) and then store the address in the array of pointers to strings.
What will be the output of the following program
main( )  

{  

static char *s[ ] = {  

"ice",  

"green",  

"cone",  

"please"  

              } ;  

  

staic char **ptr[ ] = { s + 3 , s + 2 , s + 1 , s } ;  

char ***p = ptr ;  

printf ( "\n%s" , **++p ) ;  

printf ( "\n%s" , *--*++p + 3 ) ;  

printf ( "\n%s" , *p[-2] + 3 ) ;  

printf ( "\n%s" , p[-1][-1] + 1 ) ;  

}  

Output: 
   cone
   ase 
   reen
Explanation: 
This time we seem to be faced with a galaxy of stars! We would do well to take the help of a figure 1. in crossing them one by one. At the outset,  s[ ] has been declared and initialised as an array of pointers. Simply saying  s  gives us the base address of this array, 4006 as can be seen from Figure 1. ptr[ ]   stores the addresses of the locations where the base addresses of strings comprising  s[ ]   have been stored, starting with the last string. To put it more clearly,  ptr[0] stores the address 4012, which is the address at which base address of the string "please" is stored. Similarly,  ptr[1]   stores the address 4010, which is where the base address of the string "cone" is stored, and so on. Since ptr[ ]   essentially stores addresses of addresses, it is a pointer to a pointer, and has been declared as such using  ** . 
Finally, the base address of  ptr[ ]   is assigned to a pointer to a pointer to a pointer,  p. Reeling?! Going through the figure would decidedly aid you to get disentangled. Thus,  p  is assigned the address 6020.  
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Figure 1.  
Having sorted out what is present where, we now proceed to the printf( ) s. Let us tackle the expressions one by one. 
**++p 
The first one prints out the string starting from the address **++p . The ++ goes to work first and increments p not to 6021, but to 6022. The C compiler has been made to understand that on incrementing a pointer variable, it is to point to the next location of its type. The words `of its type' hold significance here. A pointer to a char on incrementing goes one byte further, since a char is a 1-byte entity. A pointer to an int points 2 bytes further, as an int is a 2-byte entity. Also, a pointer by itself is always a 2-byte entity, so incrementing a pointer to a pointer would advance you by 2 bytes. 
Having convinced ourselves that p now stores 6022, we go on to evaluate the expression further. *p signifies contents of 6022, i.e. 4010. **p means value at this address, i.e. value at 4010, which is the address 1010. The printf( ) prints the string at this address, which is "cone". 
*--*++p + 3 
p , presently contains 6022, which on incrementing becomes 6024. Value at this address is the address 4008, or in terms of s , s + 1 . On this the decrement operator -- works to give 4006, i.e. s . Value at 4006, or *( s ) is 1000. Thus the expression is now reduced to ( 1000 + 3 ), and what finally gets passed to printf( ) is the address 1003. Value at this address is a '\0', as at the end of every string a '\0' is inserted automatically. This '\0' is printed out as a blank by printf( ) . 
*p[-2] + 3 
The current address in p is 6024. *p[-2] can be thought of as *( *( p - 2 ) ) , as num[i] is same as *( num + i ) . This in turn evaluates as *( *( 6024 - 2 ) ) , i.e. *( *( 6020 ) ) , as p is a pointer to a pointer. This is equal to *( 4012 ) , as at 6020 the address 4012 is present. Value at 4012 is 1015, i.e. the base address of the fourth string, "please". Having reached the address of letter `p', 3 is added, which yields the address 1018. The string starting from 1018 is printed out, which comprises of the last three letters of "please", i.e. `ase'. 
p[-1][-1] + 1 
The above expression can be thought of as *( p[-1] - 1 ) + 1, as num[i] and *( num + i ) amounts to the same thing. Further, p[-1] can itself be simplified to *( p - 1 ) . Hence we can interpret the given expression as *( *( p - 1 ) - 1 ) + 1 . Now let us evaluate this expression. 
After the execution of the third printf( ) , p still holds the address 6024. *( 6024 - 1 ) gives *( 6022 ) , i.e. address 4010. Therefore the expression now becomes *( 4010 - 1 ) + 1 . Looking at the figure you would agree that 4010 can be expressed as s + 2 . So now the expression becomes *( s + 2 - 1 ) + 1 or *( s + 1 ) + 1 . Once again the figure would confirm that *( s + 1 ) evaluates to *( 4008 ) and  *( 4008 ) yields 1004, which is the base address of the second string "green". To this, 1 is added to yield the address of the first element, `r'. With this as the starting address, printf( ) prints out what is remaining of the string "green". 
What will be the output of the following program 

main( )  

{  

char str[ ] = "For your eyes only" ;  

int i ;  

char *p ;  

for ( p = str, i = 0 ; p + i <<= str + strlen ( str ) ; p++, i++ )   

printf ( "%c", *( p + i ) ) ;  

 }

Output 
 Fryu ysol<space> 
Explanation 
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Figure 2 
The for loop here hosts two initialisations and two incrementations, which is perfectly acceptable. However, there must always be a unique test condition. In the initialisation part, p is assigned the base address of the string, and i is set to 0. Next the condition is tested. Let us isolate this condition for closer examination. 
p + i <<= str + strlen ( str ) 
Since length of str[ ] is 18, str + strlen ( str ) would give the address of '\0' present at the end of the string. If we assume that the base address of the string is 4001, then the address of '\0' would be 4019. Since p has been assigned the base address of the string, in the first go, p + 0 would yield 4001. Since this is less than 4019, the condition holds good, and the character present at the address ( p + 0 ) , i.e. `F', is printed out. This can be understood better with the aid of the Figure 2. After this, both p and i are incremented, so that p contains 4002 and i contains 1, and once again the condition in the for loop is tested. This time ( p + i ) yields 4003, whereas the expression str + strlen ( str ) continues to yield 4019. Therefore again the condition is satisfied and the character at address 4003, i.e. `r' gets printed. Likewise, alternate elements of the string are outputted till i is 8, corresponding to which `l' is printed. Now, when p and i are incremented one more time, the test condition evaluates to: 

p + i <<= str + strlen ( str ) 
4019 <<= 4019 
The 18th element of str is of course the '\0', which is also printed out as a blank. On further incrementation of p and i , control snaps out of the for and the program execution is terminated. 

Pointers And Structures 
a. Structure is usually a collection of dissimilar data types; unlike an array which is a collection
of similar data types. Usually a structure is declared first followed by definition of a structure 
 variable as shown below:

/* declaration of a structure */
struct book
{
    char name[20] ;
    int numpages ;
    float price ;
} ;

/* definition of a structure variable */
struct book b ;
  

b. A structure variable can be initialized at the same place where it is being defined, as in
struct book b = { "Basic", 425, 135.00 } ;
  

c. Declaration of a structure and definition of a structure variable can be combined into one. When this
done mentioning the structure name is optional.

struct
{
    char name[20] ;
    int numpages ;
    float price ;
} b = { "Basic", 425, 135.00 } ;
   

d. Size of a structure variable is sum of sizes of its individual elements. For example, size of b 
 in (c) above is:  20 + 2 + 4 = 26 bytes.
  

e. Elements of a structure are stored in adjacent memory locations. For example, the following program would produce the output 
4001, 4021, 4023.
  

f. 
struct book
{
    char name[20] ;
    int numpages ;
    float price ;
} ;
struct book b = { "Basic", 425, 135.00 } ;
printf ( "%u %u %u", b.name, &b.numpages, &b.price ) ;
  

g. It is possible to build an array of structures.
    struct book
    {
       char name[20] ;
       int numpages ;
         float price ;
    } ;
    struct book b[ ] = {
    { "Basic", 425, 135.00 },
    { "Pascal", 500, 155.00 },
    { "VBasic", 625, 335.00 }
                              } ;
   

h. Nested structures are legal as  in:

struct address
{
    char city[20] ;
    long int pin ;
} ;
struct emp
{
    char n[20] ;
    int age ;
    struct address a ;
    float s ;
} ;
struct emp e = { "Rahul", 23, "Nagpur", 440010, 4000.50 } ;

  

i. Contents of one structure variable can be copied either into another structure variable either piece 
meal or at one shot. This is shown below:

struct book
{
    char name[20] ;
    int numpages ;
    float price ;
} ;

struct book b1 = { "Basic", 425, 135.00 } ;
struct book b2, b3 ;

/* piecemeal copying */
strcpy ( b2.n, b1.n ) ;
b2.numpages = b1.numpages ;
b2.price = b1.price ;

/* copying at one shot */
b3 = b2 ;

j. Elements of a structure can be passed to a function.

main( )
{
    struct book
    {
         char name[20] ;
         int numpages ;
         float price ;
    } ;

    struct book b1 = { "Basic", 425, 135.00 } ;

    /* mixed call - call be value + call by reference */
       display ( b1.name, b1.numpages, b1.price ) ;

    /* pure call by reference */
       show ( b1.name, &b1.numpages, &b1.price ) ;
}

display ( char *n, int nop, float pr )
{
    printf ( "%s %d %f", n, nop, pr ) ;
}

display ( char *n, int *nop, float *pr )
{
    printf ( "%s %d %f", n, *nop, *pr ) ;
}
  

k. Entire structure can also be passed to a function.

// declaration must be global.
// Otherwise diaplay1() and show1() can't use it
struct book
{ 
    char name[20] ;
    int numpages ;
    float price ;
} ;

main( )
{
    struct book b1 = { "Basic", 425, 135.00 } ;
    // call be value
    display1 ( b1 ) ;

   // call by reference
   show1 ( &b1 ) ;
}

display1 ( struct book b2 )
{
    printf ( "%s %d %f", b2.name, b2.numpages, b2.price ) ;
}

show1 ( struct book *b2 )
{
    printf ( "%s %d %f", ( *b2 ).name, ( *b2 ).numpages, ( *b2 ).price ) ;
    printf ( "%s %d %f", b2->name, b2->numpages, b2->price ) ;
}
  

l. Self referential structures contain a pointer to itself within its declaration. These are necessary for building linked lists.

struct node
{
    int data ;
    node *link ;
} ;
  

What will be the output of the following program
  
main( )  

{  

struct s1  

{  

char *z ;  

int i ;  

struct s1 *p ;  

} ;  

static struct s1 a[ ] = {  

{ "Nagpur", 1, a + 1 },  

{ "Raipur", 2, a + 2 },  

{ "Kanpur", 3, a }  

} ;  

struct s1 *ptr = a ;  

printf ( "\n%s %s %s", a[0].z, ptr->z, a[2].p->z ) ;  

}  

Output 
      Nagpur Nagpur Nagpur 

Explanation:
The zeroth and first elements of struct s1 are a char pointer and an int respectively. The second element is what's new. It is a pointer to a structure. That is, p stores the starting address of a structure variable of the type struct s1. Next, a[ ], an array of such structures is declared as well as initialised. During initialisation the base address of "Nagpur" is stored  in a[0].z, 1 is stored in the element a[0].i, and a + 1 is assigned to a[0].p. On similar lines, the remaining two elements of the array are initialised.  a[1].z, a[1].i and a[1].p are assigned "Raipur", 2 and a + 2 in that order, and "Kanpur", 3 and a are  stored at a[2].z, a[2].i and a[2].p respectively. What exactly do a, a + 1 and a + 2 signify? a, of course, is the base address of the array a[ ]. Let us assume it to be 4000, as shown in  Figure 1. Locations 4000 and 4001 are occupied by the char   pointer a[0].z, since a pointer is always two bytes long.  

The next two bytes are used to store the integer a[0].i, and then 4004 and 4005 are used by  a[0].p.  Similarly, the next 6 bytes store the first structure a[1], and the 6 bytes after that contain a[2], the second structure  in the array. 
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Figure 1.  
Now, when we say a + 1, we do not arrive at 4001, but at 4006. This is because on incrementing any pointer, it  points to the next location of its type. a points to the zeroth structure in the array, i.e. a[0]. Hence, on incrementing a, it  will point to the next immediate element of its type, i.e. the first structure a[1] of the array. Likewise, a + 2 signifies the address  of the second element a[2] of the array. Thus, a[0].p contains address 4006 (refer figure), a[1].p contains 4012, and a[2].p stores 4000. A struct pointer ptr is now set up, which is assigned a, the base address of the array. In the printf( ), a[0].z denotes  the address from where "Nagpur" is stored. Hence "Nagpur" gets printed out. Since ptr contains the address of a[0], ptr->z refers to the contents of element z of the array element a[0]. Thus ptr->z gives the address A0 (refer figure) and this address happens  to be the base address of the string "Nagpur". Hence "Nagpur" gets printed out. Let us now analyse the expression a[2].p->z. The left side of the arrow operator always represents the base address of a structure. What structure does a[2].p point to?  Looking at the figure we can confirm that a[2].p contains the address 4000, which is the base address of the array a[ ]. Hence  the expression a[2].p->z can also be written as a->z. Since a is the base address of the structure a[0], this expression refers to the element z of the zeroth structure. Thus, "Nagpur" gets printed for the third time.  

What will be the output of the following program 
main( )  

{  

struct s1  

{  

char *str ;  

int i ;  

struct s1 *ptr ;  

} ;  

static struct s1 a[ ] = {  

{ "Nagpur", 1, a + 1 },  

{ "Raipur", 2, a + 2 },  

{ "Kanpur", 3, a }  

      } ;  

  

struct s1 *p = a ;  

int j ;  

  

for ( j = 0 ; j <<= 2 ; j++ )  

{  

printf ( "\n%d " , --a[j].i ) ;  

printf ( "%s" , ++a[j].str ) ;  

}  

}
Output

0 agpur


1 aipur


2 anpur
Explanation
The example deals with a structure similar to the one we just encountered. Picking up from the for loop, it is executed for 3 values of j: 0, 1 and 2. The first time through the for loop, j is equal to zero, so the first printf( ) prints --a[0].i. Since the dot operator has a higher priority, first a[0].i is evaluated, which is 1. As -- precedes the value to be printed, 1 is first decremented to 0, and then printed out. 
The second printf( ) prints the string at address ++a[0].str. a[0].str gives the starting address of "Nagpur". On incrementing, it points to the next character, `a' of "Nagpur", so starting from `a', the remaining string "agpur" is outputted. A similar procedure is repeated for j = 1, and then once again for j = 2, following which the execution is terminated. 
Pointers And Functions 
Every type of variable with the exception of register, has an address. we have seen how we can reference variable of type char, int, float etc. through their addresses - that is by using pointers. Pointers can also point to C functions. And why not? C functions have addresses. If we know the function's address we can point to it, which provides another way to evoke it. Let us see how this can be done. 
main( )   

{  

int display( ) ;  

printf ( "\nAddress of function display is %u",display ) ;  

display( ) ; /* usual  way of invoking a function*/  

}
display( )   

{  

printf ( "\n Long live viruses!!" ) ;  

}
The output of the program would be: 
               Address of function display is 1125  

Long live viruses!!

Note that to obtain the address of a function all that we have to do is to mention the name of the function, as has been done in printf( ) statement above. This is similar to mentioning the name of the array to get its base address.
Now let us see how using the address of a function we can manage to invoke it. This is shown in the program given below: 
/* Invoking function using pointer to a function */ 
main( )   

{   

int display( ) ;  

int ( *func_ptr )( ) ;  

func_ptr = display ; /* assign address of function */   

printf ( "\nAddress of function display is %u", func_ptr ) ;   

( *func_ptr )( ) ;  

/* invokes the function display( ) */   

}   

  

display( )  

{   

printf ( "\nLong live viruses!!" ) ;  

}
The output of the program would be: 
           Address of function display is 1125  

Long live viruses!!   

In main( ) we declare the function display( ) as a function returning an int. But what are we to make of the declaration,  

int ( *func_ptr )(  ) ;   

that comes in the next line? We are obviously declaring something which, like display( ), will return an int. But what is it? And why is *func_ptr enclosed in parentheses?   

If we glance down a few lines in our program, we see the statement,   

func_ptr = display ;  

So we know that func_ptr is being assigned the address of display( ) . Therefore, func_ptr must be a   

pointer to the function display( ).  
Thus, all that the declaration  

int ( *func_ptr )( ) ;  

means is, that func_ptr is a pointer to a function, which returns an int. And to invoke the function we are just required to write the statement,   

( *func_ptr )(  ) ;
As we have seen, we can have an array of pointers to a int, float, string and structure similarly we can have an array of pointers to a function. It is illustrated in following program.
  

main(  )  

{  

int ( *p [ 3 ] ) ( int, float ) ;  

int i ;  

void fun1 ( int , float ) ;  

void fun2 ( int , float ) ;  

void fun3 ( int , float ) ;  

  

clrscr( ) ;  

  

p [ 0 ] = fun1  ;  

p [ 1 ] = fun2 ;  

p [ 2 ] = fun3 ;  

  

for ( i = 0; i <= 2; i++ )  

( *p [ i ] ) ( 10, 3.14 ) ;  

  

getch( ) ;  

}  

  

void fun1 ( int a, float b )  

{  

printf ( "\na = %d  b = %f",a, b ) ;  

}  

  

void fun2 ( int c, float d )  

{  

printf ( "\nc = %d  d = %f",c, d ) ;  

}  

  

void fun3 ( int e, float f )  

{  

printf ( "\ne = %d  f = %f",e, f ) ;  

}  

In the above program we take an array of pointers to function int ( *p[3] ) ( int, float ) We store the addresses of three function f1( ), f2( ), f3( ) in array ( int *p[ ] ). In for loop we consecutively  call each function using their addresses stored in array.   

The output of the program would be:   

i = 10  j = 3.14 
a = 10 b = 3.14 
x = 10 y = 3.14 

