DOCUMENT NUMBER
S12CPU15UG/D

HCS12 V1.5 Core
User Guide
Version 1.2

Original Release Date: 12 May 2000
Revised: 17 August 2000

Motorola, Inc

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

@ MOTOROLA

Revision History

Release Number Date Author Summary of Changes
1.2 17 August 2000 Update allocated RAM space table.
12 13 Orctober 2000 outputs and per o2, prt i s ram. s s,
11 21 July 2000 Correct access detail for LSL instruction in appendix B
1.0 12 May 2000 Original draft. Distributed only within Motorola

Version 1.2 — 17 August 2000

HCS12 V1.5 Core

2

MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table of Contents

Section 1 Introduction

1.1 Core OVeIVIBW . ot ittt e e e e 23
1.2 FeaAlUIES . . . e 23
1.3 BlocKk Diagram 25
1.4 Architectural SUMMaArY e 26
1.5 Programming Model. e 26
1.6 Data Format SUMmMary e 27
1.6.1 Data TYPES. . oot 27
1.6.2 Memory Organization.t 28
1.7 AdAressing MOOESottt e e 28
1.8 INStrUCHiON Set OVEIVIEW. i e e e e e e e 29
1.8.1 Register and Memory Notation i e 43
1.8.2 Source Form NoOtation e 43
1.8.3 Operation Notation. e e 45
1.8.4 Address Mode Notation e 45
1.8.5 Machine Code Notation e e e 46
1.8.6 Access Detail Notation. e 47
1.8.7 Condition Code State Notation. i e 49

Section 2 Nomenclature

2.1 REfEIENCES. . . . o 51
2.2 Units and MeEasUIESottt e 51
2.3 SYMbBOIOGY . . . 51
2.4 Terminology 51

Section 3 Core Registers

3.1 Programming Model 53
3.1.1 ACCUMUIALONS e 53
3.1.2 Index Registers (X and Y) 54
3.1.3 Stack Pointer (SP) 55
3.14 Program Counter (PC) i 56
3.15 Condition Code Register (CCR). oot e e e 56
3.2 Core Register Mapo 58

@ MOTOROLA 3

Core User Guide — S12CPU15UG V1.2

Section 4 Instructions

4.1
4.2
42.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.3
43.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11
4.3.12
4.3.13
4.3.14
4.3.15
4.3.16
4.3.17
4.3.18
4.3.19
4.3.20
4.3.21
4.3.22
4.3.23
4.3.24

INSIFUCHION TYPES 63
Addressing Modes 63
Effective AdAress 64
Inherent Addressing Mode. 64
Immediate Addressing Mode 64
Direct Addressing Mode. 65
Extended Addressing Mode. 65
Relative Addressing Mode 66
Indexed Addressing Modes 66
Instructions Using Multiple Modes 71
INStruction DeSCIIPLIONS 73
Load and Store INStruCtiONS 73
Transfer and Exchange Instructions 74
MOVE INSIIUCHIONS o e e 74
Add and Subtract INStructions 75
Binary Coded Decimal Instructions i 76
Decrement and Increment Instructions 76
Compare and Test INStrUCtiONS e 77
Boolean LOQIC INSIIUCHIONS e 78
Clear, Complement, and Negate Instructions oo ... 78
Multiply and Divide INStructions 79
Bit Test and Bit Manipulation Instructions 79
Shift and Rotate INStructions 80
Fuzzy LOQIC INSIIUCHIONS. e 81
Maximum and Minimum INStructions 81
Multiply and Accumulate Instruction. 83
Table Interpolation INStructions 83
Branch INStructions 84
Jump and Subroutine INStruCtions 86
INterrupt INStrUCtiONS 87
Index Manipulation InStructions 88
Stacking INSTrUCLIONS 89
Load Effective Address INStructions. 90
Condition Code INSIrUCHIONS e e 90
STOP and WAL INSTrUCLIONS oo e 91

Core User Guide — S12CPU15UG V1.2

4.3.25 Background Mode and Null Operation Instructions 91
4.4 High-Level Language SUPPOIto oottt 92
44.1 Data TYPES. . . oo 92
4.4.2 Parameters and Variables 92
4.4.3 Increment and Decrement Operators. 94
4.4.4 Higher Math FUNCHIONS et 94
4.4.5 Conditional If CONSIIUCESo e 94
4.4.6 Case and SwitCh Statements. 95
4.4.7 P OIS . .o 95
4.4.8 Function Calls 95
4.4.9 Instruction Set Orthogonality 95
45 OpCOOE Map. . . 97
4.6 Transfer and Exchange Postbyte Encoding. 99
4.7 Loop Primitive Postbyte (Ib) Encoding 100
4.8 Indexed Addressing Postbyte (xb) Encoding 101

Section 5 Instruction Execution

5.1 Normal Instruction Execution 103
5.2 EXECULION SEOUENCE. . . . o ittt et e e e e 103
5.2.1 NO MOVEMENL. e e 103
5.2.2 Advance and Load fromData Bus. i 103
53 Changes of FIOW. 104
5.3.1 EXCEPONS . . oo 104
5.3.2 SUBIOULINES . . . e 104
5.3.3 Branches 104
5.34 JUMIPDS. L o 106
5.4 InStruction TIMINgot 106
54.1 Register and Memory Notation i 120
5.4.2 Source Form NoOtation o 121
5.4.3 Operation Notation. 122
544 Address Mode Notation e 122
545 Machine Code Notation e e e 123
5.4.6 Access Detail Notation. e 123
5.4.7 Condition Code State Notation. i e 126
5.5 External Visibility Of Instruction Queue 126
55.1 Instruction Queue Status Signals. 126

@ MOTOROLA 5

Core User Guide — S12CPU15UG V1.2

5.5.2 No Movement (0:0) 128
5.5.3 ALD — Advance and Load from Data Bus (1:0) ..., 128
554 INT — Start Interrupt (0:1)o e 128
5.5.5 SEV — Start Even Instruction (1:0)o 128
5.5.6 SOD — Start Odd Instruction (L:1) e 129

Section 6 Exception Processing

6.1 Exception Processing OVEIVIEW.ottt e e e e 131
6.1.1 ReESEt ProCesSiNg. . . o oo e 133
6.1.2 INterrupPt ProCesSINg oo 133
6.2 EXCEPLiON VECIOIS. . . .ot e 135
6.3 EXCEPLON TYPES. . .ot e e e 136
6.3.1 RESElS . .o 136
6.3.2 I TUPES . . o e 137

Section 7 Core Interface

7.1 CoreInterface OVEIVIEW. o e 141
7.1.1 Signal SUMMaANY. 142
7.2 Signal DesCriPtiONS. oot 145
7.2.1 Internal Bus Interface Signals 145
7.2.2 External Bus Interface Signals. 148
7.2.3 Clock and Reset Signals e 150
7.2.4 Vector Request/Acknowledge Signals. 151
7.2.5 Stop and Wait Mode Control/Status Signals 151
7.2.6 Background Debug Mode (BDM) Interface Signals. 151
7.2.7 Memory Configuration Signals. 152
7.2.8 Scan Control Interface Signals. 152
7.3 Interface Operation. 152
7.3.1 Read Operations 152
7.3.2 Write OPErationS 155
7.3.3 Multiplexed External Bus Interface. i 158
7.3.4 General Internal Read Visibility Timing 161
7.3.5 Detecting Access Type from External Signals. 162

Section 8 Core Clock and Reset Connections
8.1 Clocking OVeIVIEW . . . oot e e 163

Core User Guide — S12CPU15UG V1.2

8.1.1 Basic Clock Relationshipo 164
8.1.2 Reset Relationship.o 165
8.1.3 Phase-Locked Loop Interface e 165
8.1.4 HCS12 CPU Waitand Stop Modes e 166
8.2 Signal SUMMaANY 166
8.3 Detailed Clock and Reset Signal Descriptions. 167
8.3.1 Clock and Reset Signals e 167
8.3.2 Stop and Wait Mode Control/Status Signals 168

Section 9 Core Power Connections

0.1 POWEI OVEIVIEW . . . o ot ettt e e e e e e e e e e 169
9.1.1 Power and Ground SuUmMmMary.t 169

Section 10 Interrupt (INT)

L10.1 OVEIVIEW. . o oottt et e e e e e e 171
10.1.1 FeAIUIES. . . ottt e e 171
10.1.2 Block Diagram 172
10.2 Interface Signals. 172
10.3 REQIStEIS . . oo 173
10.3.1 Interrupt Test Control Register. e 173
10.3.2 Interrupt TESt REQISIEIS 174
10.3.3 Highest Priority | Interrupt (Optional) 175
10.4 OPerationottt 175
10.4.1 Interrupt EXception REQUESTS.ottt 175
10.4.2 Reset EXception ReqUESTS. 176
10.4.3 EXCeption Priorityo 176
10.5 Modes of Operation 177
10.5.1 Normal Operation. 177
10.5.2 Special Operation. 177
10.5.3 Emulation MOdes 177
10.6 Low-Power OptioNS 177
10.6.1 RUNMOOE. o e 177
10.6.2 Wait MOdeo 177
10.6.3 SIOP MOOE . .. oo e 177
10.7 Motorola Internal Information 177

Section 11 Module Mapping Control (MMC)

@ MOTOROLA 7

Core User Guide — S12CPU15UG V1.2

11,1 OVEIVIEW. . o ottt ettt e e e e e e e 179
11,11 FeAlUIES. . . oo e e 179
11.1.2 Block Diagramo 180
11.2 Interface Signals. 180
11.3 REQISIEIS . oo 181
11.3.1 Initialization of Internal RAM Position Register (INITRM) 182
11.3.2 Initialization of Internal Registers Position Register (INITRG) 182
11.3.3 Initialization of Internal EEPROM Position Register (INITEE) 183
11.3.4 Miscellaneous System Control Register (MISC) 184
11.3.5 Reserved Test Register Zero (MTSTO)t 185
11.3.6 Reserved Test Register One (MTSTL) e 185
11.3.7 Memory Size Register Zero (MEMSIZO) 186
11.3.8 Memory Size Register One (MEMSIZ1). i 187
11.3.9 Program Page Index Register (PPAGE) i, 188
11,4 OPerationottt 189
11,41 Bus CoNtrol . ..o o 189
11.4.2 Address DeCcodingo 189
11.4.3 Memory EXPanSION 191
11.5 Motorola Internal Information 196
11.5.1 TeSt ReQISIEIS . . . oo 196
11.52 MMCBUS CoNtrol. 198

Section 12 Multiplexed External Bus Interface (MEBI)

12,1 OVEBIVIEW. . . oottt e e e e 201
12.1.1 FeAIUIES. . . o o e 201
12.1.2 Block Diagram 202
12.2 Interface Signals. e 202
12.2.1 MEBI Signal DescCriptions. 203
12,3 REOISIEIS . .o 207
12.3.1 Port AData Register (PORTA) e e 208
12.3.2 Data Direction Register A (DDRA) it e e 209
12.3.3 Port B Data Register (PORTB) e 210
12.3.4 Data Direction Register B(DDRB). e 210
12.3.5 Port E Data Register (PORTE) e 211
12.3.6 Data Direction Register E(DDRE). i e 212
12.3.7 Port E Assignment Register (PEAR) e 213

Core User Guide — S12CPU15UG V1.2

12.3.8 MODE Register (MODE) e 215
12.3.9 Pullup Control Register (PUCR). e 218
12.3.10 Reduced Drive Register (RDRIV) e 219
12.3.11 External Bus Interface Control Register (EBICTL).o, 220
12.3.12 IRQ Control Register (IRQCR). 220
12.3.13 Reserved RegiStersS. 222
12.3.14 Port K Data Register (PORTK).t 222
12.3.15 Port K Data Direction Register (DDRK) i 223
12,4 OPerationottt 224
12.4.1 External Bus CONtrol e 224
12.4.2 External Data Bus Interface. i 224
12.4.3 CoNtrolo 224
12.4.4 ReQISIEIS . . oo e 224
12.4.5 External System Pin Functional Descriptions, 225
12.4.6 Detecting Access Type from External Signals. 226
12.4.7 Stretched Bus CyClesS. 227
12.4.8 Modes Oof Operationt 227
12.4.9 Internal Visibility 231
12.4.10 Secure MOOe o 232
12.5 Low-Power OptionSs 232
1251 RUNMOOE. . .. o e 232
1252 Wait Mode 232
12.5.3 SIOP MOOE . . oo 232
12.6 Motorola Internal Information 232
12.6.1 Peripheral Mode Operation 232
12.6.2 Special Test Clock o 233

Section 13 Breakpoint (BKP)

13,1 OVBIVIEW. . o oottt e 235
13.1.1 FeAMUIES. . . oot 235
13.1.2 Block Diagram e 236
13.2 Interface Signals. 238
13,3 REOISIEIS . .ot e 238
13.3.1 Breakpoint Control Register O (BKPCTO). i 238
13.3.2 Breakpoint Control Register 1 (BKPCTL). i 239
13.3.3 Breakpoint First Address Expansion Register (BKPOX). 242

@ MOTOROLA 9

Core User Guide — S12CPU15UG V1.2

13.3.4 Breakpoint First Address High Byte Register (BKPOH) 243
13.3.5 Breakpoint First Address Low Byte Register (BKPOL). 243
13.3.6 Breakpoint Second Address Expansion Register (BKP1X) 243
13.3.7 Breakpoint Data (Second Address) High Byte Register (BKP1H) 244
13.3.8 Breakpoint Data (Second Address) Low Byte Register (BKP1L)............... 244
13,4 OPerationottt 245
13.4.1 Modes Of Operation 245
13.4.2 Breakpoint Priority 246
13.5 Motorola Internal Information 246

Section 14 Background Debug Mode (BDM)

141 OVEIVIEW. . . oottt e e e e e e e 247
14.1.1 FeAIUIES. . . o ot e e e e 247
14.1.2 Block Diagram e e 248
14.2 Interface Signals. 248
14.2.1 Background Interface Pin (BKGD) i 248
14.2.2 High Byte Instruction Tagging Pin (TAGHI)ttt .. 248
14.2.3 Low Byte Instruction Tagging Pin (TAGLO)ot 249
14,3 REOISIEIS . .ot 249
14.3.1 BDM Status Register e 250
14.3.2 BDM CCRHolding Register e 252
14.3.3 BDM Internal Register Position Register i, 253
14,4 OpPeratiOon . ..ottt 253
14,41 SECUNY . .ottt e 253
14.4.2 Enabling and Activating BDM. e 254
14.4.3 BDM Hardware Commandst 254
14.4.4 Standard BDM Firmware Commands i 255
14.45 BDM Command Structure 256
14.4.6 BDM Serial Interface 258
14.4.7 INStrUCtiON TraCing . . .ottt e e e e e e e e 260
14.4.8 INStruction Tagging. . . . oottt e e e 260
145 Modes of Operation 261
1451 Normal Operation. 261
14.5.2 Special Operation. 262
1453 EmuIation MOAES 262
14.6 Low-Power OptioNns it 262

10 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

14.6.1 RUNMOOE. 262
14.6.2 Wait MOde e 262
14.6.3 SIOP MOOE . ..o 262
14.7 Interrupt Operationo 262
14.8 Motorola Internal Information 262
14.8.1 ReQISIEIS . . oo 263
14.8.2 BDM Instruction Register (Hardware) 264
14.8.3 BDM Instruction Register (Firmware) 265
14.8.4 BDM Status Register 266
14.8.5 BDM Shift Register 267
14.8.6 BDM Address Register 268
14.8.7 Special Peripheral Mode 268
14.8.8 Standard BDM Firmware LiSting« ..ot 268
14.8.9 Secured Mode BDM Firmware Listing i 275

Section 15 Secured Mode of Operation

15,0 OVeIVIBW. . .ttt e e 279
15,0 1 FRaAUIES. . .t e 279
15.1.2 Block Diagram e 280
15.2 Interface Signals. 280
15,3 REOISIEIS . .o i 281
15,4 Operationot 281
15.4.1 Normal Single-ChipMode e e 281
15.4.2 Expanded Mode. 281
15.4.3 Unsecuring The System. i e e e e 281
15.5 Motorola Internal Information 283
15.5.1 BDM Secured Mode Firmware.t 283

Appendix A Instruction Set and Commands

Al General. e 285
A2 Glossary NOtation. 285
A.2.1 Condition Code State Notation. i e 285
A.2.2 Register and Memory Notation 286
A.2.3 Address Mode Notation e 287
A.2.4 Operator NOtation.ot e 287
A.2.5 Machine Code Notation e 287

@ MOTOROLA 11

Core User Guide — S12CPU15UG V1.2

A.2.6 Source Form Notation 288
A.2.7 CPU Cycles NOtationo e e 289
A3 GlOSSarY . . oo 292

Appendix B Fuzzy Logic Support

B.1 General. 503
B.2 INtrodUCHiON. . . . oo 503
B.3 Fuzzy LOQIC BaSICS. o 503
B.3.1 Fuzzification (MEM) 505
B.3.2 Rule Evaluation (REV and REVW) i 506
B.3.3 Defuzzification (WAV) 508
B.4 Example Inference Kernel 508
B.5 MEMInstruction Details 510
B.5.1 Membership Function Definitions. 510
B.5.2 Abnormal Membership Function Definitions 511
B.6 REV,REVW Instruction Details e 514
B.6.1 Unweighted Rule Evaluation (REV) i 514
B.6.2 Weighted Rule Evaluation (REVW) e 518
B.7 WAV Instruction Details 523
B.7.1 Initialization Prior to Executing WAV 523
B.7.2 WAV Interrupt Details. 523
B.7.3 Cycle-by-Cycle Details for WAV andwavr. 524
B.8 Custom Fuzzy Logic Programming 527
B.8.1 Fuzzification Variations 527
B.8.2 Rule Evaluation Variations. 529
B.8.3 Defuzzification Variations. 530

Appendix C M68HC11 to HCS12 Upgrade

C.l General. ... e 531
C.2 Source Code Compatibility. 531
C.3 Programmer’'s Model and Stacking 533
C.4 True 16-Bit Architecture 533
C4.1 BUS StIUCIUIES e 533
C4.2 INSIrUCHION QUEBUE. oot e e e 533
C.4.3 Stack FUNCHION 534
C.5 Improved INdexing e 535

12 @ MOTOROLA

C51
C5.2
C5.3
C54
C.6
C.6.1
C.6.2
C.6.3
C.7
C7.1
C.7.2
C.7.3
C.74
C.75
C.7.6
C.7.7
C.7.8
C.7.9
C.7.10
C.7.11
C.7.12

Core User Guide — S12CPU15UG V1.2

Constant Offset INdexingo 536
Autoincrement/Autodecrement Indexing 537
Accumulator Offset INdexingottt e 537
Indirect INdeXing.o 538
Improved Performance. 538
Reduced Cycle COUNLS e 538
Fast Matho 538
Code Size RedUCtioN 539
Additional FUNCLIONS 540
NEeW INSIIUCLIONS. e e 540
Memory-to-Memory MOVES 542
Universal Transferand Exchange 542
LOOP CONSHIUCT. 542
LoNg BranChes. 542
Minimum and Maximum INStructions 543
FUzzy LOQIC SUPPOIt . . . e 543
Table Lookup and Interpolation 544
Extended Bit Manipulation 544
Pushand PullDand CCR e 544
Compare SP. . .. 544
Support for Memory EXpansion 544

@ MOTOROLA 13

Core User Guide — S12CPU15UG V1.2

14 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

List of Figures

Figure 1-1
Figure 1-2
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 5-1
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 8-1
Figure 8-2
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4

@ MOTOROLA

CoreBlock Diagram. i 25
Programming Model 27
Programming Model 53
Accumulator A 54
Accumulator B.. 54
Index Register X 54
Index Register Y 54
Stack Pointer (SP) 55
Program Counter (PC). i 56
Condition Code Register (CCR) 56
Core Register Map Summaryoouo.. 61
Queue Status Signal Timing 127
Corelnterface Signals. 142
Basic 8-bit Peripheral Read Timing. 153
Basic 16-bit Peripheral Read Timing. 153
Basic 8-bit Memory Read Timing. 154
Basic 16-bit Memory Read Timing. 154
Basic 8-bit Core Register Read Timing 155
Basic 16-bit Core Register Read Timing 155
Basic 8-bit Peripheral Write Timing 156
Basic 16-bit Peripheral Write Timing 156
Basic 8-bit Memory Write Timing. 157
Basic 16-bit Memory Write Timing. 157
Basic 8-bit Core Register Write Timing 158
Basic 16-bit Core Register Write Timing 158
General External Bus Timing. 159
General Internal Read Visibility Timing 161
Corelnterface Signals. 164
System Clock Timing Diagram 165
Interrupt Block Diagram.. 172
Interrupt Register Summary. 173
Interrupt Test Control Register (ITCR). 173
Interrupt TEST Registers (ITEST) 174

Core User Guide — S12CPU15UG V1.2

Figure 10-5 Highest Priority | Interrupt Register (HPRIO). 175
Figure 11-1 Module Mapping Control Block Diagram. 180
Figure 11-2 Module Mapping Control Register Summary. 181
Figure 11-3 INITRMRegister e 182
Figure 11-4 INITRG Register e 182
Figure 11-5 INITEEReQISter. e 183
Figure 11-6 Miscellaneous System Control Register (MISC) 184
Figure 11-7 Reserved Test Register Zero (MTSTO) 185
Figure 11-8 Reserved Test Register One (MTST1) 185
Figure 11-9 Memory Size Register Zero. 186
Figure 11-10 Memory Size RegisterOne 187
Figure 11-11 Program Page Index Register (PPAGE) 188
Figure 11-13 Mapping Test Register Zero (MTSTO). 196
Figure 11-14 Mapping Test Register One (MTSTL1) 197
Figure 12-1 MEBI Block Diagram 202
Figure 12-2 MEBI Register Map Summary. 207
Figure 12-3 Port A Data Register (PORTA) 208
Figure 12-4 Data Direction Register A (DDRA). 209
Figure 12-5 Port B Data Register (PORTB) 210
Figure 12-6 Data Direction Register B(DDRB). 210
Figure 12-7 Port E Data Register (PORTE) 211
Figure 12-8 Data Direction Register E(DDRE). 212
Figure 12-9 Port E Assignment Register (PEAR) 213
Figure 12-10 MODE Register (MODE) e 215
Figure 12-11 Pullup Control Register (PUCR) 218
Figure 12-12 Reduced Drive Register (RDRIV) 219
Figure 12-13 External Bus Interface Control Register (EBICTL) 220
Figure 12-14 IRQ Control Register (IRQCR) 220
Figure 12-15 Reserved Registers. 222
Figure 12-16 Port K Data Register (PORTK) 222
Figure 12-17 Port K Data Direction Register (DDRK). 223
Figure 13-1 Breakpoint Block Diagram. 237
Figure 13-2 Breakpoint Register Summary. 238
Figure 13-3 Breakpoint Control Register 0 (BKPCTO) 239
Figure 13-4 Breakpoint Control Register 1 (BKPCT1) 240
Figure 13-5 Breakpoint First Address Expansion Register (BKPOX) 242
16

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Figure 13-6 Breakpoint First Address High Byte Register (BKPOH). 243
Figure 13-7 Breakpoint First Address Low Byte Register (BKPOL). 243
Figure 13-8 Breakpoint Second Address Expansion Register (BKP1X). . 244
Figure 13-9 Breakpoint Data High Byte Register (BKP1H)............ 244
Figure 13-10 Breakpoint Data Low Byte Register (BKP1L) 245
Figure 14-1 BDMBlock Diagram 248
Figure 14-2 BDM Register Map Summary 249
Figure 14-3 BDM Status Register (BDMSTS).t 250
Figure 14-4 BDM CCR Holding Register (BDMCCR)................ 252
Figure 14-5 BDM Internal Register Position (BDMINR) 253
Figure 14-11 BDM Instruction Register (BDMIST) 264
Figure 14-12 BDM Instruction Register (BDMIST) 265
Figure 14-13 BDM Shift Register (BDMSHTH). 267
Figure 14-14 BDM Shift Register (BDMSHTL) 267
Figure 14-15 BDM Address Register (BDMADDH). 268
Figure 14-16 BDM Address Register (BDMADDL) 268
Figure 15-1 Security Implementation Block Diagram 280
Figure B-1 Block Diagram of a Fuzzy Logic System................ 504
Figure B-2 Fuzzification Using Membership Functions. 506
Figure B-3 Fuzzy Inference Engine. 509
Figure B-4 Defining a Normal Membership Function 511
Figure B-5 MEM Instruction Flow Diagram 512
Figure B-6 Abnormal Membership FunctionCase 1................ 513
Figure B-7 Abnormal Membership FunctionCase 2................ 514
Figure B-8 Abnormal Membership FunctionCase 3................ 514
Figure B-9 REV Instruction Flow Diagram. 517
Figure B-10 REVW Instruction Flow Diagram. 522
Figure B-11 WAV and wauvr Instruction Flow Diagram 526
Figure B-12 Endpoint Table Handling 528

@ MOTOROLA

17

Core User Guide — S12CPU15UG V1.2

18 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

List of Tables

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8
Table 1-9
Table 2-1
Table 3-1
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 4-12
Table 4-13
Table 4-14
Table 4-15
Table 4-16
Table 4-17
Table 4-18
Table 4-19
Table 4-20
Table 4-21
Table 4-22

Addressing Mode Summary. 28
Instruction Set Summary 29
Register and Memory Notation 43
Source Form Notation 44
Operation Notation. 45
Address Mode Notation., 45
Machine Code Notation. 46
Access Detail Notation. 47
Condition Code State Notation 49
Symbolsand Operators. 51
Core Register Map Reference. 61
Addressing Mode Summary. 63
Summary of Indexed Operations. 68
Load and Store Instructions. 73
Transfer and Exchange Instructions 74
Move INStrUCtioNS. 74
Add and Subtract Instructions 75
BCD Instructions 76
Decrement and Increment Instructions 76
Compare and TestInstructions 77
Boolean Logic Instructions. 78
Clear, Complement, and Negate Instructions 78
Multiplication and Division Instructions 79
Bit Test and Bit Manipulation Instructions 79
Shift and Rotate Instructions 80
Fuzzy Logic Instructions i, 81
Minimum and Maximum Instructions 82
Multiply and Accumulate Instruction 83
Table Interpolation Instructions 83
Short Branch Instructions. 84
Long Branch Instructions., 85
Bit Condition Branch Instructions. 85
Loop Primitive Instructions. 86

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table 4-23
Table 4-24
Table 4-25
Table 4-26
Table 4-27
Table 4-28
Table 4-29
Table 4-30
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 6-1
Table 6-2
Table 6-3
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 8-1
Table 10-1
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-8
Table 11-9

20

Jump and Subroutine Instructions, 87
Interrupt Instructions 87
Index Manipulation Instructions 88
Stacking Instructions 89
Load Effective Address Instructions. 90
Condition Code Instructions., 90
STOP and WAl Instructions. 91
Background Mode and Null Operation Instructions. 91
Instruction Set Summary 106
Register and Memory Notation 120
Source Form Notation 121
Operation Notation. 122
Address Mode Notation. 122
Machine Code Notation. 123
Access Detail Notation. 123
Condition Code State Notation 126
IPIPE[1:0] Decoding when E Clockis High 127
IPIPE[1:0] Decoding when E ClockisLow 128
Exception Vector Map and Priority. 135
Reset Sources. i 136
Interrupt Sources 137
Core Interface Signal Definitions 142
Multiplexed Expansion Bus Timing - Preliminary Targets 160
Expansion Bus Timing - Preliminary Targets. 161
Access Type vs. Bus Control Pins. 162
Core Clock and Reset Interface Signals 166
Exception Vector Map and Priority. 176
External Stretch Bit Definition 184
Allocated EEPROM Memory Space 186
Allocated RAM Memory Space, 186
Allocated Flash EEPROM/ROM Physical Memory Space. . .. 187
Allocated Off-Chip Memory Options 188
Program Page Index RegisterBits. 189
Select Signal Priority 190
Allocated Off-Chip Memory Options 191
External/Internal Page Window Access. 191

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table 11-100K Byte Physical Flash/ROM Allocated. 193
Table 11-1116K Byte Physical Flash/ROM Allocated. 193
Table 11-1248K Byte Physical Flash/ROM Allocated. 193
Table 11-1364K Byte Physical Flash/ROM Allocated. 194
Table 11-14Wide Bus Enable Signal Generation 198
Table 11-15Read Data Bus Swapping, 199
Table 12-1 MEBI Interface Signal Definitions 203
Table 12-2 MODC, MODB, MODA Write Capability 216
Table 12-3 Mode Select and State of Mode Bits 216
Table 12-4 External System Pins Associated With MEBI 225
Table 12-5 Access Typevs.Bus ControlPins. 227
Table 12-6 Mode Pin Setup and Hold Timing 227
Table 12-7 Peripheral Mode Pin Configuration 232
Table 13-1 Breakpoint Mask Bits for First Address 240
Table 13-2 Breakpoint Mask Bits for Second Address (Dual Mode) 241
Table 13-3 Breakpoint Mask Bits for Data Breakpoints (Full Mode) 241
Table 14-1 Hardware Commandsciiiinnnnen... 255
Table 14-2 Firmware Commands. 256
Table 14-3 TagPinFunction 261
Table 14-4 TTAGO Decodingo v it 265
Table 14-5 RNEXT Decoding.ot 266
Table 15-1 Security Interface Signal Definitions 280
Table A-1 Condition Code State Notation 285
Table A-2 Register and Memory Notation 286
Table A-3 Address Mode Notation., 287
Table A-4 Operator Notationiiiinnnnnn... 287
Table A-5 Machine Code Notation., 288
Table A-6 Source Form Notation 289
Table A-7 CPUCycleNotation. 290
Table C-1 Translated M68HC11 Mnemonicscovvvv.. .. 531
Table C-2 Instructions with Smaller Object Code. 532
Table C-3 Comparison of Math Instruction Speeds 539
Table C-4 New HCS12 Instructions 540

@ MOTOROLA

21

Core User Guide — S12CPU15UG V1.2

22 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 1 Introduction

1.1 Core Overview

The HCS12 V1.5 Core is a 16-bit processing core using the 68HC12 instruction set architecture (ISA).
This makes the Core instruction set compatible with currently available Motorola 68HC12 based designs
and allows for Motorola 68HC11 source code to be directly accepted by assemblers used for the HCS12
Central Processing Unit (CPU). In addition, the Core contains the Interrupt (INT), Module Mapping
Control (MMC), Multiplexed External Bus Interface (MEBI), Breakpoint (BKP) and Background Debug
Mode (BDM) sub-blocks providing a tightly coupled structure to maximize execution efficiency for
integrating into a System-on-a-Chip (SoC) design. These sub-blocks handle all system interfacing with the
Core including interrupt and reset processing, register and memory mapping, memory and peripheral
interfacing, external bus control and source code debug for code development. A complete functional
description of each sub-block is included in later sections of this guide.

1.2 Features

The main features of the Core are:

» High-speed, 16-bit processing with the same programming model and instruction set as the
Motorola 68HC12 CPU

» Full 16-bit data paths for efficient arithmetic operation and high-speed mathematical execution

» Allows instructions with odd byte counts, including many single-byte instructions for more
efficient use of program memory space

» Three stage instruction queue to buffer program information for more efficient CPU execution

» Extensive set of indexed addressing capabilities including:
— Using the stack pointer as an indexing register in all indexed operations
— Using the program counter as an indexing register in all but auto increment/decrement mode
— Accumulator offsets using A, B or D accumulators

— Automatic index pre-decrement, pre-increment, post-decrement and post-increment (by -8 to
+8)

— 5-bit, 9-bit or 16-bit signed constant offsets
— 16-bit offset indexed-indirect and accumulator D offset indexed-indirect addressing

* Provides 2to 122 | bit maskable interrupt vectors, 1 X bit maskable interrupt vector, 2 nonmaskable
CPU interrupt vectors and 3 reset vectors

» Optional register configurable highest priority | bit maskable interrupt

* On-chip memory and peripheral block interfacing with internal memory expansion capability and
external data chip select

» Configurable system memory and mapping options

@ MOTOROLA 23

Core User Guide — S12CPU15UG V1.2

External Bus Interface (8-bit or 16-bit, multiplexed or non-multiplexed)

Multiple modes of operation

Hardware breakpoint support for forced or tagged breakpoints with two modes of operation:
— Dual Address Mode to match on either of two addresses

— Full Breakpoint Mode to match on address and data combination

Single-wire background debug system implemented in on-chip hardware

Secured mode of operation

Fully synthesizable design

Single Core clock operation

Full Mux-D scan test implementation

The HCS12 V1.5 Core is designed to interface with the system peripherals through the use of the I.P. Bus
and its interface defined by the Motorola Semiconductor Reuse Standards (MSRS). The Core
communicates with the on-chip memory blocks either directly through the Core interface signals or via the
STAR bus. Interfacing with memories external to the system is provided for through the MEBI sub-block
of the Core and the corresponding port/pad logic it is connected to within the system.

24

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

1.3 Block Diagram

A block diagram of the Core within a typical SoC system is giveRigure 1-1 below. This diagram is

a general representation of the Core, its sub-blocks and the interfaces to the rest of the blocks within the
SoC design. The signals related to BKGD, Port A, Port B, Port E and Port K are direct interfaces to
port/pad logic at the top level of the overall system.

STAR Bus
Resets—p» ™
Clock RAM
1 cpu MMC I
Central Module I I
Processin Mappin
Unit g CorFl’tFr)olg <:—II> EEPROM
|1
INT :
' |Flash
BDM BDM Interrupt ﬂ—P Flas
B.KGDQ Background EEPROM
Pin Debug BKP I
Mode | I
Breakpoint | I
| 8 [+ scl
MEBI b g |l
Multiplexed External Bus Interface - c [T SP|
[2)
2 4
= b
PortA PortB PortE PortK (1| Timer
(8-bit) (8-bit) (8-bit) (8-bit) u
|.P.Bus

Figure 1-1 Core Block Diagram

The main sub-blocks of the Core are:
» Central Processing Unit (CPU) - 68HC12 ISA compatible
* Interrupt (INT)
* Module Mapping Control (MMC)
* Multiplexed External Bus Interface (MEBI)
» Breakpoint (BKP)
» Background Debug Mode (BDM)

@ MOTOROLA 25

Core User Guide — S12CPU15UG V1.2
1.4 Architectural Summary

As briefly discussed previously, the Core consists of the HCS12 Central Processing Unit (CPU) along with
the Interrupt (INT), Module Mapping Control (MMC), Multiplexed External Bus Interface (MEBI),
Breakpoint (BKP) and Background Debug Mode (BDM) sub-blocks. The CPU executes the 68HC12 CPU
ISA with a three-stage instruction queue to facilitate a high level of code execution efficiency. The INT
sub-block interacts with the CPU to provide 2 to 122 | bit maskable (configured at system integration), 1
X bit maskable and 2 nonmaskable CPU interrupt vectors, 3 reset vectors and handles waking-up the
system from wait or stop mode due to a serviceable interrupt. The MMC sub-block controls address space
mapping and generates memory selects and a single peripheral select (to be decoded by the I.P. Bus) as
well as multiplexing the address and data signals for proper interaction with the CPU. The MEBI
sub-block functions as the external bus controller with four 8-bit ports (A, B, E and K) as well as handling
mode decoding and initialization for the Core. The BKP sub-block serves to assist in debugging of
software by providing for hardware breakpoints. The BKP supports dual address and full breakpoint
modes for matching on either of two address or on an address and data combination, respectively, to
initiate a Software Interrupt (SWI) or put the system into Background Debug Mode. The BKP also
supports tagged or forced breakpoints for breaking just before a specific instruction or on the first
instruction boundary after a match, respectively. The BDM sub-block provides for a single-wire
background debug communication system implemented within the Core with on-chip hardware. The BDM
allows for single-wire serial interfacing with a development system host.

The Core is a fully synthesizable single-clock design with full Mux-D scan test implementation. It is
designed to be synthesized and timed together as a single block for optimizing speed of execution and
minimizing area.

1.5 Programming Model

The HCS12 V1.5 Core CPU12 programming model, shoviAigare 1-2 , is the same as that of the
68HC12 and 68HC11. For a detailed description of the programming model and associated registers please
refer toSection 3 of this guide.

26 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

7 A ol7 B 0 | 8BIT ACCUMULATORS A AND B
15 D 0 | 16-BIT DOUBLE ACCUMULATOR D (A : B)

|15 X 0 | INDEX REGISTER X

|15 Y 0 | INDEXREGISTER Y

|15 SP 0 | STACK POINTER

|15 PC 0 | PROGRAM COUNTER

|s|x|H|1|n|z]v]c| conpITION CODE REGISTER

CARRY

OVERFLOW

ZERO

NEGATIVE

IRQ INTERRUPT MASK (DISABLE)
HALF-CARRY FOR BCD ARITHMETIC

XIRQ INTERRUPT MASK (DISABLE)

STOP DISABLE (IGNORE STOP INSTRUCTION)

Figure 1-2 Programming Model

1.6 Data Format Summary

Following is a discussion of the data types used and their organization in memory for the Core.

1.6.1 Data Types

The CPU uses the following types of data:
* Bits
* 5-bit signed integers
» 8-bit signed and unsigned integers
e 8-bit, 2-digit binary coded decimal numbers
* 9-bit signed integers
» 16-bit signed and unsigned integers
» 16-bit effective addresses

@ MOTOROLA

27

Core User Guide — S12CPU15UG V1.2

» 32-bit signed and unsigned integers

NOTE: Negative integers are represented in two’s complement form.

Five-bit and 9-bit signed integers are used only as offsets for indexed addressing modes. Sixteen-bit
effective addresses are formed during addressing mode computations. Thirty-two-bitinteger dividends are
used by extended division instructions. Extended multiply and extended multiply-and-accumulate
instructions produce 32-bit products.

1.6.2 Memory Organization

The standard HCS12 Core address space is 64K bytes. However, the CPU has special instructions to
support paged memory expansion which increases the standard area by means of predefined windows
within the available address space. Seetion 11 Module Mapping Control (MMC) for more

information.

Eight-bit values can be stored at any odd or even byte address in available memory. Sixteen-bit values
occupy two consecutive memory locations; the high byte is in the lowest address, but does not have to be
aligned to an even boundary. Thirty-two-bit values occupy four consecutive memory locations; the high
byte is in the lowest address, but does not have to be aligned to an even boundary.

All'l/O and all on-chip peripherals are memory-mapped. No special instruction syntax is required to access
these addresses. On-chip register and memory mapping are determined at the SoC level and are configured
during integration of the Core into the system.

1.7 Addressing modes

A summary of the addressing modes used by the Core is givEalle 1-1 below. The operation of each
of these modes is discussed in detafhaction 4 of this guide.

Table 1-1 Addressing Mode Summary

Addressing Mode Source Form Apbreviation Description
INST
Inherent (no externally supplied INH Operands (if any) are in CPU registers.
operands)
. INST #opr8i Operand is included in instruction stream; 8-hit or
Immediate or IMM 16-bit size implied by context
INST #opr16i plied by '
. Operand is the lower 8-bits of an address in the range
Direct INST opr8a DIR $0000—$00FF.
Extended INST oprl6a EXT Operand is a 16-bit address.
. INST rel8 Effective address is the value in PC plus an 8-bit or
Relative or REL 16-bit relative offset value
INST rell6 '
Indexed Effective address is the value in X, Y, SP, or PC plus a
(5-hit offset) INST 0prx5,xysp IDX 5-bit signed constant offset.
Indexed Effective address is the value in X, Y, or SP
(predecrement) INST oprx3,-xys IDX autodecremented by 1 to 8.

28

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table 1-1 Addressing Mode Summary

Addressing Mode Source Form Apbreviation Description
e o e e
Indexed INST oprx3.xys— IDX Effective address is the value in X, Y, or SP. The value
(postdecrement) is postdecremented by 1 to 8.
I Dx Bl s e g o SP e el
ooty |NST 0005 Dx [Fllctue s sie e vl 1 Y P orPC s
ot |wsTomsns e
ooy |NSTomaosp Dxp [GHeetue shdess b evelue X, Y SR o Pl
o InsTimass | (o [The e n X K SE o PG ke 1600 corsan
ety |NT I

1.8 Instruction Set Overview

All memory and I/O are mapped in a common 64K byte address space, allowing the same set of
instructions to access memory, I/O, and control registers. Load, store, transfer, exchange, and move
instructions facilitate movement of data to and from memory and peripherals.

There are instructions for signed and unsigned addition, division and multiplication with 8-bit, 16-bit, and
some larger operands.

Special arithmetic and logic instructions aid stacking operations, indexing, BCD calculation, and condition
code register manipulation. There are also dedicated instructions for multiply and accumulate operations,
table interpolation, and specialized mathematical calculations for fuzzy logic operations.

A summary of the CPU instruction set is givemable 1-2 below. A detailed overview of the entire
instruction set is covered Bection 4 of this guide along with an instruction-by-instruction detailed
description inAppendix A .

Table 1-2 Instruction Set Summary

. Address Machine .
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC

ABA AddBtoA; (A)+(B)O A INH 18 06 00 EERERRARR
ABXSame as LEAXB,X Add Bto X; (X)+(B)O X IDX 1AES5 Pf EEEEEEEE
ABYSame as LEAY B,Y AddBtoY; (Y)+(B)O Y IDX 19ED Pf EEEEEEES
ADCA #opr8i Add with carry to A; (A)+(M)+CO A IMM 89ii P
ADCA opr8a or (A)+imm+CO A DIR 99dd rPf =I=lal-[afafala
ADCA oprl6a EXT B9 hhll PO
ADCA oprx0_xysppc IDX A9 xb Pf
ADCA oprx9,xysppc IDX1 A9 xb ff PO
ADCA oprx16,xysppc IDX2 A9 xb ee ff PP
ADCA [D,xysppc] [D,IDX] [A9xb r
ADCA [oprx16,xysppc] [IDX2] A9 xb ee ff ::fprpgf

r

@ MOTOROLA 29

Core User Guide — S12CPU15UG V1.2

Source Form Operation Ac'\iﬁjorgzs Co%iér‘]%h(lrljlzx) Access Detail SXHINZVC
ADCB #0pr8i Add with carry to B; (B)+(M)+CO B IMM C9ii P
ADCB opr8a or (B)+imm+CO B DIR D9dd rPf =I=lal-[afalala
ADCB oprl6a EXT FOhhll PO
ADCB oprx0_xysppc IDX E9 xb Pf
ADCB oprx9,xysppc IDX1 E9 xb ff e
ADCB oprx16,xysppc IDX2 E9 xb ee ff PP
ADCB [D,xysppc] [D,IDX] |E9xb
ADCB [oprx16,xysppc] [IDX2] E9 xb ee ff fifrPf
fIPrPf
ADDA #opr8i Addto A; (A)+(M)O A IMM 8Bii P
ADDA opr8a or (A)+immO A DIR 9B dd rPf =I=lal-]alajala]
ADDA oprl6a EXT BB hhll rPO
ADDA oprx0_xysppc IDX AB xb rPf
ADDA oprx9,xysppc IDX1 AB xb ff rPO
ADDA oprx16,xysppc IDX2 AB xb ee ff frPP
ADDA [D,xysppc] [D,IDX] |ABxb fifrPf
ADDA [oprx16,xysppc] [IDX2] AB xb ee ff fIPrPf
ADDB #opr8i Addto B; (B)+(M)U B IMM CBiii P
ADDB opr8a or (B)+imm{ B DIR DB dd rPf Ilal-Jalalaa
ADDB opri6a EXT FBhhll rPO
ADDB oprx0_xysppc IDX EB xb rPf
ADDB oprx9,xysppc IDX1 EB xb ff rPO
ADDB oprx16,xysppc IDX2 EB xb ee ff frPP
ADDB [D,xysppc] [D,IDX] |EBxb fIfrPf
ADDB [oprx16,xysppc] [IDX2] EB xb ee ff fIPrPf
ADDD #0pr16i Addto D; (A:B)+(M:M+1)00 A:B IMM C3jjkk PO
ADDD opr8a or (A:B)+immQO A:B DIR D3dd RPf =I=I=I=lajajala)
ADDD opri6a EXT F3hhll RPO
ADDD oprx0_xysppc IDX E3 xb RPf
ADDD oprx9,xysppc IDX1 E3 xb ff RPO
ADDD oprx16,xysppc IDX2 E3 xb ee ff fRPP
ADDD [D,xysppc] [D,IDX] |E3xb fIfRPf
ADDD [oprx16,xysppc] [IDX2] E3 xb ee ff fIPRPf
ANDA #opr8i AND with A; (A)s(M)O A IMM 84ii P
ANDA opr8a or (A)simmO A DIR 94 dd rPf =I==I-falafol
ANDA oprl6a EXT B4 hhll rPO
ANDA oprx0_xysppc IDX A4 xb rPf
ANDA oprx9,xysppc IDX1 A4 xb ff rPO
ANDA oprx16,xysppc IDX2 A4 xb ee ff frPP
ANDA [D,xysppc] [D,IDX] |A4xb fifrPf
ANDA [oprx16,xysppc] [IDX2] A4 xb ee ff fIPrPf
ANDB #o0pr8i AND with B; (B)*(M)C B IMM C4ii P
ANDB opr8a or (B)simmC B DIR D4 dd rPf BEEERRCIE
ANDB opri6a EXT F4hhll rPO
ANDB oprx0_xysppc IDX E4 xb rPf
ANDB oprx9,xysppc IDX1 E4 xb ff rPO
ANDB oprx16,xysppc IDX2 E4 xb ee ff frPP
ANDB [D,xysppc] [D,IDX] |E4xb fIfrPf
ANDB [oprx16,xysppc] [IDX2] E4 xb ee ff fIPrPf
ANDCC #opr8i AND with CCR; (CCR)*imm CCR IMM 10ii [dldldddooo
ASL opri6aSame as LSL Arithmetic shift left M EXT 78hhll rPwO
ASL oprx0_xysp (¢TI0 IDX 68 xb rPw =L=I-I-Jalalala
ASL oprx9,xysppc C b7 b0 IDX1 68 xb ff rPwO
ASL oprx16,xysppc IDX2 68 xb ee ff frPwP
ASL [D,xysppc] [D,IDX] |68xb flfrPw
ASL [oprx16,xysppc] [IDX2] 68 xb ee ff fIPrPw
ASLASame as LSLA Arithmetic shift left A INH 48 o
ASLBSame as LSLB Arithmetic shift left B INH 58 (0]
ASLDSame as LSLD Arithmetic shift left D INH 59 (0] [-[-[-]-]a[a]a]a]
(-~ --[40
C b7 A b0 b7 B bO

30

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC

ASR oprl6a Arithmetic shift right M EXT 77hhll rPwO

ASR oprx0_xysppc IDX 67 xb rPw EEEEARAR

ASR 0prx9,xysppc %:Ijj:lj:l}ﬂj IDX1 67 xb ff rPwO

ASR oprx16,xysppc b7 b0 C IDX2 67 xb ee ff frPwP

ASR [D,xysppc] [D,IDX] |67 xb flfrPw

ASR [oprx16,xysppc] [IDX2] 67 xb ee ff fIPrPw

ASRA : - chift i INH 47 (0]
Arithmetic shift right A

ASRB Arithmetic shift right B INH 57 o

BCC rel8Same as BHS Branchif C clear; if C=0, then REL 241r PPP (branch) _
(PC)+2+reld PC P (no branch) EEEEEEEE

BCLR opr8a, msk8 DIR 4D dd mm rPwO [=[=]=]=]a[a[o[]

BCLR opri6a, msk8 EXT 1D hhllmm rPwP [=-I-I-]alalo]-

BCLR oprx0_xysppc, msk8 Clear bit(s) in M; (M)»mask bytedO M [IDX 0D xb mm rPwO

BCLR oprx9,xysppc, msk8 IDX1 0D xb ffmm rPwP

BCLR oprx16,xysppc, msk8 IDX2 0D xb ee ff mm frPwPO

BCS rel8Same as BLO Branchif C set; if C=1, then REL 251r PPP (branch) _
(PC)+2+reld PC P (no branch) EEEEEEEE

BEQ rel8 Branchif equal; if Z=1, then REL 27 1r PPP (branch) EEEEEEEE
(PC)+2+reld PC P (no branch) EEEEEERE

BGE rel8 Branchif=0, signed; if NOV=0,then |REL 2Crr PPP (branch) _
(PC)+2+reld PC P (no branch) EEEEEEEE

BGND Enter background debug mode INH 00 VIPPP EEEEEEEE

BGT rel8 Branch if > 0, signed; ifZ | (NOV)=0, [REL 2Err PPP (branch) _
then (PC)+2+rell PC P (no branch) ==

BHI rel8 Branch if higher, unsigned,; if REL 22rr PP (branch) EEEEEEEE
C | Z=0, then (PC)+2+rell] PC P (no branch) CEEEEERE

BHS rel8Same as BCC Branchifhigherorsame,unsigned; if REL 24 PPP (branch) _
C=0,then(PC)+2+rel0 PC P (no branch) EEEEEEEE

BITA#0pr8i Bittest A; (A)*(M) IMM 85ii P

BITA opr8a or (A)simm DIR 95dd rPf =I=I=I-Ja]alo

BITA opri6a EXT B5hhll rPO

BITA oprx0_xysppc IDX A5 xb rPf

BITA oprx9,xysppc IDX1 A5 xb ff rPO

BITA oprx16,xysppc IDX2 A5 xb ee ff frPP

BITA[D,xysppc] [D,IDX] |A5xb flfrPf

BITA [oprx16,xysppc] [IDX2] A5 xb ee ff fIPrPf

BITB #opr8i Bittest B; (B)* (M) IMM C5ii P

BITB opr8a or (B)eimm DIR D5dd rPf =I=I-I-Jalalol-

BITB opri6a EXT F5hhli rPO

BITB oprx0_xysppc IDX E5 xb rPf

BITB oprx9,xysppc IDX1 E5 xb ff rPO

BITB oprx16,xysppc IDX2 E5 xb ee ff frPP

BITB [D,xysppc] [D,IDX] |E5xb flfrPf

BITB [0oprx16,xysppc] [IDX2] E5 xb ee ff fIPrPf

BLE rel8 Branchif< 0,signed;ifZ | (NOV)=1, REL 2Frr PPP (branch) _
then (PC)+2+reld PC P (no branch) CEECSSss

BLO rel8Same as BCS Branch if lower, unsigned,; if C=1, REL 25rr PPP (branch) _
then (PC)+2+rell PC P (no branch) ==

BLS rel8 Branch if lower or same, unsigned; if |[REL 23rr PPP (branch)
C | Z=1, then (PC)+2+rell PC P (no branch) EEEEEERE

BLT rel8 Branchif <0, signed; if NOV=1,then [REL 2Drr PPP (branch) _
(PC)+2+relll PC P (no branch) CEECSSss

BMI rel8 Branch if minus; if N=1, then REL 2Brr PPP (branch) _
(PC)+2+reld PC P (no branch) ==

BNE rel8 Branch if not equal to O; if Z=0,then [REL 26rr PPP (branch) EEEEEEEE
(PC)+2+reld PC P (no branch) EEEEEERE

BPL rel8 Branch if plus; if N=0, then REL 2ArT PPP (branch) _
(PC)+2+relll PC P (no branch) CEECSSss

BRA rel8 Branch always REL 20rr PPP EEEEEEEE

31

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC

BRCLR opr8a, msk8, rel8 Branch if bit(s) clear; if DIR AFdd mmrr rPPP _

BRCLR oprl6a, msk8, rel8 (M) (mask byte)=0, then EXT 1Fhhllmmrr rfPPP CEEESSss

BRCLR oprx0_xysppc, msk8, rel8 | (PC)+2+rell] PC IDX OF xb mmrr rPPP

BRCLR oprx9,xysppc, msk8, rel8 IDX1 OF xb ffmm rr rfPPP

BRCLR oprx16,xysppc, msk8, rel8 IDX2 OF xbeeffmmrr |PrfPPP

BRN rel8 Branch never REL 21rr i EEEEEEEE

BRSET opr8, msk8, rel8 Branch if bit(s) set; if DIR AEdd mmrr rPPP _

BRSET oprl6a, msk8, rel8 (M)e (mask byte)=0, then EXT 1Ehhllmmrr rfPPP CEEESSsE

BRSET oprx0_xysppc, msk8, rel8 (PC)+2+rell] PC IDX OE xb mm rr rPPP

BRSET oprx9,xysppc, msk8, rel8 IDX1 OE xb ffmm rr rfPPP

BRSET oprx16,xysppc, msk8, rel8 IDX2 OExbeeffmmrr |PrfPPP

BSET opr8, msk8 Setbit(s)inM DIR 4Cdd mm rPwO EEEERRLE

BSET opri6a, msk8 (M) | mask byted M EXT 1C hhllmm rPwP =I=I-I-1alajo]-]

BSET oprx0_xysppc, msk8 IDX 0C xb mm rPwO

BSET oprx9,xysppc, msk8 IDX1 0C xb ffmm rPwP

BSET oprx16,xysppc, msk8 IDX2 0C xb ee ffmm frPwPO

BSR rel8 Branch to subroutine; (SP)-20 SP REL 07rr $PPP EEEEEEEE
RTNHRTNLD MSP:MSP+1 ========
(PC)+2+reld PC

BVC rel8 Branchif V clear; if V=0, then REL 281rr PPP (branch) _
(PC)+2+reld PC P (no branch) ==

BVS rel8 Branchif V set; if V=1, then REL 291rr PPP (branch) EEEEEEEE
(PC)+2+reld PC P (no branch) CEEEEERE

CALL oprl6a, page Callsubroutineinexpanded memory |EXT 4Ahhllpg gnSsPPP _

CALL oprx0_xysppc, page (SP)-20 sP IDX 4B xb pg gnSsPPP CEECSSss

CALL oprx9,xysppc, page RTNK{:RTN O Mgp:Mgp41 IDX1 4B xb ff pg gnSsPPP

CALL oprx16,xysppc, page (SP)-10 SP; (PPG)0 Mgp IDX2 4B xb ee ff pg fgnSsPPP

CALL [D,xysppc] pgll PPAGE register [D,IDX] |4Bxb fl!gnSsPPP

CALL [oprx16, xysppc] subroutine address] PC [IDX2] 4B xb ee ff flignSsPPP

CBA Compare Ato B; (A)—(B) INH 1817 [0]e) EEEERRRR

CLCSame as ANDCC #$FE Clear C bit IMM 10FE P EEEEEEER

CLISame as ANDCC #$EF Clear| bit IMM 10EF P EEENEEEE

CLR opri6a Clear M; $000 M EXT 79hhll PwO 1

CLR oprx0_xysppc IDX 69 xb Pw [=I=I=I-{0]2[o[0]

CLR oprx9,xysppc IDX1 69 xb ff PwO

CLR oprx16,xysppc IDX2 69 xb ee ff PwP

CLR [D,xysppc] [D,IDX] |69xb Plfw

CLR [oprx16,xysppc] [IDX2] 69 xb ee ff PIPw

CLRA Clear A; $000 A INH 87 o}

CLRB Clear B; $000 B INH C7 e}

CLVSame as ANDCC #$FD ClearV IMM 10FD P EEEEEENE

CMPA #opr8i Compare A IMM 81lii P

CMPA opr8a (A)—(M) or (A)—imm DIR 91dd rPf =I==I-falalala

CMPA opri6a EXT B1hhll rPO

CMPA oprx0_xysppc IDX Alxb rPf

CMPA oprx9,xysppc IDX1 Al xb ff rPO

CMPA oprx16,xysppc IDX2 Al xb ee ff frPP

CMPA [D,xysppc] [D,IDX] |Alxb fifrPf

CMPA [oprx16,xysppc] [IDX2] Al xb ee ff fIPrPf

CMPB #opr8i Compare B IMM Clii P

CMPB opr8a (B)—(M) or (B)—imm DIR D1dd rPf =I==I-alaala

CMPB opri6a EXT Flhhll rPO

CMPB oprx0_xysppc IDX E1xb rPf

CMPB oprx9,xysppc IDX1 E1 xb ff rPO

CMPB oprx16,xysppc IDX2 E1xb ee ff frPP

CMPB [D,xysppc] [D,IDX] |Elxb fifrPf

CMPB [oprx16,xysppc] [IDX2] E1xb ee ff fIPrPf

32

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC

COM oprlé6a Complement M; (M)=$FF—(M)0 M EXT 71hhll rPwO 1

COM oprx0_xysppc IDX 61 xb rPw =I=I=I-Jalalol

COM oprx9,xysppc IDX1 61 xb ff rPwO

COM oprx16,xysppc IDX2 61 xb ee ff frPwP

COM [D,xysppc] [D,IDX] |61xb flfrPw

COM [oprx16,xysppc) _ [IDX2] 61 xb ee ff fIPrPw

COMA Complement A; (A)=$FF-(A)0 A INH 41 (0]

comB Complement B; (B)=$FF—(B)C B INH 51 e}

CPD #opr16i Compare D IMM 8Cjj kk PO

CPD opr8a (A:B)—(M:M+1) DIR 9Cdd RPf =I=-I-Jalaala

CPD opri6a or (A:B)-imm EXT BChhll RPO

CPD oprx0_xysppc IDX AC xb RPf

CPD oprx9,xysppc IDX1 AC xb ff RPO

CPD oprx16,xysppc IDX2 AC xb ee ff fRPP

CPD [D,xysppc] [D,IDX] |ACxb fIFRPf

CPD [oprx16,xysppc] [IDX2] AC xb ee ff fIPRPf

CPS #opr16i Compare SP IMM 8F jj kk PO

CPS opr8a (SP)—~(M:M+1) DIR 9F dd RPf =I=-I-Jalaala

CPS opri6a or (SP)—-imm EXT BF hhll RPO

CPS oprx0_xysppc IDX AF xb RPf

CPS oprx9,xysppc IDX1 AF xb ff RPO

CPS oprx16,xysppc IDX2 AF xb ee ff fRPP

CPS [D,xysppc] [D,IDX] |AFxb fIFRPf

CPS [oprx16,xysppc] [IDX2] AF xb ee ff fIPRPf

CPX#opri16i Compare X IMM 8E jjkk PO

CPX opr8a (X)-(M:M+1) DIR 9E dd RPf EEEERRRE

CPXopri6a or (X)—imm EXT BE hhll RPO

CPX oprx0_xysppc IDX AE xb RPf

CPX oprx9,xysppc IDX1 AE xb ff RPO

CPX oprx16,xysppc IDX2 AE xb ee ff fRPP

CPX[D,xysppc] [D,IDX] |AExb fIfRPf

CPX [oprx16,xysppc] [IDX2] AE xb ee ff fIPRPf

CPY #opri16i Compare Y IMM 8D jj kk PO

CPY opr8a (Y)-(M:M+1) DIR 9D dd RPf =I=-I-Jalaala

CPY opri6a or (Y)—-imm EXT BD hhll RPO

CPY oprx0_xysppc IDX AD xb RPf

CPY oprx9,xysppc IDX1 AD xb ff RPO

CPY oprx16,xysppc IDX2 AD xb ee ff fRPP

CPY [D,xysppc] [D,IDX] |AD xb fIFRPf

CPY [oprx16,xysppc] [IDX2] AD xb ee ff fIPRPf

DAA Decimal adjust A for BCD INH 1807 OfO EEEERARRR

DBEQ abdxysp, rel9 Decrement and branch if equal to O REL 04lbrr PP (branch) EEEEEEEE
(counter)-10 counter (9-bit) PPO (no branch) =]
if (counter)=0, then branch

DBNE abdxysp, rel9 Decrementand branchifnotequaltoO; [REL 041brr PP (branch) EEEEEEEE
(counter)-10 counter; (9-bit) PPO (no branch) EERRREEE
if (counter)#0, then branch

DEC opri6a Decrement M; (M)-10 M EXT 73hhll rPwO

DEC oprx0_xysppc IDX 63 xb rPw =I--I-lalajal]

DEC oprx9,xysppc IDX1 63 xb ff rPwO

DEC oprx16,xysppc IDX2 63 xb ee ff frPwP

DEC [D,xysppc] [D,IDX] |63 xb flfrPw

DEC [oprx16,xysppc] [IDX2] 63 xb ee ff fIPrPw

DECA DecrementA; (A)-10 A INH 43 (0]

DECB Decrement B; (B)-10 B INH 53 (0]

DESSame as LEAS-1,SP Decrement SP; (SP)-10 SP IDX 1B9F Pf EEEEEEEE

DEX Decrement X; (X)-10 X INH 09 (0] F-=[=[[a[[7]

DEY DecrementY; (Y)-10Y INH 03 (0] EEEEEAEE

EDIV Extended divide, unsigned; 32by 16 INH 11 ffffffffffO
to 16-bit; (Y:D)+(X)O Y; remainderd D =I=-I-Jalaala

33

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC
EDIVS Extended divide,signed; 32 by 16 to INH 1814 OffffffffffO _
16-bit; (Y:D)=(X)O Y remainderd D =I==-alaala
EMACS opri6a Extended multiply and accumulate, |Special |18 12hhll ORROfffRRIWWP [F[-[=[=[2[2]a]4]
Signed; (MX:MX+1)X(MY:MY+1)+
(M~M+3)0 M~M+3; 16 by 16 to 32-bit
EMAXD oprx0_xysppc Extended maximum in D; put larger of | IDX 18 1A xb ORPf _
EMAXD oprx9,xysppc 2 IDX1 18 1A xb ff ORPO EI==I-alalala
EMAXD oprx16,xysppc unsigned 16-bit values in D IDX2 18 1A xb ee ff OfRPP
EMAXD [D,xysppc] MAX[(D), (M:M+1)]0 D [D,IDX] |181Axb OfIfRPf
EMAXD [oprx16,xysppc] N, Z, V, C bits reflect result of internal |[IDX2] 18 1A xb ee ff OfIPRPf
compare [(D)-(M:M+1)]
EMAXM oprx0_xysppc Extended maximum in M; put larger of [IDX 18 1E xb ORPW [<[-[-[=Ta[a[a[a]
EMAXM oprx9,xysppc 2 IDX1 18 1E xb ff ORPWO =I=-I-Jalaala
EMAXM oprx16,xysppc unsigned 16-bit values in M IDX2 18 1E xb ee ff OfRPWP
EMAXM [D, xysppc] MAX][(D), (M:M+1)]0 M:M+1 [D,IDX] |18 1Exb OfIfRPW
EMAXM [oprx16,xysppc] N, Z, V, C bits reflect result of internal | [IDX2] 18 1E xb ee ff OfIPRPW
compare [(D)-(M:M+1)]
EMIND oprx0_xysppc Extended minimum in D; put smaller [IDX 18 1B xb ORPf _
EMIND oprx9,xysppc of IDX1 18 1B xb ff ORPO =I==I-falalala
EMIND oprx16,xysppc 2 unsigned 16-bit values in D IDX2 18 1B xb ee ff OfRPP
EMIND [D,xysppc] MIN[(D), (M:M+1)]0 D [D,IDX] |181Bxb OfIfRPf
EMIND [oprx16,xysppc] N, Z, V, C bits reflect result of internal | [IDX2] 18 1B xb ee ff OfIPRPf
compare [(D)—(M:M+1)]
EMINM oprx0_xysppc Extended minimum in M; put smaller |IDX 18 1F xb ORPW _
EMINM oprx9,xysppc of IDX1 18 1F xb ff ORPWO EI==-alaala
EMINM oprx16,xysppc 2 unsigned 16-bit values in M IDX2 18 1F xb ee ff OfRPWP
EMINM [D,xysppc] MIN[(D), (M:M+1)]0 M:M+1 [D,IDX] |18 1Fxb OfIfRPW
EMINM [oprx16,xysppc] N, Z, V, C bits reflect result of internal | [IDX2] 18 1F xb ee ff OfIPRPW
compare [(D)—-(M:M+1)]
EMUL Extended multiply, unsigned INH 13 ffo
(D)x(Y)O Y:D; 16 by 16 to 32-bit =I=I==[alal-]a)
EMULS Extended multiply, signed INH 1813 OfO _
(D)x(Y)O Y:D; 16 by 16 to 32-bit OffO (if followed by =I==I-ala-a
page 2 instruction)
EORA #0pr8i Exclusive OR A IMM 88ii P
EORA opr8a A)OM)IOA DIR 98dd rPf =I=I-I-Ja]alol-
EORA opri6a or (A)JimmO A EXT B8 hhll rPO
EORA oprx0_xysppc IDX A8 xb rPf
EORA oprx9,xysppc IDX1 A8 xb ff rPO
EORA oprx16,xysppc IDX2 A8 xb ee ff frPP
EORA [D,xysppc] [D,IDX] |A8xb fIfrPf
EORA [0oprx16,xysppc] [IDX2] A8 xb ee ff fIPrPf
EORB #0pr8i Exclusive OR B IMM C8ii P
EORB opr8a (B)O(M)O B DIR D8 dd rPf =I=I=I=]a]ajol]
EORB oprl6a or (B)JimmU B EXT F8hhll rPO
EORB oprx0_xysppc IDX E8 xb rPf
EORB oprx9,xysppc IDX1 E8 xb ff rPO
EORB oprx16,xysppc IDX2 E8 xb ee ff frPP
EORB [D,xysppc] [D,IDX] |E8xb fIfrPf
EORB [0prx16,xysppc] [IDX2] E8 xb ee ff fIPrPf
ETBL oprx0_xysppc Extendedtablelookup andinterpolate, | IDX 18 3F xb ORR(fffffP EEEEAAER

16-bit; (M:M+1)+
[(B)*((M+2:M+3)—(M:M+1))]0 D

Before executing ETBL, initialize B wit|
indirect addressing allowed.

h fractional part of lookup value; initialize index register to point to first table entry (M:M+1). No extensions or

EXG abcdxysp,abcdxysp

Exchange register contents
(rl) = (r2)rl and r2 same size
$00:(r1)0 r2r1=8-bit; r2=16-bit
(r1)) = (r2)r1=16-bit; r2=8-bit

INH

B7 eb

P

FDIV

Fractional divide; (D)+(X)O X

remainder(] D; 16 by 16-bit

INH

1811

OffffffffffO

34

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC

IBEQ abdxysp, rel9 Increment and branch if equal to 0 REL 041brr PPP (branch) _
(counter)+10 counter (9-bit) PPO (no branch) CEEESSss
If (counter)=0, then branch

IBNE abdxysp, rel9 Incrementand branchif notequalto0 |REL 04lbrr PPP (branch) _
(counter)+10 counter (9-bit) PPO (no branch) CEECSSss
If (counter)#0, then branch

IDIV Integer divide, unsigned; (D)+(X)0 X |INH 1810 OffffffffffO EEEEERNN
Remainder(] D; 16 by 16-bit =I==I--]ajoja)

IDIVS Integer divide, signed; (D)+(X)d X INH 1815 OffffffffffO _
Remainderd D; 16 by 16-bit =I==-alaala

INC opri6a Increment M; (M)+10 M EXT 72hhll rPwO

INC oprx0_xysppc IDX 62 xb rPw =I=I-I-Jalalal

INC oprx9,xysppc IDX1 62 xb ff rPwO

INC oprx16,xysppc IDX2 62 xb ee ff frPwP

INC [D,xysppc] [D,IDX] |62xb flfrPw

INC [oprx16,xysppc] [IDX2] 62 xb ee ff fIPrPw

INCA Increment A; (A)+10 A INH 42 (0]

INCB Increment B; (B)+10 B INH 52 (0]

INSSame as LEAS 1,SP Increment SP; (SP)+10 SP IDX 1B81 Pf EEEEEEEE

INX Increment X; (X)+10 X INH 08 (0] EEEEEREE

INY IncrementY; (Y)+10O Y INH 02 (0] EEEEEREE

JMP oprl6a Jump EXT 06 hhll PPP EEEEEEEE

JMP oprx0_xysppc Subroutine address[] PC IDX 05 xb PPP =]

JMP oprx9,xysppc IDX1 05 xb ff PPP

JMP oprx16,xysppc IDX2 05 xb ee ff fPPP

JMP [D,xysppc] [D,IDX] |05xb ffPPP

JMP [0oprx16,xysppc] [IDX2] 05 xb ee ff flfPPP

JSR opr8a Jump to subroutine DIR 17 dd SPPP FEEEEEEE

JSR opril6a (SP)-20 SP EXT 16 hhll SPPP

JSR oprx0_xysppc RTNK{:RTN O Mgp:Mgp41 IDX 15xb PPPS

JSR oprx9,xysppc Subroutine address] PC IDX1 15 xb ff PPPS

JSR oprx16,xysppc IDX2 15 xb ee ff fPPPS

JSR [D,xysppc] [D,IDX] |15xb ffPPPS

JSR [0oprx16,xysppc] [IDX2] 15 xb ee ff ffPPPS

LBCC rel16Same as LBHS Long branch if C clear; if C=0, then |REL 1824 qqrr QPPP (branch) EEEEEEEE
(PC)+4+relll PC OPO (no branch) =]

LBCS rel16Same as LBLO Long branch if C set; if C=1, then REL 1825qqrr QPPP (branch) _
(PC)+4+rell PC OPO (no branch) CEECSSss

LBEQ rel16 Long branch if equal; if Z=1, then REL 1827 qqrr QPPP (branch) _
(PC)+4+relll PC OPO (no branch) SEERREER

LBGE rel16 Long branch if = 0, signed REL 182Cqqrr OPPP (branch) EEEEEEEE
If NOV=0, then (PC)+4+reld PC OPO (no branch) EEEEEERE

LBGT rel16 Long branch if > 0, signed REL 182Eqqrr OPPP (branch)
If Z | (NOV)=0, then (PC)+4+rell PC OPO (no branch) CEECSSss

LBHI rel16 Long branch if higher, unsigned REL 1822 qqrr QPPP (branch) _
If C | Z=0, then (PC)+4+rell PC OPO (no branch) SEERREER

LBHS rel16Same as LBCC Long branch if higher or same, REL 1824 qqrr QPPP (branch) EEEEEEEE
unsigned; If C=0, (PC)+4+rell] PC OPO (no branch) =]

LBLE rel16 Long branch if < 0, signed; if REL 182Fqqrr QPPP (branch) _
Z | (NOV)=1, then (PC)+4+rell PC OPO (no branch) CEECSSss

LBLO rel16Same as LBCS Long branch if lower, unsigned; if REL 1825qqrr QPPP (branch) _
C=1, then (PC)+4+rell] PC OPO (no branch) SEERREER

LBLS rel16 Long branch if lower or same, REL 1823qqrr QPPP (branch) EEEEEEEE
unsigned; If C | Z=1, then OPO (no branch) =]
(PC)+4+reld PC

LBLT rel16 Long branch if < 0, signed REL 182D qqrr OPPP (branch)
If NOV=1, then (PC)+4+reld PC OPO (no branch) CEEEEERE

35

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC

LBMI rel16 Long branch if minus REL 182Bqqrr OPPP (branch) _
If N=1, then (PC)+4+reld PC OPO (no branch) EEEEEEEE

LBNE rel16 Long branch if not equal to 0 REL 1826 qqrr QPPP (branch) EEEEEEEE
If Z=0, then (PC)+4+reld PC OPO (no branch) CEEEEEEE

LBPL rel16 Long branch if plus REL 182Aqqrr OPPP (branch) EEEEEEEE
If N=0, then (PC)+4+rell PC OPO (no branch) EEEEEERE

LBRArel16 Long branch always REL 1820qqrr QPPP EEEEEEEE

LBRN rel16 Long branch never REL 1821 qqrr QPO EEEEEEEE

LBVC rell6 Long branchifV clear REL 1828qqrr QPPP (branch)
If V=0,then (PC)+4+reld PC OPO (no branch) CEECSSss

LBVSrell6 Long branchifV set REL 1829qqrr QPPP (branch) _
If V=1,then (PC)+4+relld PC OPO (no branch) EEEEEEEE

LDAA #opr8i Load A IMM 86ii P

LDAA opr8a MIOA DIR 96 dd rPf =I=I-I-Ja]alol

LDAA opri6a orimmQO A EXT B6 hhll rPO

LDAA oprx0_xysppc IDX A6 xb rPf

LDAA oprx9,xysppc IDX1 A6 xb ff rPO

LDAA oprx16,xysppc IDX2 A6 xb ee ff frPP

LDAA[D,xysppc] [D,IDX] |A6xb flfrPf

LDAA [oprx16,xysppc] [IDX2] A6 xb ee ff fIPrPf

LDAB #opr8i Load B IMM C6ii P

LDAB opr8a moB DIR D6 dd rPf =I=I=I=]a]ajol]

LDAB opri6a orimmU B EXT F6 hhl rPO

LDAB oprx0_xysppc IDX E6 xb rPf

LDAB oprx9,xysppc IDX1 E6 xb ff rPO

LDAB oprx16,xysppc IDX2 E6 xb ee ff frPP

LDAB [D,xysppc] [D,IDX] |E6xb fIfrPf

LDAB [oprx16,xysppc] [IDX2] E6 xb ee ff fIPrPf

LDD #opr16i Load D IMM CCjjkk PO

LDD opr8a (M:M+1)0 A:B DIR DCdd RPf =I=I=I=[a]ajol]

LDD opri6a or immO A:B EXT FChhll RPO

LDD oprx0_xysppc IDX EC xb RPf

LDD oprx9,xysppc IDX1 EC xb ff RPO

LDD oprx16,xysppc IDX2 EC xb ee ff fRPP

LDD [D,xysppc] [D,IDX] |ECxb fIFRPf

LDD [oprx16,xysppc] [IDX2] EC xb ee ff fIPRPf

LDS #opr16i Load SP IMM CF jj kk PO

LDS opr8a (M:M+1)0 SP DIR DFdd RPf =I=I-I-Ja]alol

LDS opri6a or immQd SP EXT FFhhll RPO

LDS oprx0_xysppc IDX EF xb RPf

LDS oprx9,xysppc IDX1 EF xb ff RPO

LDS oprx16,xysppc IDX2 EF xb ee ff fRPP

LDS [D,xysppc] [D,IDX] |EFxb fIFRPf

LDS [oprx16,xysppc] [IDX2] EF xb ee ff fIPRPf

LDX #opr16i Load X IMM CEjjkk PO

LDX opr8a (M:M+1)0 X DIR DE dd RPf =I=I=I=]a]ajol]

LDX oprl6a or immQ X EXT FE hhll RPO

LDX oprx0_xysppc IDX EE xb RPf

LDX oprx9,xysppc IDX1 EE xb ff RPO

LDX oprx16,xysppc IDX2 EE xb ee ff fRPP

LDX [D,xysppc] [D,IDX] |EExb fIfRPf

LDX [oprx16,xysppc] [IDX2] EE xb ee ff fIPRPf

LDY #opri6i Load Y IMM CD jjkk PO

LDY opr8a M:M+1)O Y DIR DDdd RPf =I=I=I=[a]a[ol]

LDY opri6a orimmOdY EXT FD hhll RPO

LDY oprx0_xysppc IDX ED xb RPf

LDY oprx9,xysppc IDX1 ED xb ff RPO

LDY oprx16,xysppc IDX2 ED xb ee ff fRPP

LDY [D,xysppc] [D,IDX] |EDxb fIFRPf

LDY [oprx16,xysppc] [IDX2] ED xb ee ff fIPRPf

36

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC
LEAS oprx0_xysppc Load effective address into SP IDX 1B xb Pf _
LEAS oprx9,xysppc EAO SP IDX1 1B xb ff PO CEEESSss
LEAS oprx16,xysppc IDX2 1B xb ee ff PP
LEAX oprx0_xysppc Load effective address into X IDX 1A xb Pf _
LEAX oprx9,xysppc EAO X IDX1 1A xb ff PO CEECSSss
LEAX oprx16,xysppc IDX2 1A xb ee ff PP
LEAY oprx0_xysppc Load effective addressinto Y IDX 19xb Pf FEEEEEEE
LEAY oprx9,xysppc EAOY IDX1 19 xb ff PO
LEAY oprx16,xysppc IDX2 19 xb ee ff PP
LSL opri6aSame as ASL Logical shiftleftM EXT 78 hhll rOPw
LSL oprx0_xysppc (1T I I TI1] e o0 IDX 68 xb rPw =I=-I-1alajaja)
LSL oprx9,xysppc c b7 bo IDX1 68 xb ff rPOw
LSL oprx16,xysppc IDX2 68 xb ee ff frPPw
LSL [D,xysppc] [D,IDX] |68xb flfrPw
LSL [oprx16,xysppc] [IDX2] 68 xb ee ff fIPrPw
LSLASame as ASLA Logical shiftleft A INH 48 0
LSLBSame as ASLB Logical shiftleft B INH 58 (0]
LSLDSame as ASLD Logical shiftleft D INH 59 (0] EEEERARRR
[, SHEENEE S EEENEN,
C b7 A b0 b7 B b0
LSR opri6a Logical shiftright M EXT 74hhll rPwO
LSR oprx0_xysppc o T T IIIH»] IDX 64 xb rPw =I=I=I-lojajaja)
LSR oprx9,xysppc b7 b0 C IDX1 64 xb ff rPwO
LSR oprx16,xysppc IDX2 64 xb ee ff frPwP
LSR [D,xysppc] [D,IDX] |64xb flfrPw
LSR [oprx16,xysppc] [IDX2] 64 xb ee ff fIPrPw
LSRA Logical shiftright A INH 44 (0]
LSRB Logical shiftright B INH 54 (0]
LSRD Logical shiftright D INH 49 O EEEERRRR
o I T TTHTT TTHp]
b7 A b0 b7 B b0 C
MAXA oprx0_xysppc Maximum in A; put larger of 2 IDX 1818 xb OrPf [<[-[-[=Ta[a[a[a]
MAXA oprx9,xysppc unsigned 8-bit values in A IDX1 18 18 xb ff OrPO I=-I-Jalaala
MAXA oprx16,xysppc MAXI[(A), (M)]O A IDX2 1818 xb ee ff OfrPP
MAXA [D,xysppc] N, Z, V, C bits reflect result of internal [[D,IDX] |18 18 xb OflfrPf
MAXA [0oprx16,xysppc] compare [(A)—(M)] [IDX2] 1818 xb ee ff OfIPrpPf
MAXM oprx0_xysppc Maximum in M; put larger of 2 IDX 181Cxb OrPw [<[-[-]-TA[a[a[a]
MAXM oprx9,xysppc unsigned 8-bit values in M IDX1 18 1Cxbff OrPwO =I=-I-Jalaala
MAXM oprx16,xysppc MAX[(A), (M)]C M IDX2 181Cxb ee ff OfrPwP
MAXM [D,xysppc] N, Z, V, C bits reflect result of internal |[D,IDX] {18 1C xb OflfrPw
MAXM [oprx16,xysppc] compare [(A)—-(M)] [IDX2] 181Cxb ee ff OfIPrPw
MEM Determine grade of membership; Special |01 RRfOw 2212]2]2
U (grade)d My; (X)+40 X; (Y)+10Y =P [e[2]7]
If (A)<P1 or (A)>P2, then p=0; else p=
MIN[((A)-P1)xS1, (P2—(A))xS2, $FF]
(A)=current crisp input value; X points
at 4 data bytes (P1, P2, S1, S2) of a
trapezoidal membership function; Y
points at fuzzy input (RAM location)
MINA oprx0_xysppc Minimum in A; put smaller of 2 IDX 1819 xb OrPf
MINA oprx9,xysppc unsigned 8-bit values in A IDX1 18 19 xb ff OrPO =I=-I-Jalaala
MINA oprx16,xysppc MIN[(A), (M)]O A IDX2 1819 xb ee ff OfrPP
MINA [D,xysppc] N, Z, V, C bits reflect result of internal [[D,IDX] (1819 xb OflfrPf
MINA [oprx16,xysppc] compare [(A)—(M)] [IDX2] 1819 xb ee ff OfIPrpPf
MINM oprx0_xysppc Minimum in N; put smaller of two IDX 181D xb OrPw
MINM oprx9,xysppc unsigned 8-bit values in M IDX1 18 1D xb ff OrPwO ERRRGRAR
MINM oprx16,xysppc MIN[(A), (M)]O M IDX2 181D xb ee ff OfrPwP
MINM [D,xysppc] N, Z, V, C bits reflect result of internal [[D,IDX] (18 1D xb OflfrPw
MINM [oprx16,xysppc] compare [(A)—(M)] [IDX2] 181D xb ee ff OfIPrPw
37

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC

MOVB #opr8, oprl6a Move byte IMM-EXT [18 0B ii hh Il OPwP EEEEEEEE

MOVB #opr8i, oprx0_xysppc Memory-to-memory 8-bit byte-move |IMM-IDX |18 08 xb i OPwWO

MOVB opr16a, opri6a (MO M, EXT-EXT [180C hhIlhhll OrPwPO

MOVB oprl16a, oprx0_xysppc Firstoperand specifies byte to move |EXT-IDX [1809xbhhll OPrPw

MOVB oprx0_xysppc, oprléa IDX-EXT |18 0D xb hhll OrPwP

MOVB oprx0_xysppc, oprx0_xysppc IDX-IDX |18 0A xb xb OrPwO

MOVW #oprx16, oprl6a Move word IMM-EXT |18 03 jj kk hh I OPWPO EEEEEEEE

MOVW #opr16i, oprx0_xysppc Memory-to-memory 16-bitword-move [IMM-IDX |18 00 xb jj kk OPPW

MOVW opri6a, opri6a (M1:M1+1)0 My:My+1 EXT-EXT (1804 hhilhhl ORPWPO

MOVW opr16a, OprO_XySppC First operand Speciﬁes word to move EXT-IDX |18 01 xb hhll OPRPW

MOVW oprx0_xysppc, oprl6a IDX-EXT |18 05 xb hhll ORPWP

MOVW oprx0_xysppc, oprx0_xysppc IDX-IDX (18 02 xb xb ORPWO

MUL Multiply, unsigned INH 12 (0] EEEEEEEN
(A)x(B)O A:B; 8 by 8-bit ===

NEG oprl6a Negate M; 0—(M)C M or (M)+10 M EXT 70hhll rPwO

NEG oprx0_xysppc IDX 60 xb rPw =I==-alaala

NEG oprx9,xysppc IDX1 60 xb ff rPwO

NEG oprx16,xysppc IDX2 60 xb ee ff frPwP

NEG [D,xysppc] [D,IDX] |60xb flfrPw

NEG [oprx16,xysppc] _ [IDX2] 60 xb ee ff fIPrPw

NEGA Negate A; 0—(A)0 Aor (A)+10 A INH 40 o

NEGB Negate B; 0—(B)C Bor (B)+10 B INH 50 o}

NOP No operation INH A7 O EEEEEEEE

ORAA#0pr8i OR accumulator A IMM 8AIi P

ORAA opr8a A) | (MO A DIR 9A dd rPf =I-I-I-1alajo]-]

ORAA oprl6a or (A) | immOA EXT BAhhIl rPO

ORAA oprx0_xysppc IDX AA xb rPf

ORAA oprx9,xysppc IDX1 AA xb ff rPO

ORAA oprx16,xysppc IDX2 AAxb ee ff frPP

ORAA [D,xysppc] [D,IDX] |AAXxb fifrPf

ORAA [0oprx16,xysppc] [IDX2] AAxb ee ff fIPrPf

ORAB #0pr8i OR accumulator B IMM CAii P

ORAB opr8a B)| MIB DIR DA dd rPf =I=I-I-]a]alol-

ORAB opri6a or (B) | immO B EXT FAhhII rPO

ORAB oprx0_xysppc IDX EAxb rPf

ORAB oprx9,xysppc IDX1 EA xb ff rPO

ORAB oprx16,xysppc IDX2 EA xb ee ff frPP

ORAB [D,xysppc] [D,IDX] |EAXb fIfrPf

ORAB [oprx16,xysppc] [IDX2] EAxb ee ff fIPrPf

ORCC #opr8i OR CCR; (CCR) | immQO CCR IMM 14ii EEEEEERE

PSHA Push A; (SP)-10 SP; (A)0 Mgp INH 36 Os EEEEEEEE

PSHB Push B; (SP)-10 SP; (B)O Mgp INH 37 Os EEEEEEEE

PSHC Push CCR; (SP)-10 SP; INH 39 Os EEEEEEEE
(COR) M ===

PSHD Push D INH 3B oS EEEEEEEE
(SP)—ZD SP; (AB)D MSP:MSP+1 ========

PSHX Push X INH 34 (O] EEEEEEEE
(SP)—ZD SP; (XH:XL)D MSP:MSP'HL

PSHY Push Y INH 35 oS EEEEEEEE
(SP)-20 SP; (YR:Y)O Mgp:Mgp4q

PULA Pull A INH 32 ufo EEEEEEEE
(Mgp)O A; (SP)+10 SP EEEEEERE

PULB Pull B INH 33 ufo EEEEEEEE
(Mgp)O B; (SP)+10 SP EEEEEEEE

PULC Pull CCR INH 38 ufO
(Mgp)O CCR,; (SP)+10 SP DERRRRRE

PULD Pull D INH 3A Ufo
(MSP:MSP'HI.)D A:B; (SP)+2D SP ========

38

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC
PULX Pull X INH 30 ufo EEEEEEEE
(MSP:MSP+1)D XHXL’ (SP)+2D SP HHHHHHHH
PULY Pull Y INH 31 ufo EEEEEEEE
(Msp:Mgp.)0 Yy:Y|; (SP)+200 SP AR
REV Rule evaluation, unweighted; find Special |18 3A Orf(t"tx)O* EEEERRRE
smallest rule input; store to rule ff+Orft**
outputs unless fuzzy output is larger
*Thet"tx loopis executed once for each elementin the rule list. The ~ denotes a check for pending interrupt requests.
**These are additional cycles caused by aninterrupt: ff is the exit sequence and Orft* is the re-entry sequence.
REVW Rule evaluation, weighted; rule Special |18 3B ORf(t"Tx)O* EERERRRN
weights optional; find smallest rule or
input; store to rule outputs unless ORf(r fRf)O**
fuzzy output is larger ffff+ORft/ ***
ffff+ORfr/xr*

*With weighting not enabled, the t"Tx loop is executed once for each elementinthe rule list. The » denotes a check for pending interrupt requests.
**With weighting enabled, the t"Tx loop is replaced by r\fRf

***Additional cycles caused by an interrupt when weighting is not enabled: ffff
*++x Additional cycles caused by an interrupt when weighting is enabled: ffff

is the exit sequence and ORft" is the re-entry sequence.

is the exit sequence and ORfr* is the re-entry sequence.

ROL opri6a Rotate left M EXT 75hhll rPwO
ROL oprx0_xysppc IDX 65 xb rPw =I==-alalala
ROL oprx9,xysppc Lﬂﬂjjjjjjjj@ IDX1 65 xb ff rPwO
ROL oprx16,xysppc Cc b7 b0 IDX2 65 xb ee ff frPwP
ROL [D,xysppc] [D,IDX] |65xb flfrPw
ROL [oprx16,xysppc] [IDX2] 65 xb ee ff fIPrPw
ROLA Rotate left A INH 45 o}
ROLB Rotate left B INH 55 (0]
ROR opri6a Rotate right M EXT 76 hhll rPwO
ROR oprx0_xysppc IDX 66 xb rPw =I--I-1alajala)
ROR oprx9,xysppc L}Dj:ljj:l:l}b[kJ IDX1 66 xb ff rPwO
ROR oprx16,xysppc b0 b7 C IDX2 66 xb ee ff frPwP
ROR [D,xysppc] [D,IDX] |66xb flfrPw
ROR [0prx16,xysppc] [IDX2] 66 xb ee ff fIPrPw
RORA Rotate right A INH 46 (0]
RORB Rotate right B INH 56 (0]
RTC Return from call; (Mgp)O PPAGE INH 0A uunfPPP EEEEEEEE
(SP)+10 SP;
(Mgp:Mgp.1)0 PCy:PC
(SP)+20 SP
RTI Return from interrupt INH 0B uUUUUPPP
(Mgp)O CCR,; (SP)+10 SP or DERRRRRE
(Mgp:Mgp41)0 B:A;(SP)+20 SP uUUUUVIPPP*
(MSP:MSP'HL)D XHXL,(SP)+4D SP
(MSP:MSP+1)D PCHPCL,(SP)+2D SP
(MSP:MSP+1)D YHYL,(SP)+4D SP
*RTI takes 11 cycles if an interrupt is pending.
RTS Return from subroutine INH 3D UfPPP EEEEEEEE
(Msp:Mgp.1)0 PC:PCy;
(SP)+20 SP
SBA Subtract B from A; (A)—-(B)J A INH 1816 (e]e) [F[[=[=[2[2]a]4]
SBCA#opr8i Subtract with carry from A IMM 82ii P
SBCA opr8a (A)-(M)-CO A DIR 92 dd rPf =I=I==[alajala)
SBCA oprl6a or (A)-imm-C0O A EXT B2 hhll rPO
SBCA oprx0_xysppc IDX A2 xb rPf
SBCA oprx9,xysppc IDX1 A2 xb ff rPO
SBCA oprx16,xysppc IDX2 A2 xb ee ff frPP
SBCA [D,xysppc] [D,IDX] |A2xb flfrPf
SBCA [0oprx16,xysppc] [IDX2] A2 xb ee ff fIPrPf
39

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC
SBCB #opr8i Subtract with carry from B IMM C2ii P
SBCB opr8a (B)-(M)-CO B DIR D2dd rPf =I==-alaala
SBCB oprlé6a or (B)-imm-CO B EXT F2hhll rPO
SBCB oprx0_xysppc IDX E2 xb rPf
SBCB oprx9,xysppc IDX1 E2 xb ff rPO
SBCB oprx16,xysppc IDX2 E2 xb ee ff frPP
SBCB [D, xysppc] [D,IDX] |E2xb fIifrPf
SBCB [oprx16,xysppc] [IDX2] E2 xb ee ff fIPrPf
SECSame as ORCC #$01 Set C bit IMM 1401 P EEEEEEER
SEISame as ORCC #%$10 Set | bit IMM 1410 P EEEREEEE
SEVSame as ORCC #$02 Set V bit IMM 1402 P EEEEEERE
SEX abc,dxyspSame as TFR rl, r2 [Sign extend; 8-bit r1 to 16-bit r2 INH B7eb P EEEEEEEE
$00:(r1)T r2 if bit 7 of r1is O CECESSss
$FF:(r1)0r2if bit 7 of rlis 1
STAA opr8a Store accumulator A DIR 5A dd Pw
STAA oprl6a (AOM EXT 7AhhIl PwO =I=I=I=]a]a[ol]
STAA oprx0_xysppc IDX 6A xb Pw
STAA oprx9,xysppc IDX1 6A xb ff PwO
STAA oprx16,xysppc IDX2 6A xb ee ff PwP
STAA[D,xysppc] [D,IDX] |6Axb Plfw
STAA [oprx16,xysppc] [IDX2] 6A xb ee ff PIPw
STAB opr8a Store accumulator B DIR 5B dd Pw
STAB oprl6a (B)OM EXT 7Bhhll PwO =I=I-I-]a]alol-
STAB oprx0_xysppc IDX 6B xb Pw
STAB oprx9,xysppc IDX1 6B xb ff PwO
STAB oprx16,xysppc IDX2 6B xb ee ff PwP
STAB [D,xysppc] [D,IDX] |6Bxb Plfw
STAB [0prx16,xysppc] [IDX2] 6B xb ee ff PIPw
STD opr8a Store D DIR 5Cdd PwW
STD opril6a (A:B)0 M:M+1 EXT 7Chhll PWO =I=I-I-Ja]alol-
STD oprx0_xysppc IDX 6C xb PwW
STD oprx9,xysppc IDX1 6C xb ff PWO
STD oprx16,xysppc IDX2 6C xb ee ff PWP
STD [D,xysppc] [D,IDX] |6Cxb PIfW
STD [oprx16,xysppc] [IDX2] 6C xb ee ff PIPW
STOP Stop processing; (SP)-20 SP INH 18 3E OO0SSSSsf (enter
RTNHRTNLD MSP:MSP+1 stop mode) ========
(SP)—20 SP; (Yi:Y)O Mgp:Mgp4q MPZP) (exit stop
SP)-20 SP; (Xy:X)O Mgp:M mode
(SP) . (H U ,SP SP+1 ff (continue stop
(SP)-20 SP; (B:A)O Mgp:Mgp4q mode)
Stop all clocks disabled by S=1)
STS opr8a Store SP DIR 5Fdd PW
STSopri6a (SPH:SP)O M:M+1 EXT 7Fhhll PWO =I=I-I-]a]al0l
STS oprx0_xysppc IDX 6F xb PW
STS oprx9,xysppc IDX1 6F xb ff PWO
STS oprx16,xysppc IDX2 6F xb ee ff PWP
STS [D,xysppc] [D,IDX] |6F xb PIfw
STS [oprx16,xysppc] [IDX2] 6F xb ee ff PIPW
STX opr8a Store X DIR 5E dd PwW
STX opri6a Xp:X)O M:M+1 EXT 7EhhIl PWO =I=I-I-Ja]alol-
STX oprx0_xysppc IDX 6E xb PwW
STX oprx9,xysppc IDX1 6E xb ff PWO
STX oprx16,xysppc IDX2 6E xb ee ff PWP
STXI[D,xysppc] [D,IDX] |6Exb PIfW
STX[oprx16,xysppc) [IDX2] 6E xb ee ff PIPW
40

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC
STY opr8a StoreY DIR 5D dd PW
STY opri6a (Yr:YDO M:M+1 EXT 7D hhll PWO =I=I=I=]a]ajol]
STY oprx0_xysppc IDX 6D xb PW
STY oprx9,xysppc IDX1 6D xb ff PWO
STY oprx16,xysppc IDX2 6D xb ee ff PWP
STY [D,xysppc] [D,IDX] |6Dxb PIfW
STY [oprx16,xysppc] [IDX2] 6D xb ee ff PIPW
SUBA#0pr8i Subtractfrom A IMM 80ii P
SUBA opr8a (A)-(M)O A DIR 90dd rPf EI=I=Ilalajala)
SUBA oprl6a or (A—immQO A EXT BOhhIl rPO
SUBA oprx0_xysppc IDX A0 xb rPf
SUBA oprx9,xysppc IDX1 A0 xb ff PO
SUBA oprx16,xysppc IDX2 A0 xb ee ff frPP
SUBA [D,xysppc] [D,IDX] |AO0xb fIifrPf
SUBA [0prx16,xysppc] [IDX2] A0 xb ee ff fIPrPf
SUBB #0pr8i Subtractfrom B IMM COii P
SUBB opr8a (B)-(M)O B DIR DO dd rPf =I==I-alaala
SUBB oprl6a or (B)-immQO B EXT FOhhll rPO
SUBB oprx0_xysppc IDX EO xb rPf
SUBB oprx9,xysppc IDX1 EO xb ff rPO
SUBB oprx16,xysppc IDX2 EO xb ee ff frPP
SUBB [D,xysppc] [D,IDX] |EOxb fifrPf
SUBB [oprx16,xysppc] [IDX2] EO xb ee ff fIPrPf
SUBD #opr16i Subtract from D IMM 83jjkk PO
SUBD opr8a (A:B)-(M:M+1)00 A:B DIR 93dd RPf I=-I-Jalaala
SUBD opri6a or (A:B)-imm0O A:B EXT B3 hhll RPO
SUBD oprx0_xysppc IDX A3 xb RPf
SUBD oprx9,xysppc IDX1 A3 xb ff RPO
SUBD oprx16,xysppc IDX2 A3 xb ee ff fRPP
SUBD [D,xysppc] [D,IDX] |A3xb fIFRPf
SUBD [oprx16,xysppc] [IDX2] A3 xb ee ff fIPRPf
SWi Software interrupt; (SP)-20 SP INH 3F VSPSSPSsP* 1
RTNHRTNLD MSP:MSP'HL ===I====
(SP)—ZD SP, (YH:YL)D MSP:MSP+1
(SP)-20 SP; (Xy:X)O Mgp:Mgpaq
(SP)-20 SP; (B:A)O Mgp:Mgp4+1
(SP)-10 SP; (CCR)O Mgp; 101 1
(SWI vector)O PC
*The CPU also uses VSPSSPSsPfor hardware interrupts and unimplemented opcode traps.
TAB TransferAtoB; (A)U B INH 18 0E (0] [=[-[=[=[a[2]0]]
TAP Transfer Ato CCR; (A)U CCR INH B7 02 P [a[cTA[A[A[A]A]4]
Assembled as TFR A, CCR A[afalalaala
TBA TransferBto A; (B)O A INH 18 OF (0]0) EEEERREE
TBEQ abdxysp,rel9 Test and branch if equal to O REL 041brr PPP (branch)
If (counter)=0, then (PC)+2+reld] PC | (9-bit) PPO (no branch) ==
TBL oprx0_xysppc Table lookup and interpolate, 8-bit IDX 183D xb OR(ffP EEEERAAER
(M+[(B)x((M+1)~(M))]C A
TBNE abdxysp,rel9 Testand branchif not equal to 0 REL 041brr PPP (branch) _
If (counter)#0, then (PC)+2+reld PC [(9-bit) PPO (no branch) EEEEEEEE
TFR abcdxysp,abcdxysp Transfer from register to register INH B7eb P EEEEEEEE
(r1)d r2rl and r2 same size or
$00:(r1)0 r2r1=8-bit; r2=16-bit
(r1)0 r2r1=16-bit; r2=8-bit [A[C[a[a[a[A[A]a]
TPASame as TFRCCR ,A Transfer CCRto A; (CCR)O A INH B7 20 P EEEEEEEE
41

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC
TRAP trapnum Trap unimplemented opcode; INH 18tn OVSPSSPSsP 1
(SP)-20 SP tn = $30-$39 CECBEERE
RTNHRTNLD MSP:MSP‘HL or
(SP)-20 SP; (Yi4:Y)0 Mgp:Mgp.q tn = $40-$FF
(SP)—ZD SP; (XH:XL)D MSP:MSP+1
(SP)—ZD SP; (BA)D MSP:MSP+1
(SP)-10 SP; (CCR)O Mgp
10 1; (trap vector)d PC
TST opri6a TestM; (M)-0 EXT F7hhll rPO
TST oprx0_xysppc IDX E7 xb rPf =I=I=I-Jalalolo
TST oprx9,xysppc IDX1 E7 xb ff rPO
TST oprx16,xysppc IDX2 E7 xb ee ff frPP
TST [D,xysppc] [D,IDX] |E7xb fIifrPf
TST [0oprx16,xysppc] [IDX2] E7 xb ee ff fIPrPf
TSTA TestA; (A)-0 INH 97 (0]
TSTB TestB; (B)-0 INH D7 o
TSXSame as TFR SP,X Transfer SP to X; (SP)O X INH B7 75 P EEEEEEEE
TSYSame as TFR SP,Y TransferSPtoY; (SP)O Y INH B7 76 P EEEEEEEE
TXSSame as TFR X,SP Transfer X to SP; (X)O SP INH B757 P EEEEEEEE
TYSSame as TFRY,SP Transfer Y to SP; (Y)O SP INH B7 67 P EEEEEEEE
WAI Wait for interrupt; (SP)-20 SP INH 3E OSSSSsf
RTN{:RTN O Mgp:Mgp.1 f\glf:)efore interrupt) ======
(SP)-20 SP; (YY) Msp:Msp.1 PPP EEEREEEE
(SP)-20 SP; (X:X)O Mgp:Mgp41 (after interrupt) ======
(SP)—ZD SP; (BA)D MSP:MSP+1 _
1]-]1
(SP)-10 SP; (CCR)0 Mgp (=12 =H
WAV Calculate weighted average; sum of [Special |183C Of(frr ffff)O** 21-12[a[2]2
products (SOP) and sum of weights SSS+UUUr**x ERERHEREE
(SOwW)*
B
z S;F; 0 Y:D
i=1
B
z F O X
i=1
*Initialize B, X, and Y: B=number of elements; X points at first elementin S;list; Y points at first element in F; list. All S; and F; elements are 8-bit values.

**The frr ffff

sequence is the loop for one iteration of SOP and SOW accu

**Additional cycles caused by an interrupt: SSSis the exit sequence and UUUrr" is the

mulation. The ~ denotes a che

ck for pending interrupt requests.

re-entry sequence. Intermediate values use six stack bytes.

wavr* Resume executing interrupted WAV | Special |3C UUUrr fff(frrn EERERRER
ffff)O**
SSS+UUUrrAx+*
*wavr is a pseudoinstruction that recovers intermediate results from the stack rather than initializing them to 0.
**The frr ffff sequence is the loop for one iteration of SOP and SOW recovery. The * denotes a check for pending interrupt requests.
***These are additional cycles caused by an interrupt: SSSis the exit sequence and UUUrr? is the re-entry sequence.
XGDXSame as EXGD, X Exchange D with X; (D) = (X) INH B7 C5 P EEEEEEEE
XGDYSame as EXGD, Y Exchange D with Y; (D) = (Y) INH B7 C6 P EEEEEEEE

42

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

1.8.1 Register and Memory Notation

Table 1-3 Register and Memory Notation

A or a| Accumulator A

An | Bit n of accumulator A
B or b | Accumulator B
Bn [Bit n of accumulator B

D or d| Accumulator D
Dn | Bit n of accumulator D
X or x| Index register X

Xy | High byte of index register X

X | Low byte of index register X

Xn | Bit n of index register X

Y or y|Index register Y

Yy | High byte of index register Y

Y| | Low byte of index register Y

Yn | Bit n of index register Y
SP or sp | Stack pointer
SPn | Bit n of stack pointer
PC or pc| Program counter

PCy [High byte of program counter

PC, | Low byte of program counter

CCR or c| Condition code register
M | Address of 8-bit memory location

Mn | Bit n of byte at memory location M
Rn | Bit n of the result of an arithmetic or logical operation
In [Bit n of the intermediate result of an arithmetic or logical operation

RTNy | High byte of return address

RTN_ | Low byte of return address

() | Contents of

1.8.2 Source Form Notation

The Source Formcolumn of the summary ifiable 1-2 gives essential information about assembler
source forms. For complete information about writing source files for a particular assembler, refer to the
documentation provided by the assembler vendor.

Everything in theéSource Formcolumn,except expressions in italic charactessliteral information

which must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemonic is
always a literal expression. All commas, pound signs (#), parentheses, squaredirfokée}, plus signs

(+), minus signs (-), and the register designation (A, B, D), are literal characters.

The groups of italic characters showrTiable 1-4 represent variable information to be supplied by the
programmer. These groups can include any alphanumeric character or the underscore character, but cannot

@ MOTOROLA 43

Core User Guide — S12CPU15UG V1.2

include a space or comma. For example, the groypppcandoprx0_xysppare both valid, but the two
groupsoprx0 xysppa@re not valid because there is a space between them.

Table 1-4 Source Form Notation

abc Register designator for A, B, or CCR
abcdxysp Register designator for A, B, CCR, D, X, Y, or SP
abd Register designator for A, B, or D

abdxysp Register designator for A, B, D, X, Y, or SP

daxysp Register designator for D, X, Y, or SP

8-bit mask value

msk8 Some assemblers require the # symbol before the mask value.
opr8i 8-bit immediate value

oprl6i 16-bit immediate value

opr8a 8-bit address value used with direct address mode

oprl6a 16-bit address value

oprx0_xysp |Indexed addressing postbyte code:

oprx3,—xysp — Predecrement X , Y, or SP by 1-8

oprx3,+xysp — Preincrement X, Y, or SP by 1-8

oprx3,xysp— — Postdecrement X, Y, or SP by 1-8

oprx3,xysp+ — Postincrement X, Y, or SP by 1-8

oprx5,xysppc — 5-bit constant offset from X, Y, SP, or PC
abd,xysppc — Accumulator A, B, or D offset from X, Y, SP, or PC

oprx3 Any positive integer from 1 to 8 for pre/post increment/decrement
oprx5 Any integer from —16 to +15

oprx9 Any integer from —256 to +255

oprx16 Any integer from —32,768 to +65,535

8-bit value for PPAGE register

page Some assemblers require the # symbol before this value.
rel8 Label of branch destination within —256 to +255 locations
rel9 Label of branch destination within —512 to +511 locations
rel16 Any label within the 64-Kbyte memory space

trapnum Any 8-bit integer from $30 to $39 or from $40 to $FF
Xysp Register designator for X or Y or SP

Xysppc Register designator for X or Y or SP or PC

44 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

1.8.3 Operation Notation

Table 1-5 Operation Notation

+ |Add
— | Subtract
« |AND
| |OR
0 |Exclusive OR
x | Multiply
+ | Divide
Concatenate
O |Transfer
= | Exchange

1.8.4 Address Mode Notation

@ MOTOROLA

Table 1-6 Address Mode Notation

INH

Inherent; no operands in instruction stream

IMM

Immediate; operand immediate value in instruction stream

DIR

Direct; operand is lower byte of address from $0000 to $00FF

EXT

Operand is a 16-bit address

REL

Two’s complement relative offset; for branch instructions

IDX

Indexed (no extension bytes); includes:
5-bit constant offset from X, Y, SP or PC
Pre/post increment/decrement by 1-8
Accumulator A, B, or D offset

IDX1

9-bit signed offset from X, Y, SP, or PC; 1 extension byte

IDX2

16-bit signed offset from X, Y, SP, or PC; 2 extension bytes

[IDX2]

Indexed-indirect; 16-bit offset from X, Y, SP, or PC

[D, IDX]

Indexed-indirect; accumulator D offset from X, Y, SP, or PC

45

Core User Guide — S12CPU15UG V1.2
1.8.5 Machine Code Notation

In theMachine Code (Hex)column of the summary ifiable 1-2, digits 0-9 and upper case letters A—F
represent hexadecimal values. Pairs of lower-case letters represent 8-bit values as Sablerl7 .

Table 1-7 Machine Code Notation

dd | 8-bit direct address from $0000 to $00FF; high byte is $00
ee | High byte of a 16-bit constant offset for indexed addressing

eb | Exchangel/transfer postbyte

Low eight bits of a 9-bit signed constant offset in indexed addressing, or low byte of a 16-bit
constant offset in indexed addressing

hh | High byte of a 16-bit extended address

ii | 8-bitimmediate data value

jj | High byte of a 16-bit immediate data value
kk | Low byte of a 16-bit immediate data value

Ib | Loop primitive (DBNE) postbyte
Il | Low byte of a 16-hit extended address

8-bit immediate mask value for bit manipulation instructions; bits that are set indicate bits to be
affected

mm

pg | Program page or bank number used in CALL instruction

aq | High byte of a 16-bit relative offset for long branches
tn | Trap number from $30 to $39 or from $40 to $FF

Signed relative offset $80 (—128) to $7F (+127) relative to the byte following the relative offset byte,
or low byte of a 16-bit relative offset for long branches

r

xb |Indexed addressing postbyte

46 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2
1.8.6 Access Detail Notation

A single-letter code in thAccess Detailcolumn ofTable 1-2 represents a single CPU access cycle. An
upper-case letter indicates a 16-bit access.

Table 1-8 Access Detail Notation

f | Free cycle. During an f cycle, the CPU does not use the bus. An f cycle is always one cycle of the
system bus clock. An f cycle can be used by a queue controller or the background debug system to
perform a single-cycle access without disturbing the CPU.

g | Read PPAGE register. A g cycle is used only in CALL instructions and is not visible on the external
bus. Since PPAGE is an internal 8-bit register, a g cycle is never stretched.

| | Read indirect pointer. Indexed-indirect instructions use the 16-bit indirect pointer from memory to
address the instruction operand. An | cycle is a 16-bit read that can be aligned or misaligned. An |
cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the
corresponding data is stored in external memory. There can be additional stretching when the
address space is assigned to a chip-select circuit programmed for slow memory. An | cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access.

i | Read indirect PPAGE value. Ani cycle is used only in indexed-indirect CALL instructions. The 8-bit
PPAGE value for the CALL destination is fetched from an indirect memory location. Ani cycle is
stretched only when controlled by a chip-select circuit that is programmed for slow memory.

n | Write PPAGE register. An n cycle is used only in CALL and RTC instructions to write the destination
value of the PPAGE register and is not visible on the external bus. Since the PPAGE register is an
internal 8-bit register, an n cycle is never stretched.

O| Optional cycle. An Ocycle adjusts instruction alignment in the instruction queue. An Ocycle can be a
free cycle (f) or a program word access cycle (P). When the first byte of an instruction with an odd
number of bytes is misaligned, the Ocycle becomes a P cycle to maintain queue order. If the first
byte is aligned, the Ocycle is an f cycle.

The $18 prebyte for a page-two opcode is treated as a special one-byte instruction. If the prebyte is
misaligned, the Ocycle at the beginning of the instruction becomes a P cycle to maintain queue
order. If the prebyte is aligned, the Ocycle is an f cycle. If the instruction has an odd number of
bytes, it has a second Ocycle at the end. If the first Ocycle is a P cycle (prebyte misaligned), the
second Ocycle is an f cycle. If the first Ocycle is an f cycle (prebyte aligned), the second Ocycle is
a P cycle.

An Ocycle that becomes a P cycle can be extended to two bus cycles if the MCU is operating with an
8-bit external data bus and the program is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An Ocycle that becomes an f cycle is never stretched.

P | Program word access. Program information is fetched as aligned 16-bit words. A P cycle is extended
to two bus cycles if the MCU is operating with an 8-bit external data bus and the program is stored
externally. There can be additional stretching when the address space is assigned to a chip-select
circuit programmed for slow memory.

r | 8-bit data read. Anr cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

R| 16-bit data read. An R cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An Rcycle is also stretched if it corresponds to a misaligned access to a memory that is not
designed for single-cycle misaligned access.

s | Stack 8-bit data. An s cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

@ MOTOROLA 47

Core User Guide — S12CPU15UG V1.2

48

Table 1-8 Access Detail Notation (Continued)

Stack 16-bit data. An S cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching if the
address space is assigned to a chip-select circuit programmed for slow memory. An S cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access. The internal RAM is designed to allow single cycle misaligned word access.

8-bit data write. A wcycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

16-bit data write. A Wcycle is extended to two bus cycles if the MCU is operating with an 8-hit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
A Wecycle is also stretched if it corresponds to a misaligned access to a memory that is not designed
for single-cycle misaligned access.

Unstack 8-bit data. A Wcycle is stretched only when controlled by a chip-select circuit programmed
for slow memory.

Unstack 16-bit data. A U cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching
when the address space is assigned to a chip-select circuit programmed for slow memory. A U cycle
is also stretched if it corresponds to a misaligned access to a memory that is not designed for
single-cycle misaligned access. The internal RAM is designed to allow single-cycle misaligned word
access.

16-bit vector fetch. Vectors are always aligned 16-bit words. A V cycle is extended to two bus cycles
if the MCU is operating with an 8-bit external data bus and the program is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory.

8-bit conditional read. At cycle is either a data read cycle or a free cycle, depending on the data and
flow of the REVW instruction. At cycle is stretched only when controlled by a chip-select circuit
programmed for slow memory.

16-bit conditional read. A T cycle is either a data read cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. A T cycle is extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the corresponding data is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory. A T cycle is also stretched if it corresponds to a misaligned access to
a memory that is not designed for single-cycle misaligned access.

8-bit conditional write. An x cycle is either a data write cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. An x cycle is stretched only when controlled by a
chip-select circuit programmed for slow memory.

Special Notation for Branch Taken/Not Taken

PPP/P

A short branch requires three cycles if taken, one cycle if not taken. Since the instruction consists of
a single word containing both an opcode and an 8-bit offset, the not-taken case is simple — the
gueue advances, another program word fetch is made, and execution continues with the next
instruction. The taken case requires that the queue be refilled so that execution can continue at a
new address. First, the effective address of the destination is determined, then the CPU performs
three program word fetches from that address.

OPPP/OPQ

A long branch requires four cycles if taken, three cycles if not taken. An Ocycle is required because
all long branches are page two opcodes and thus include the $18 prebyte. The prebyte is treated as
a one-byte instruction. If the prebyte is misaligned, the Ocycle is a P cycle; if the prebyte is aligned,
the Ocycle is an f cycle. As a result, both the taken and not-taken cases use one Ocycle for the

prebyte. In the not-taken case, the queue must advance so that execution can continue with the next
instruction, and another Ocycle is required to maintain the queue. The taken case requires that the
queue be refilled so that execution can continue at a new address. First, the effective address of the
destination is determined, then the CPU performs three program word fetches from that address.

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2
1.8.7 Condition Code State Notation

Table 1-9 Condition Code State Notation

Not changed by operation

Cleared by operation

Set by operation

Set or cleared by operation

May be cleared or remain set, but not set by operation
May be set or remain cleared, but not cleared by operation
May be changed by operation but final state not defined

! | Used for a special purpose

N(g|lol|lble|o

@ MOTOROLA 49

Core User Guide — S12CPU15UG V1.2

50 @ MOTOROLA

Section 2 Nomenclature

This section describes the conventions and notation used to describe the Core operation.

2.1 References

Core User Guide — S12CPU15UG V1.2

This document uses ti8ematech Official Dictionargnd the JEDEC/EIReference Guide to Letter

Symbols for Semiconductor Devi@ssreferences for terminology and symbology.

2.2 Units and Measures

SIU units and abbreviations are used throughout this guide.

2.3 Symbology

The symbols and operators used throughout this guide are shdahlen2-1.
Table 2-1 Symbols and Operators

Symbol

Function

+

Addition

Subtraction (two’s complement) or negation

*]

Multiplication

Division

Greater

NV |~

Less

Equal

Equal or greater

NIV

Equal or less

Not equal

AND

Inclusive OR (OR)

Exclusive OR (EOR)

Complementation

Concatenation

Transferred

Exchanged

Tolerance

0b0011

Binary value

Ox0F

Hexadecimal value

2.4 Terminology

Logic level oneis a voltage that corresponds to Boolean true (1) state.

@ MOTOROLA

51

Core User Guide — S12CPU15UG V1.2

Logic level zerois a voltage that corresponds to Boolean false (0) state.

To seta bit or bits means to establish logic level one on them.

To clear a bit or bits means to establish logic level zero on them.

A signalis an electronic construct whose state or changes in state convey information.

A pin is an external physical connection. The same pin can be used to connect a number of signals.
Assertedmeans that a discrete signal is in active logic state.

» Active low signals change from logic level one to logic level zero.

» Active high signals change from logic level zero to logic level one.
Negatedmeans that an asserted discrete signal changes logic state.

» Active low signals change from logic level zero to logic level one.
» Active high signals change from logic level one to logic level zero.

LSB means least significant bit or bitglSB means most significant bit or bits. References to low and high
bytes or words are spelled out.

Memory and registers useg-endianordering. The most significant byte (byte 0) of word O is located at
address 0. Bits within a word are numbered downward from the MSB, bit 15.

Signal, bit field, and control bit mnemonics follow a general numbering scheme:

» Arange of mnemonicds referred to by mnemonic and numbers that define the range, from highest
to lowest. For examplg,_addr[4:0] are lines four to zero of an address bus.

* A single mnemonicstands alone or includes a single numeric designator when appropriate. For
examplem_rstis a unigue mnemonic, whife addrl5represents line 15 of an address bus.

52 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 3 Core Registers

This section provides detailed descriptions of the Core programming model, registers and accumulators.
In addition, a general description of the complete Core register map which includes all Core sub-blocks is
included.

3.1 Programming Model

The Core CPU12 programming model, showFigure 3-1, is the same as that of the 68HC12 and
68HC11. The register set and data types used in the model are covered in the subsections that follow.

7 A o7 B 0 | 8-BIT ACCUMULATORS A AND B

15 D 0 | 16-BIT DOUBLE ACCUMULATOR D (A: B)
|15 X 0 | INDEX REGISTER X
|15 Y 0 | INDEX REGISTER Y
|15 sP 0 | STACK POINTER
|15 PC 0 | PROGRAM COUNTER

|s|x|H|1|n|z|v]c| conpDITION CODE REGISTER

CARRY

OVERFLOW

ZERO

NEGATIVE

IRQ INTERRUPT MASK (DISABLE)
HALF-CARRY FOR BCD ARITHMETIC

XIRQ INTERRUPT MASK (DISABLE)

STOP DISABLE (IGNORE STOP INSTRUCTION)

Figure 3-1 Programming Model

3.1.1 Accumulators

General-purpose 8-bit accumulators A and B hold operands and results of operations. Some instructions
use the combined 8-bit accumulators, A:B, as a 16-bit double accumulator, D, with the most significant
byte in A.

@ MOTOROLA 53

Core User Guide — S12CPU15UG V1.2

7 6 5 4 3 2 1 0
Read:
Write:
Reset: 0 0 0 0 0 0 0 0

Figure 3-2 Accumulator A

7 6 5 4 3 2 1 0
Read:
Write:
Reset: 0 0 0 0 0 0 0 0

Figure 3-3 Accumulator B

Most operations can use accumulator A or B interchangeably. However, there are a few exceptions. Add,
subtract, and compare instructions involving both A and B (ABA, SBA, and CBA) only operate in one
direction, so it is important to verify that the correct operand is in the correct accumulator. The decimal
adjust accumulator A (DAA) instruction is used after binary-coded decimal (BCD) arithmetic operations.
There is no equivalent instruction to adjust accumulator B.

3.1.2 Index Registers (X and Y)

16-bit index registers X and Y are used for indexed addressing. In indexed addressing, the contents of an
index register are added to a 5-bit, 9-bit, or 16-bit constant or to the contents of an accumulator to form the
effective address of the instruction operand. Having two index registers is especially useful for moves and
in cases where operands from two separate tables are used in a calculation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read:

Write:

Reset: O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3-4 Index Register X

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 3-5 Index Register Y

54 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Read:

Write:

Reset: O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3-5 Index Register Y

3.1.3 Stack Pointer (SP)

The stack stores system context during subroutine calls and interrupts, and can also be used for temporary
data storage. It can be located anywhere in the standard 64K byte address space and can grow to any size
up to the total amount of memory available in the system.

SP holds the 16-bit address of the last stack location used. Normally, SP is initialized by one of the first
instructions in an application program. The stack grows downward from the address pointed to by SP.
Each time a byte is pushed onto the stack, the stack pointer is automatically decremented, and each time a
byte is pulled from the stack, the stack pointer is automatically incremented.

When a subroutine is called, the address of the instruction following the calling instruction is automatically
calculated and pushed onto the stack. Normally, a return from subroutine (RTS) is executed at the end of
a subroutine. The return instruction loads the program counter with the previously stacked return address
and execution continues at that address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read:

Write:

Reset: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Figure 3-6 Stack Pointer (SP)

When an interrupt occurs, the CPU:

» Completes execution of the current instruction
» Calculates the address of the next instruction and pushes it onto the stack
* Pushes the contents of all the CPU registers onto the stack

» Loads the program counter with the address pointed to by the interrupt vector, and begins execution
at that address

The stacked CPU registers are referred to as an interrupt stack frame. The Core stack frame is the same as
that of the CPU.

@ MOTOROLA 55

Core User Guide — S12CPU15UG V1.2
3.1.4 Program Counter (PC)

PC is a 16-bit register that holds the address of the next instruction to be executed. The address in PC is
automatically incremented each time an instruction is executed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Read:

Write:

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3-7 Program Counter (PC)

3.1.5 Condition Code Register (CCR)

CCR has five status bits, two interrupt mask bits, and a STOP instruction mask bit. It is named for the five
conditions indicated by the status bits.

The status bits reflect the results of CPU operations. The five status bits are half-carry (H), negative (N),
zero (Z), overflow (V), and carry/borrow (C). The half-carry bit is used only for BCD arithmetic
operations. The N, Z, V, and C status bits allow for branching based on the results of a CPU operation.

Most instructions automatically update condition codes, so it is rarely necessary to execute extra
instructions to load and test a variable. The condition codes affected by each instruction are shown in
Appendix A of this guide.

The following paragraphs describe common uses of the condition codes. There are other, more specialized
uses. For instance, the C status bit is used to enable weighted fuzzy logic rule evaluation. Specialized
usages are described in the relevant portions of this guide Apgpéandix A .

Bit 7 6 5 4 3 2 1 Bit 0
Read:
S X H | N Z \% C
Write:
Reset: 1 1 0 1 0 0 0 0

Figure 3-8 Condition Code Register (CCR)

S — STOP Mask Bit

Clearing the S bit enables the STOP instruction. Execution of a STOP instruction causes the on-chip
oscillator to stop. This may be undesirable in some applications. When the S bit is set, the CPU treats
the STOP instruction as a no-operation (NOP) instruction and continues on to the next instruction.
Reset sets the S bit.

1 = STOP instruction disabled

0 = STOP instruction enabled

56 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

X — XIRQ Mask Bit

Clearing the X bit enables interrupt requests onXheQ pin. TheXIRQ input is an updated version

of the nonmaskable interruptiill) input found on earlier generations of Motorola microcontroller
units (MCUs). Nonmaskable interrupts are typically used to deal with major system failures such as
loss of power. However, enabling nonmaskable interrupts before a system is fully powered and
initialized can lead to spurious interrupts. The X bit provides a mechanism for masking nonmaskable
interrupts until the system is stable.

Reset sets the X bit. As long as the X bit remains set, interrupt service requests madeiiiRQhsn

are not recognized. Software must clear the X bit to enable interrupt service requests KthRQthe
pin. Once software clears the X bit, enabliKERQ interrupt requests, only a reset can set it again. The
X bit does not affect | bit maskable interrupt requests.

When the X bitis clear and aXiRQ interrupt request occurs, the CPU stacks the cleared X bit. It then
automatically sets the X and | bits in the CCR to disaXlieQ and maskable interrupt requests during
the XIRQ interrupt service routine.

An RTI instruction at the end of the interrupt service routine restores the cleared X bit to the CCR,
re-enablingXIRQ interrupt requests.

1 =XIRQ interrupt requests disabled

0 =XIRQ interrupt requests enabled

H — Half-Carry Bit
The H bit indicates a carry from bit 3 of the result during an addition operation. The DAA instruction
uses the value of the H bit to adjust the result in accumulator A to BCD format. ABA, ADD, and ADC
are the only instructions that update the H bit.
1 = Carry from bit 3 after ABA, ADD, or ADC instruction
0 = No carry from bit 3 after ABA, ADD, or ADC instruction

| — Interrupt Mask Bit

Clearing the | bit enables maskable interrupt sources. Reset sets the | bit. To enable maskable interrupt
requests, software must clear the | bit. Maskable interrupt requests that occur while the | bit is set
remain pending until the | bit is cleared.

When the | bitis clear and a maskable interrupt request occurs, the CPU stacks the cleared | bit. It then
automatically sets the | bit in the CCR to prevent other maskable interrupt requests during the interrupt
service routine.

An RTI instruction at the end of the interrupt service routine restores the cleared | bit to the CCR,
reenabling maskable interrupt requests. The | bit can be cleared within the service routine, but
implementing a nested interrupt scheme requires great care, and seldom improves system
performance.

1 = Maskable interrupt requests disabled

0 = Maskable interrupt requests enabled

@ MOTOROLA S7

Core User Guide — S12CPU15UG V1.2

N — Negative Bit
The N bit is set when the MSB of the result is set. N is most commonly used in two’s complement
arithmetic, where the MSB of a negative number is one and the MSB of a positive number is zero, but
it has other uses. For instance, if the MSB of a register or memory location is used as a status bit, the
user can test the bit by loading an accumulator.
1 = MSB of result set
0 = MSB of result clear

Z — Zero Bit

The Z bit is set when all the bits of the result are zeros. Compare instructions perform an internal
implied subtraction, and the condition codes, including Z, reflect the results of that subtraction. The
INX, DEX, INY, and DEY instructions affect the Z bit and no other condition bits. These operations
can only determine = and

1 = Result all zeros

0 = Result not all zeros

V — Overflow Bit

The V bit is set when a two’s complement overflow occurs as a result of an operation.
1 = Overflow
0 = No overflow

C — Carry Bit
The C bitis set when a carry occurs during addition or a borrow occurs during subtraction. The C bit
also acts as an error flag for multiply and divide operations. Shift and rotate instructions operate
through the C bit to facilitate multiple-word shifts.
1 = Carry or borrow
0 = No carry or borrow

3.2 Core Register Map

The Core registers are those that are part of the sub-blocks that support the CPU to makeup the entire Core
block. In addition to the registers contributed by the Core sub-blocks, sections of the Core space are
reserved for registers contributed by the system peripherals and memory sub-blocks. These registers are
configured at integration of the Core into the SoC design. The Core register map summary is shown in
Figure 3-9 below.

The Core registers, with the exception of those associated with the BDM sub-block (addresses $FF00
through $FF07), can be mapped to any 2K byte block within the first 32K byte space of the standard 64K
byte address area by configuring the INITRG register.

58 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

For detailed descriptions of the Core register and bit functionality please refer to Core sub-block
description sections of this guide. To assist in locating this more detailed infornatibe,3-1 below
lists the Core registers, the sub-block they are associated with and a brief description of function.

Address
$0000

$0001

$0002

$0003

$0004

$0005

$0006

$0007

$0008

$0009

$000A

$000B

$000C

$000D

$000E

$000F

$0010

$0011

$0012

$0013

$0014

$0015

Name

PORTA

PORTB

DDRA

DDRB

Reserved

Reserved

Reserved

Reserved

PORTE

DDRE

PEAR

MODE

PUCR

RDRIV

EBICTL

Reserved

INITRM

INITRG

INITEE

MISC

Reserved

ITCR

@ MOTOROLA

read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write

Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 L Bit 0
Bit 7 6 5 4 3 2 0 0
0 0 0
NOACCE PIPOE | NECLK | LSTRE | RDWE
0 0
MODC | MODB | MODA VIS EMK EME
PUPKE 0 0 PUPEE 0 0 PUPBE | PUPAE
RDPK 0 0 RDPE 0 0 RDPB | RDPA
0 0 0 0 0 0 0 corm
0 0 0 0 0 0 0 0
RAM15 | RAM14 | RAM13 | RAM12 | RAM11 0 O |RAMHAL
0 REG14 | REG13 | REG12 | REG11 0 0 0
0 0
EE15 | EE14 | EE13 | EE12 | EE11 EEON
0 0 0 O | ExsTR1 |EXSTRO| ROMHM | ROMON
0 0 0 0 0 0 0 0
0 0 0
WRTINT| ADR3 | ADR2 | ADR1 | ADRO
59

Core User Guide — S12CPU15UG V1.2

$0016

$0017

$0018
to
$001B

$001C

$001D

$001E

$001F

$0020
to
$0027

$0028

$0029

$002A

$002B

$002C

$002D

$002E

$002F

$0030

$0031

$0032

$0033

$0034
to
$O0OFF
$0100
to
$010F

60

ITEST

Reserved

Reserved

MEMSIZ0
MEMSIZ1
IRQCR

HPRIO

Reserved

BKPCTO

BKPCT1
BKPOX
BKPOH
BKPOL
BKP1X
BKP1H
BKP1L
PPAGE

Reserved
PORTK

DDRK

Reserved

Reserved

read
write
read
write

read
write
read
write
read
write
read
write

read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write
read
write

INTE INTC INTA INT8 INT6 INT4 INT2 INTO
0 0 0 0 0 0 0 0
Reserved for Peripheral Block Registers
reg_swO 0 eeo_swl [eep_swO 0 ram_sw2| ram_swl | ram_swO
rom_sw1 | rom_swO 0 0 0 0 pag_swl | pag_swO
IRQE | IRQEN 0 0 0 0 0 0

PSEL7 | PSEL6 | PSEL5 | PSEL4 | PSEL3 | PSEL2 | PSEL1 0
Reserved for Peripheral Block Registers
BKEN | BKFULL | BKBDM | BKTAG 0 0 0 0
BKOMBH | BKOMBL | BK1IMBH | BK1MBL | BKORWE | BKORW | BK1IRWE | BKIRW
0 0 BKOV5 | BKOV4 | BKOV3 | BKOV2 | BKOV1 | BKOVO
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0
0 0 BK1V5 | BK1V4 | BK1V3 | BK1V2 | BK1V1l | BK1VO
Bit 15 14 13 12 11 10 9 Bit 8
Bit 7 6 5 4 3 2 1 Bit 0
0 0
PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
0 0 0 0 0 0 0 0
Bit 7 6 5 4 3 2 1 Bit 0
Bit 7 6 5 4 3 2 1 Bit 0

Reserved for Peripheral Block Registers

Reserved for Flash EEPROM or ROM Registers

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

$0110
to Reserved Reserved for EEPROM Registers
$011B
$011C
to Reserved Reserved for RAM Registers
$011F
$0120
to Reserved Reserved for Peripheral Block Registers
$07FF
$FF00 Reserved re?‘d X X X X X X 0 0
write
$FF01 BDMSTS \:\(/ariiitg ENBDM [BDMACT| ENTAG SDV TRACE | CLKSW UNSEC | CORE
$FF02 Reserved re"_"d X X X X X X X X
write
$FF03 Reserved re?‘d X X X X X X X X
write
$FF04 Reserved re‘f"d X X X X X X X X
write
$FF05 Reserved re"_"d X X X X X X X X
write
$FF06 BDMCCR \:\?rioel CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCRO
$FFO7 BDMINR read| REG15 | REG14 | REG13 | REG12 | REG11 0 0 0
write
= Unimplemented X = Indeterminate
Figure 3-9 Core Register Map Summary
Table 3-1 Core Register Map Reference
Address Name Sub-block Description
$0000 PORTA MEBI Port A 8-bit Data Register
$0001 PORTB MEBI Port B 8-bit Data Register
$0002 DDRA MEBI Port A 8-bit Data Direction Register
$0003 DDRB MEBI Port B 8-bit Data Direction Register
$0008 PORTE MEBI Port E 8-bit Data Register
$0009 DDRE MEBI Port E 8-bit Data Direction Register
$000A PEAR MEBI Port E Assignment Register - configures fqnctionality of Port E as
general purpose I/O and/or alternate functions
$000B MODE MEBI Used tol establish mode of operation of the Core and configure
other miscellaneous functions
$000C PUCR MEBI Eu;l:g }((:ontrol Register to configure state of pullups on Ports A, B,

@ MOTOROLA

61

Core User Guide — S12CPU15UG V1.2

Table 3-1 Core Register Map Reference

Address Name Sub-block Description

Reduced Drive Register to configure drive strength of pins
associated with Ports A, B, E and K

External Bus Interface Control Register to configure functionality of
external E-clock signal

$000D RDRIV MEBI

$000E EBICTL MEBI

$0010 INITRM MMC Initialization of Internal RAM Position Register

$0011 INITRG MMC Initialization of Internal Registers Position Register

$0012 INITEE MMC Initialization of Internal EEPROM Registers Position Register

$0013 MISC MMC Miscellaneous Register to configure various system functions

$0015 ITCR INT Interrupt Tgst Control Reglster used in special modes of operation
for testing interrupt logic

$0016 ITEST INT Interrupt Test Register used in special modes of operation testing

interrupt logic

Memory Size Register 0 to allow capability to read the state of the

$001C MEMSIZ0O |MMC . . .
system memory configuration switches

Memory Size Register 1 to allow capability to read the state of the
system memory configuration switches

$001E IRQCR MEBI IRQ Control Register to configure IRQ pin functionality
$001F HPRIO INT Highest Priority | Interrupt Register (optional)

Breakpoint Control Register 0 to configure mode of operation of
breakpoint functions

$001D MEMSIZ1 |MMC

$0028 BKPCTO BKP

Breakpoint Control Register 1 to configure mode of operation of

$0029 BKPCTL BKP breakpoint functions

First Address Memory Expansion Breakpoint Register to assign
first address match value for expanded addresses

First Address High Byte Breakpoint Register to assign high byte of
first address within system memory space to be matched

First Address Low Byte Breakpoint Register to assign low byte of
first address within system memory space to be matched

Second Address Memory Expansion Breakpoint Register to assign
second address match value for expanded addresses

Second Address High Byte Breakpoint Register to assign high byte
of first address within system memory space to be matched

$002A BKPOX BKP

$002B BKPOH BKP

$002C BKPOL BKP

$002D BKP1X BKP

$002E BKP1H BKP

Second Address Low Byte Breakpoint Register to assign low byte

$002F BKP1L BKP of first address within system memory space to be matched

Program Page Index Register to configure the active memory page

$0030 PPAGE MMC viewed through the program page window from $8000-$BFFF

$0032 PORTK MEBI Port K 8-bit Data Register
$0033 DDRK MEBI Port K 8-bit Data Direction Register
$FFO1 BDMSTS |BDM BDM Status Register
$FFO6 BDMCCR |BDM BDM CCR Holding Register for interaction of BDM with CPU
BDM Internal Register Position Register to configure BDM register

$FFO7 BDMINR BDM .
mapping

62 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 4 Instructions

This section describes the instruction set of the Core. This discussion includes descriptions of instructions
grouped by type, the addressing modes used and the opcode map. PleasApptardix A of this
guide for a detailed instruction-by-instruction description of each opcode.

4.1 Instruction Types

All memory and I/O are mapped in a common 64K byte address space, allowing the same set of
instructions to access memory, I/O, and control registers. Load, store, transfer, exchange, and move
instructions facilitate movement of data to and from memory and peripherals.

There are instructions for signed and unsigned addition, division and multiplication with 8-bit, 16-bit, and
some larger operands.

Special arithmetic and logic instructions aid stacking operations, indexing, BCD calculation, and condition
code register manipulation. There are also dedicated instructions for multiply and accumulate operations,

table interpolation, and specialized mathematical calculations for fuzzy logic operations.

4.2 Addressing Modes

A summary of the addressing modes used by the Core is givEadle 4-1 below. The operation of each
of these modes is discussed in the subsections that follow.

Table 4-1 Addressing Mode Summary

Addressing Mode Source Form Apbreviation Description
INST
Inherent (no externally supplied INH Operands (if any) are in CPU registers.
operands)
. INST #opri Operand is included in instruction stream; 8-bit or
Immediate or IMM 16-bit size implied by context
INST #opr16i plied by '
. Operand is the lower 8-bits of an address in the range
Direct INST opr8a DIR $0000—$00FF.
Extended INST oprl6a EXT Operand is a 16-bit address.
. INST rels Effective address is the value in PC plus an 8-bit or
Relative or REL 16-bit relative offset value
INST rell6 '
Indexed Effective address is the value in X, Y, SP, or PC plus a
(5-bit offset) INST oprx5,xysp IDX 5-bit signed constant offset.
Indexed Effective address is the value in X, Y, or SP
(predecrement) INST oprx3,-xys IDX autodecremented by 1 to 8.
Indexed Effective address is the value in X, Y, or SP
(preincrement) INST oprx3,+xys IDX autoincremented by 1 to 8.
Indexed INST ODIX3.xVS— IDX Effective address is the value in X, Y, or SP. The value
(postdecrement) prXa.xy is postdecremented by 1 to 8.

@ MOTOROLA

63

Core User Guide — S12CPU15UG V1.2

Table 4-1 Addressing Mode Summary

Addressing Mode Source Form Apbreviation Description
Indexed INST 0DIX3.xvs+ IDX Effective address is the value in X, Y, or SP. The value
(postincrement) prX3.xy is postincremented by 1 to 8.
Indexed Effective address is the value in X, Y, SP, or PC plus
(accumulator offset) INST abd,xysp IDX the value in A, B, or D.
Indexed Effective address is the value in X, Y, SP, or PC plus a
(9-bit offset) INST oprx9,xysp IDX1 9-bit signed constant offset.
Indexed Effective address is the value in X, Y, SP, or PC plus a
(16-bit offset) INST oprx16,xysp IDx2 16-bit constant offset.
Indexed-indirect The value in X, Y, SP, or PC plus a 16-bit constant
(16-bit offset) INST [oprx16,xysp] [IDX2] offset points to the effective address.
Indexed-indirect The value in X, Y, SP, or PC plus the value in D points
(D accumulator offset) INST [Dxysp] [D.IDX] to the effective address.

4.2.1 Effective Address

Every addressing mode except inherent mode generates a 16-bit effective address. The effective address
is the address of the memory location that the instruction acts on. Effective address computations do not
require extra execution cycles.

4.2.2 Inherent Addressing Mode

Instructions that use this addressing mode either have no operands or all operands are in internal CPU
registers. In either case, the CPU does not need to access any memory locations to complete the instruction.

NOP ;this instruction has no operands

INX ;operand is a CPU register

4.2.3 Immediate Addressing Mode

Operands for immediate mode instructions are included in the instruction and are fetched into the
instruction queue one 16-bit word at a time during normal program fetch cycles. Since program data is
read into the instruction queue several cycles before it is needed, when an immediate addressing mode
operand is called for by an instruction, it is already present in the instruction queue.

The pound symbol (#) is used to indicate an immediate addressing mode operand. One very common
programming error is to accidentally omit the # symbol. This causes the assembler to misinterpret the
following expression as an address rather than explicitly provided data. For example LDAA #3$55 means
to load the immediate value $55 into the A accumulator, while LDAA $55 means to load the value from
address $0055 into the A accumulator. Without the # symbol the instruction is erroneously interpreted as
a direct addressing instruction.

LDAA #$55

64 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

LDX #$1234

LDY #$67

The size of the immediate operand is implied by the instruction context. In the third example, the
instruction implies a 16-bit immediate value but only an 8-bit value is supplied. In this case the assembler
generates the 16-bit value $0067 because the CPU expects a 16-bit value in the instruction stream.

BRSET FOO,#$03, THERE

In this example, extended addressing is used to access the operand FOO, immediate addressing is used tc
access the mask value $03, and relative addressing is used to identify the destination address of a branch
in case the branch-taken conditions are met. BRSET is listed as an extended mode instruction even though

immediate and relative modes are also used.

4.2.4 Direct Addressing Mode

This addressing mode is sometimes called zero-page addressing because it accesses operands in the
address range $0000 through $00FF. Since these addresses always begin with $00, only the low byte of
the address needs to be included in the instruction, which saves program space and execution time. A
system can be optimized by placing the most commonly accessed data in this area of memory. The low
byte of the operand address is supplied with the instruction and the high byte of the address is assumed to
be zero.

LDAA $55

The value $55 is taken to be the low byte of an address in the range $0000 through $00FF. The high byte
of the address is assumed to be zero. During execution, the CPU combines the value $55 from the
instruction with the assumed value of $00 to form the address $0055, which is then used to access the data
to be loaded into accumulator A.

LDX $20

In this example, the value $20 is combined with the assumed value of $00 to form the address $0020. Since
the LDX instruction requires a 16-bit value, a 16-bit word of data is read from addresses $0020 and $0021.
After execution, the X index register has the value from address $0020 in its high byte and the value from
address $0021 in its low byte.

4.2.5 Extended Addressing Mode

In extended addressing, the full 16-bit address of the memory location to be operated on is provided in the
instruction. Extended addressing can access any location in the 64K byte memory map.

LDAA $F0O3B

@ MOTOROLA 65

Core User Guide — S12CPU15UG V1.2
The value from address $FO03B is loaded into the A accumulator.
4.2.6 Relative Addressing Mode

Relative addressing is for branch instructions only. Relative addressing determines the branch destination.
The short and long versions of conditional branch instructions use relative addressing exclusively. The
branching bit-condition instructions, BRSET and BRCLR, use multiple addressing modes, including
relative mode.

A conditional branch instruction tests a status bit in the condition code register. If the bit tests true,
execution begins at the destination formed by adding an offset to the address of the memory location after
the offset. If the bit does not test true, execution continues with the instruction that follows the branch
instruction.

A short conditional branch instruction has an 8-bit opcode and a signed 8-bit relative offset in the byte that
follows the opcode. A long conditional branch instruction has an 8-bit prebyte, an 8-bit opcode and a
signed 16-bit relative offset in the two bytes that follow the opcode.

A branching bit-condition instruction, BRCLR or BRSET, tests the state of one or more bits in a memory
byte. Direct, extended, or indexed addressing can determine the location of the memory byte. The
instruction includes an immediate 8-bit mask operand to test the bits and an 8-bit relative offset. If the bits
test true, execution begins at the destination formed by adding the 8-bit offset to the address of the memory
location after the offset. If the bits do not test true, execution continues with the instruction that follows
the branch instruction.

Both 8-bit and 16-bit offsets are signed two’s complement numbers to support branching upward and
downward in memory. The numeric range of short branch offset values is $80 (-128) to $7F (127). The
numeric range of long branch offset values is $8000 (—32768) to $7FFF (32767). If the offset is zero, the
CPU executes the instruction that follows the branch instruction.

Since the offset is at the end of a branch instruction, using a negative offset value can cause the PC to point
to the opcode and initiate a loop. For instance, a branch always (BRA) instruction consists of two bytes,
so using an offset of $FE sets up an infinite loop; the same is true of a long branch always (LBRA)
instruction with an offset of $FFFC.

An offset that points to the opcode can cause a branching bit-condition instruction to repeat execution until
the specified bit condition is satisfied. Since branching bit-condition instructions can consist of four, five,
or six bytes depending on the addressing mode used, the offset value that sets up a loop can vary. For
instance, an offset of $FC in a 4-byte BRCLR instruction sets up a loop that executes until all the bits in
the tested memory byte are clear.

4.2.7 Indexed Addressing Modes

There are seven indexed addressing modes:

e 5-bit constant offset
* Autodecrement/increment

* 9-bit constant offset

66 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

» 16-bit constant offset

» 16-bit constant offset indexed-indirect
* Accumulator offset

» Accumulator D offset indexed-indirect

Features of indexed addressing include:

» The stack pointer can be used as an indexing register in all indexed operations

* The program counter can be used as an indexing register in all but autoincrement and
autodecrement modes

* A, B, or D accumulators can be used for accumulator offsets
e Automatic pre- or postincrement or pre- or postdecrement by —8 to +8
* A choice of 5-, 9-, or 16-bit signed constant offsets
» Two indexed-indirect modes:
— Indexed-indirect mode with 16-bit offset
— Indexed-indirect mode with accumulator D offset

4.2.7.1 Indexed Addressing Postbyte

A postbyte follows all indexed addressing opcodes. There may be 0, 1, or 2 extension bytes after the
postbyte. The postbyte and extensions do the following tasks:

1. Select a register for indexing (X, Y, SP, PC, A, B, or D)

2. Enable automatic pre- or postincrementing or decrementing of X, Y, or SP and select the pre- or
postincrement value

3. Select 5-bit, 9-bit, or 16-bit signed constant offsets

Table 4-2 shows how the postbyte enhances indexed addressing capabilities.

@ MOTOROLA 67

Core User Guide — S12CPU15UG V1.2

Table 4-2 Summary of Indexed Operations

5-bit constant offset indexed addressing (IDX)

7 6 5 4 3 2 1 0
Postbyte: rrl | 0 | 5-bit signed offset |
Effective address = 5-bit signed offset + (X, Y, SP, or PC)

Accumulator offset addressing (IDX)

7 6 5 4 3 2 1 0
Postbyte: | 1 | 1 | 1 | rrl | 1 | aa? |
Effective address = (X, Y, SP, or PC) + (A, B, or D)

Autodecrement/autoincrement) indexed addressing (IDX)

7 6 5 4 3 2 1 0
13 5 |

Postbyte: | rr | 1 | p4 | 4-bit inc/dec value
Effective address = (X, Y, or SP) + 1to 8

9-bit constant offset indexed addressing (IDX1)

7 6 5 4 3 2 1 0
Postbyte: | 1 | 1 [1| w* [0 | 0 [s°|
Effective address = s:(offset extension byte) + (X, Y, SP, or PC)

16-bit constant offset indexed addressing (IDX2)

7 6 5 4 3 2 1 0
Postbyte:| 1 | 1 | 1 | rrt | 0 | 1 | 0 |
Effective address = (two offset extension bytes) + (X, Y, SP, or PC)

16-bit constant offset indexed-indirect addressing ([IDX2])
7 6 5 4 3 2 1 0
Postbyte: | 1 | 1 | 1 | rrl | 0 | 1 | 1 |
(two offset extension bytes) + (X, Y, SP, or PC) is address of pointer to effective address

Accumulator D offset indexed-indirect addressing ([D,IDX])
7 6 5 4 3 2 1 0
Postoyte: | 1 | 1 [1| wm [1] 1] 1|
(X,Y, SP, or PC) + (D) is address of pointer to effective address
NOTES:
. Ir selects X (00), Y (01), SP (10), or PC (11).
. aa selects A (00), B (01), or D (10).
. In autoincrement/decrement indexed addressing, PC is not a valid selection.
. p selects pre- (0) or post- (1) increment/decrement.
. Increment values range from 0000 (+1) to 0111 (+8). Decrement values range from 1111 (-1) to 1000 (-8).
. s is the sign bit of the offset extension byte.

oA WDN R

All indexed addressing modes use a 16-bit CPU register and additional information to create an indexed
address. In most cases the indexed address is the effective address of the instruction, that is, the address o
the memory location that the instruction acts on. In indexed-indirect addressing, the indexed address is the
location of a value that points to the effective address.

68 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

PC offsets are calculated from the location immediately following the current instruction.
1000 18 09 C2 20 00 MOVB $2000 2,PC

1005 A7 NOP

This example moves a byte of data from $2000 to $1007.

4.2.7.2 5-Bit Constant Offset Indexed Addressing

This addressing mode calculates the effective address by adding a 5-bit signed offset in the postbyte to the
indexing register (X, Y, SP, or PC). The value in the indexing register does not change. The 5-bit signed
offset gives a range ol6 through +15 from the value in the indexing register. The majority of indexed
instructions use offsets that fit in the 5-bit offset range.

For these examples, assume X contains $1000 and Y contains $2000:

LDAA 0,X

The value at address $1000 is loaded into A.

STAB -8,Y
The value in B is stored at address $2000 — $8, or $1FF8.
4.2.7.3 9-Bit Constant Offset Indexed Addressing

This addressing mode calculates the effective address by adding a 9-bit signed offset in an extension byte
to the indexing register (X, Y, SP, or PC). The value in the indexing register does not change. The sign bit
of the offset is in the postbyte. The 9-bit offset gives a rang256f through +255 from the value in the
indexing register.

For these examples assume X contains $1000 and Y contains $2000:

LDAA $FF.X

The value at address $10FF is loaded into A.

LDAB -20,Y
The value at address $2000 — $14, or $1FEC, is loaded into B.
4.2.7.4 16-Bit Constant Offset Indexed Addressing

This addressing mode calculates the effective address by adding a 16-bit offset in two extension bytes to
the indexing register (X, Y, SP, or PC). The value in the indexing register does not change. The 16-bit
offset allows access to any address in the 64K byte address space. The address bus and the offset are bott

@ MOTOROLA 69

Core User Guide — S12CPU15UG V1.2

16 bits, so it does not matter whether the offset is considered to be signed or unsigned ($FFFF may be
thought of as +65,535 or a¥).

4.2.7.5 16-Bit Constant Indexed-Indirect Addressing

This addressing mode calculates the address of a pointer to the effective address. It adds a 16-bit offset in
two extension bytes to the indexing register (X, Y, SP, or PC). The value in the indexing register does not
change. The square brackets distinguish this addressing mode from 16-bit constant offset indexed
addressng.

For this example, assume X contains $1000 and the value at address $100A is $2000:

LDAA [10,X]

The value 10 is added to the value in X to form the address $100A. The CPU fetches the effective address
pointer, $2000, from address $100A and loads the value at address $2000 into A.

4.2.7.6 Autodecrement/Autoincrement Indexed Addressing

This addressing mode calculates the effective address by adding an integer value between —8 and -1 or
between 1 and 8 to the indexing register (X, Y, or SP). The indexing register retains its changed value.

NOTE: Autodecrementing and autoincrementing do not apply to the program counter.

When predecremented or preincremented, the indexing register changes before indexing takes place.
When postdecremented or postincremented, the indexing register changes after indexing takes place.

This addressing mode adjusts the indexing value without increasing execution time by using an additional
instruction.

In this example, the instruction compares X with the value that X points to and then increments X by one:

CPX 1,X+
The next two examples are equivalent to common push instructions. In the first example, the instruction
predecrements the stack pointer by one and then stores A to the address contained in the stack pointer:
STAA 1,-SP ;equivalent to PSHA
STX 2,-SP ;equivalent to PSHX
The next two examples are equivalent to common pull instructions. In the first example, the instruction

loads X from the address in the stack pointer and then postincrements the stack pointer by two:

LDX 2,SP+ ;equivalent to PULX
LDAA 1,SP+ ;equivalent to PULA

70 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

The next example demonstrates how to work with data structures larger than bytes and words. With this
instruction in a program loop, it is possible to move words of data from a list having one word per entry
into a second table that has four bytes per table element. The instruction postincrements the source pointer
after reading the data from memory and preincrements the destination pointer before accessing memory:

MOVW 2, X+,4,+Y

Using a predecrement/increment version of LEAS, LEAX, or LEAY when SP, X, or Y is the respective
indexing register changes the value in the indexing register. Using a postdecrement/increment version of
LEAS, LEAX, LEAY when SP, X, or Y is the respective indexing register has no effect.

4.2.7.7 Accumulator Offset Indexed Addressing

This addressing mode calculates the effective address by adding the value in the indexing register to an
unsigned offset value in one of the accumulators. The value in the indexing register is not changed. The
indexing register can be X, Y, SP, or PC, and the accumulator can be A, B, or D.

Example:
LDAA B,X

This instruction adds B to X to form the address from which A will be loaded. B and X are not changed
by this instruction. This example is similar to the following two-instruction combination in an M68HC11.

4.2.7.8 Accumulator D Indexed-Indirect Addressing

This addressing mode calculates address of a pointer to the effective address. It adds the value in D to the
value in the indexing register (X, Y, SP, or PC) The value in the indexing register does not change. The
square brackets distinguish this addressing mode from D accumulator offset indexing.

In this example, accumulator D indexed-indirect addressing is used in a computed GOTO:

IMP [D,PC]

GO1 DC.W PLACE1
GO2 DC.W PLACE2
GO3 DC.W PLACE3

The values beginning at GO1 are addresses of potential destinations of the jump instruction. At the time
the JMP [D,PC] instruction is executed, PC points to the address GO1, and D holds one of the values
$0000, $0002, or $0004, determined by the program some time before the JMP.

Assume that the value in D is $0002. The JMP instruction adds the values in D and PC to form the address
of GO2. Next the CPU reads the address PLACEZ2 from memory at GO2 and jumps to PLACE2. The
locations of PLACE1 through PLACE3 were known at the time of program assembly but the destination
of the JMP depends upon the value in D computed during program execution.

4.2.8 Instructions Using Multiple Modes

Several instructions use more than one addressing mode in the course of execution.

@ MOTOROLA 71

Core User Guide — S12CPU15UG V1.2

4.2.8.1 Move Instructions

Move instructions can use one addressing mode to access the source of the move and another addressing
mode to access the destination. There are move variations for most combinations of inmediate, extended,
and indexed addressing modes.

The only combinations of addressing modes that are not allowed are those with an immediate mode
destination; the operand of an immediate instruction is data, not an address. For indexed moves, the
indexing register can be X, Y, SP, or PC.

Move instructions do not have indirect modes, or 9-bit or 16-bit offset modes.
4.2.8.2 Bit Manipulation Instructions

Bit manipulation instructions use a combination of two or three addressing modes.

A BCLR or BSET instruction has an 8-bit mask to clear or set bits in a memory byte. The mask is an
immediate value supplied with the instruction. Direct, extended, or indexed addressing determines the
location of the memory byte.

A BRCLR or BRSET instruction has an 8-bit mask to test the states of bits in a memory byte. The mask
is an immediate value supplied with the instruction. Direct, extended, or indexed addressing determines
the location of the memory byte. Relative addressing determines the branch address. A signed 8-bit offset
must be supplied with the instruction.

72 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

4.3 Instruction Descriptions

A brief discussion of the CPU instructions group by type is given in the subsections below. For a detailed
instruction-by-instruction description please conggpendix A of this guide.

4.3.1 Load and Store Instructions

Load instructions copy a value in memory or an immediate value into a CPU register. The value in memory
is not changed by the operation. Load instructions (except LEAS, LEAX, and LEAY) affect condition
code bits so no separate test instructions are needed to check the loaded values for negative or zero
conditions.

Store instructions copy the value in a CPU register to memory. The CPU register value is not changed by
the operation. Store instructions automatically update the N and Z condition code bits, which can eliminate

the need for a separate test instruction in some programs.

A summary of the load and store instructions is giveraible 4-3.

Table 4-3 Load and Store Instructions

Mnemonic Function Operation
LDAA Load A from memory mad A
Load A with immediate value imm>d A
LDAB Load B from memory Mm)yd B
Load B with immediate value immO B
LDD Load D from memory mMmOdOAM+1)0OB
Load D with immediate value immy O A, imm_ 0O B
LDS Load SP from memory M)O SPy, (M+1)0 SP.
Load SP with immediate value immy O SPy, imm_ O SP,
LDX Load X from memory MO Xy, (M+1) 0 X
Load X with immediate value immy O Xy, imm_ O X
LDY Load Y from memory MDYy M+1)O Y,
Load Y with immediate value immy O Yy, imm_ O Y,
LEAS Load effective address into SP Effective address O SP
LEAX Load effective address into X Effective address 0 X
LEAY Load effective address into Y Effective address O Y
STAA Store A in memory AOM
STAB Store B in memory B)0 M
STD Store D in memory AODMMBIOM+1
STS Store SP in memory (SP) O M, (SPH)O M+1
STX Store X in memory XpOMX)OM+1
STY Store Y in memory YvpOM(YDOM+1

@ MOTOROLA

73

Core User Guide — S12CPU15UG V1.2
4.3.2 Transfer and Exchange Instructions

Transfer instructions copy the value in a CPU register into another CPU register. The source value is not
changed by the operation. TFR is a universal transfer instruction, but other mnemonics are accepted for
compatibility with the M68HC12. The TAB and TBA instructions affect the N, Z, and V condition code
bits in the same way as M68HC12 instructions. The TFR instruction does not affect the condition code
bits.

Exchange instructions exchange the values in pairs of CPU registers.

The sign-extend instruction, SEX, is a special case of the universal transfer instruction. It adds a sign
extension to an 8-bit two’s complement number so that the number can be used in 16-bit operations. The
8-bit number is copied from accumulator A, B, or the condition code register to accumulator D, the X
index register, the Y index register, or the stack pointer. All the bits in the upper byte of the 16-bit result
are given the value of the MSB of the 8-bit number.

A summary of the transfer and exchange instructions is givéahle 4-4.
Table 4-4 Transfer and Exchange Instructions

Mnemonic Function Qperation

TAB Transfer Ato B ADO B

TAP Transfer A to CCR (A)OJ CCR

TBA Transfer B to A (B)O A

TFR Transfer register (A,B,CCR, D, X,Y,or SP) 0 A,B,CCR, D, X, Y, or SP
TPA Transfer CCR to A (CCR)O A

TSX Transfer SP to X (sP)O X

TSY Transfer SPto Y (spyoO vy

TXS Transfer X to SP X)d spP

TYS Transfer Y to SP (Y)d SP

EXG Exchange registers (A,B,CCR, D, X, Y,or SP) = (A, B, CCR, D, X, Y, or SP)
XGDX Exchange D with X (D) = (X)

XGDY Exchange D with Y (D) = (Y)

SEX Sign-extend 8-bit operand 00:(A, B, or CCR) or FF:(A, B, or CCR) O D, X, Y, or SP

4.3.3 Move Instructions

These instructions move bytes or words from a source in memgrgr M;:M, + 1, to a destination in
memory, M, or M,:M5 + 1. Six combinations of immediate, extended, and indexed addressing can specify
source and destination addresses: IMM/EXT, IMM/IDX, EXT/EXT, EXT/IDX, IDX/EXT, and IDX/IDX.

A summary of the move instructions is givenTable 4-5.

Table 4-5 Move Instructions

Mnemonic Function Qperation
MOVB Move byte (8-bit) (Mp) O My
MOVW Move word (16-bit) M):(My +1) 0 Ma:My + 1

74 @ MOTOROLA

4.3.4 Add and Subtract Instructions

Signed and unsigned 8-bit and 16-bit addition and subtraction can be performed on CPU registers, on a
CPU register and memory, or on a CPU register and an immediate value. Special instructions support
index calculation. Instructions that add or subtract the carry bit, C, in the CCR facilitate multiple precision

computation. A summary of the add and subtract instructions is givieable 4-6.
Table 4-6 Add and Subtract Instructions

Mnemonic [Function Operation
ABA Add Ato B A+B)YO A
ABX Add B to X B)+(X)O X
ABY AddBtoY B)+M™MOY
ADCA Add memory and carry to A A+M+COA
Add immediate value and carry to A (A)+imm+CO A
ADCB Add memory and carry to B B)+M)+CO B
Add immediate value and carry to B (B)+imm+C0O B
ADDA Add memory to A A+MDOA
Add immediate value to A (A)+imm0O A
ADDB Add memory to B B)+(M)O B
Add immediate value to B (B)+imm0O B
ADDD Add memory to D A):B)Y+M:M+1)0O AB
Add immediate value to D (A):(B)+imm0O AB
SBA Subtract B from A A)-B)O A
SBCA Subtract memory and carry from A A-M-COA
Subtract immediate value and carry from A (A)—imm-CO A
SBCB Subtract memory and carry from B B)-(M)—CO B
Subtract immediate value and carry from B B)-imm-C0O B
SUBA Subtract memory from A A-MDOA
Subtract immediate value from A (A)—immO A
SUBB Subtract memory from B B)-MOB
Subtract immediate value from B (B)—imm0O B
SUBD Subtract memory from D (A):(B)-(M):M+1)0 AB
Subtract immediate value from D (A):(B)—imm O A:B

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

75

Core User Guide — S12CPU15UG V1.2

4.3.5 Binary Coded Decimal Instructions

To add binary coded decimal (BCD) operands, use addition instructions that set the half-carry bit, H, in
the CCR. Then adjust the result with the DAA instruction. A summary of the BCD instructions is given in

Table 4-7.
Table 4-7 BCD Instructions

Mnemonic Function Qperation
ABA Add Bto A (A)+(B) O A
ADCA Add memory and carry to A A+M+COA

Add immediate value and carry to A (A)+imm+CDO A
ADCB Add memory and carry to B B)+M)+CO B

Add immediate value and carry to B (B)+imm+C0O B
ADDA Add memory to A A+MOA

Add immediate value to A (A)+imm0O A
ADDB Add memory to B B)+M)O B

Add immediate value to B (B)+imm0O B
DAA Decimal adjust A (AM1o0 A

4.3.6 Decrement and Increment Instructions

These instructions are optimized 8-bit and 16-bit addition and subtraction operations. They are used to
implement counters. Because they do not affect the carry bit, C, in the CCR, they are particularly well
suited for loop counters in multiple-precision computation routines4 Se€7.4 Loop Primitive

Instructions for information concerning automatic counter branches. A summary of the decrement and
increment instructions is given Trable 4-8 Decrement and Increment Instructions

Table 4-8 Decrement and Increment Instructions

Mnemonic Function Qperation

DEC Decrement memory M)—%$010 M
DECA Decrement A (A)—-%$010 A
DECB Decrement B (B)-%$010 B

DES Decrement SP (SP) —$0001 O SP
DEX Decrement X (X) —$0001 O X
DEY Decrement Y (Y)—-%00010O VY
INC Increment memory (M) +$010 M
INCA Increment A (A)+$010 A
INCB Increment B (B)+%$010 B

INS Increment SP (SP) + $0001 O SP
INX Increment X (X) +$0001 O X
INY Increment Y (Y)+$0001 0 Y

76

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

4.3.7 Compare and Test Instructions

Compare and test instructions perform subtraction on a pair of CPU registers, on a CPU register and
memory, or on a CPU register and an immediate value. The result is not stored, but the operation can affect
condition codes in the CCR. These instructions are used to establish conditions for branch instructions.
However, most instructions update condition codes automatically, so it is often unnecessary to include
separate compare or test instructions. A summary of the compare and test instructions islgivken in
4-9.

Table 4-9 Compare and Test Instructions

Mnemonic Function OQperation

CBA Compare Ato B (A) - (B)

CMPA Compare A to memory (A) — (M)
Compare A to immediate value (A) —imm

CMPB Compare B to memory (B) — (M)
Compare B to immediate value (B) —imm

CPD Compare D to memory (A):(B) — (M):(M + 1)
Compare D to immediate value (A):(B) —imm

CPS Compare SP to memory (SP) — (M):(M + 1)
Compare SP to immediate value (SP) —imm

CPX Compare X to memory X) = (M):(M + 1)
Compare X to immediate value (X) —imm

CPY Compare Y to memory (Y) = (M):(M + 1)
Compare Y to immediate value (Y) —imm

TST Test memory for zero or minus (M) — $00

TSTA Test A for zero or minus (A) — $00

TSTB Test B for zero or minus (B) — $00

@ MOTOROLA

77

Core User Guide — S12CPU15UG V1.2
4.3.8 Boolean Logic Instructions

These instructions perform a logic operation on the A or B accumulator and a memory value or immediate
value, or on the CCR and an immediate value. A summary of the boolean logic instructions is given in

Table 4-10.

Table 4-10 Boolean Logic Instructions

Mnemonic Function peration
ANDA AND A with memory AMDOA

AND A with immediate value (A)e imm@O A
ANDB AND B with memory B)e (M)O B

AND B with immediate value (B)eimmQO B
ANDCC AND CCR with immediate value (to clear CCR bits) (CCR) s imm O CCR
EORA Exclusive OR A with memory AOMmDOA

Exclusive OR A with immediate value (A)dimm0O A
EORB Exclusive OR B with memory B)omMmD0ibB

Exclusive OR B with immediate value B)OimmO B
ORAA OR A with memory A+MVMOA

OR A with immediate value (A)+imm0O A
ORAB OR B with memory B)+M)O B

OR B with immediate value (B)+imm0O B
ORCC OR CCR with immediate value (to set CCR bits) (CCR) +imm O CCR

4.3.9

Clear, Complement, and Negate Instructions

These instructions perform binary operations on values in an accumulator or in memory. Clear operations
clear the value, complement operations replace the value with its one’s complement, and negate operations
replace the value with its two’s complement. A summary of the clear, complement and negate instructions

is given inTable 4-11.

Table 4-11 Clear, Complement, and Negate Instructions

Mnemonic Function Qperation

CLC Clear C bitin CCR oo C

CLI Clear | bitin CCR oo |1

CLR Clear memory $000 M

CLRA Clear A $000 A

CLRB Clear B $000 B

cLv Clear V bitin CCR oo v

COM One’s complement memory $FF—(M)O Mor(M)O M
COMA One’s complement A $FF—(A)O Aor (A)O A
COMB One’s complement B $FF-(B)O Bor(B)O B
NEG Two’s complement memory $00-(M)O Mor(M)y+10 M
NEGA Two's complement A $00-(A)0 Aor(A)+10 A
NEGB Two’s complement B $00-(B)O Bor(B)+10 B

78

@ MOTOROLA

4.3.10 Multiply and Divide Instructions

Core User Guide — S12CPU15UG V1.2

The multiply instructions perform signed and unsigned, 8-bit and 16-bit multiplication. An 8-bit
multiplication gives a 16-bit product. A 16-bit multiplication gives a 32-bit product.

An integer divide or fractional divide instruction has a 16-bit dividend, divisor, quotient, and remainder.
Extended divide instructions use a 32-bit dividend and a 16-bit divisor to produce a 16-bit quotient and a
16-bit remainder.

A summary of the multiply and divide instructions is give able 4-12.

Table 4-12 Multiplication and Division Instructions

Mnemonic Function Qperation

EMUL 16 by 16 multiply (unsigned) (Y)x(D)O Y:D

EMULS 16 by 16 multiply (signed) (Y)x(D)O Y:D

MUL 8 by 8 multiply (unsigned) (A)x(B)O AB

EDIV 32 by 16 divide (unsigned) (Y):(D) ~ (X), quotient O Y, remainder O D
EDIVS 32 by 16 divide (signed) (Y):(D) =~ (X), quotient O Y, remainder O D
FDIV 16 by 16 fractional divide (unsigned) (D) ~ (X) O X, remainder O D

IDIV 16 by 16 integer divide (unsigned) (D) + (X) O X, remainder O D

IDIVS 16 by 16 integer divide (signed) (D) + (X) O X, remainder O D

4.3.11 Bit Test and Bit Manipulation Instructions

These operations use a mask value to test or change the value of individual bits in an accumulator or in
memory. BITA and BITB provide a convenient means of testing bits without altering the value of either
operand. A summary of the bit test and bit manipulation instructions is givVebla 4-13.

Table 4-13 Bit Test and Bit Manipulation Instructions

Mnemonic Function Qperation
BCLR Clear bit(s) in memory (M) » mask byte 0 M
BITA Bit test A (A)* (M)
BITB Bit test B (B) * (M)
BSET Set bits in memory (M) + mask byte 0 M

@ MOTOROLA

79

Core User Guide — S12CPU15UG V1.2
4.3.12 Shift and Rotate Instructions

There are shifts and rotates for accumulators and memory bytes. For multiple-byte operations, all shifts
and rotates pass the shifted-out bit through the carry bit, C. Because logical and arithmetic left shifts are
identical, there are no separate logical left shift operations. LSL mnemonics are assembled as ASL
operations. A summary of the shift and rotate instructions is givéahte 4-14.

Table 4-14 Shift and Rotate Instructions

Mnemonic fFunction Qperation
LSL Logic shift left memory

; ; T TTTTTT &
LSLA Logic shift left A ik 5 0
LSLB Logic shift left B

; ; LT TTTTTT{TTTTTTT &0
LSLD Logic shift left D c 7 y 0 7 B 0
LSR Logic shift right memory
LSRA Logic shift right A 0 W
LSRB Logic shift right B

; PP, O TTTITTTTHITTTTTTTHM]
LSRD Logic shift right D 7 ry 0 7 5 a ¢c
ASL Arithmetic shift left memory
ASLA Arithmetic shift left A c 7 0 0
ASLB Arithmetic shift left B

; ; ; L TTTTTTTI{TTTTTTT 40

ASLD Arithmetic shift left D i ry 0 7 B o
ASR Arithmetic shift right memory Q
ASRA Arithmetic shift right A
ASRB Arithmetic shift right B ’ o ¢
ROL Rotate left memory
ROLA Rotate left A mJ
ROLB Rotate left B c 7 0
ROR Rotate right memory
RORA Rotate right A me
RORB Rotate right B 0 7 C

80 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

4.3.13 Fuzzy Logic Instructions

The instruction set supports efficient processing of fuzzy logic operations. A summary of the fuzzy logic
instructions is given ifable 4-15.

Table 4-15 Fuzzy Logic Instructions

Mnemonic | Function Operation

H (grade) O M), (X) +4 0 X, (Y) +1 0 Y, A unchanged
If (A) < P1or (A) > P2, then u=0, else p = MIN [((A) — P1) x S1, (P2 — (A)) x S2, $FF]

Membership A contains current crisp input value.
MEM . . - . . .
evaluation X points to 4-byte data structure describing trapezoidal membership function as base
intercept points and slopes (P1, P2, S1, S2).
Y points to fuzzy input (RAM location).
Find smallest rule input (MIN).
Store to rule outputs unless fuzzy output is larger (MAX). Rules are unweighted.
MIN-MAX . - .)
REV rule Each rule input is 8-bit offset from base address in Y.
evaluation Each rule output is 8-bit offset from base addressin Y.
$FE separates rule inputs from rule outputs. $FF terminates rule list.
REV can be interrupted.
Find smallest rule input (MIN). Multiply by rule-weighting factor (optional).
Weighted Store to rule outputs unless fuzzy output is larger (MAX).

Each rule input is 16-bit address of a fuzzy input.

REVW m:g'MAX Each rule output is 16-bit address of fuzzy output.
. Address $FFFE separates rule inputs from rule outputs. $FFFF terminates rule list.
evaluation . . .
Weights are 8-bit values in separate table.
REVW can be interrupted.
Calculate numerator (sum of products) and denominator (sum of weights).
B
Weighted z S;F0O Y.D
WAV average Bl
calculation
Y RO X
i=1
Put results in correct CPU registers for EDIV immediately after WAV.
Return to
wavr w:\r; upted Recover intermediate results from stack rather than initializing to zero.
instruction

4.3.14 Maximum and Minimum Instructions

4.3.14.1 Fuzzy Logic Membership Instruction

The MEM instruction is used during the fuzzification process. During fuzzification, current system input
values are compared to stored input membership functions to determine the degree to which each label of
each system inputis true. This is accomplished by finding the y value for the current input on a trapezoidal
membership function for each label of each system input. The MEM instruction performs this calculation
for one label of one system input. To perform the complete fuzzification task for a system, several MEM
instructions must be executed, usually in a program loop structure.

@ MOTOROLA 81

Core User Guide — S12CPU15UG V1.2

4.3.14.2 Fuzzy Logic Rule Evaluation Instructions

The REV and REVW instructions perform MIN-MAX rule evaluations that are central elements of a fuzzy
logic inference program. Fuzzy input values are processed using a list of rules from the knowledge base
to produce a list of fuzzy outputs. The REV instruction treats all rules as equally important. The REVW
instruction allows each rule to have a separate weighting factor. REV and REVW also differ in the way
rules are encoded into the knowledge base.

Because they require a number of cycles to execute, rule evaluation instructions can be interrupted. Once
the interrupt has been serviced, instruction execution resumes at the point the interrupt occurred.

4.3.14.3 Fuzzy Logic Averaging Instruction

The WAV instruction calculates weighted averages. In order to be usable, the fuzzy outputs produced by
rule evaluation must be defuzzified to produce a single output value which represents the combined effect
of all of the fuzzy outputs. Fuzzy outputs correspond to the labels of a system output and each is defined
by a membership function in the knowledge base. The CPU typically uses singletons for output
membership functions rather than the trapezoidal shapes used for inputs. As with inputs, the x-axis
represents the range of possible values for a system output. Singleton membership functions consist of the
x-axis position for a label of the system output. Fuzzy outputs correspond to the y-axis height of the
corresponding output membership function. The WAV instruction calculates the numerator and
denominator sums for a weighted average of the fuzzy outputs.

Because WAV requires a number of cycles to execute, it can be interrupted. The wavr pseudoinstruction
causes execution to resume at the point where it was interrupted.

These instructions make comparisons between an accumulator and a memory location. They can be used
for linear programming operations such as Simplex-method optimization or for fuzzification.

MAX and MIN instructions use accumulator A to perform 8-bit comparisons, while EMAX and EMIN
instructions use accumulator D to perform 16-bit comparisons. The result (maximum or minimum value)
can be stored in the accumulator or in the memory location. A summary of the minimum and maximum
instructions is given ifable 4-16.

Table 4-16 Minimum and Maximum Instructions

Mnemonic Function Qperation

EMIND Put smaller of two unsigned 16-bit values in D MIN [(D), (M):(M+1)]O0 D
EMINM Put smaller of two unsigned 16-bit values in memory MIN [(D), M):(M +1)]O0 M:M + 1
MINA Put smaller of two unsigned 8-bit values in A MIN [(A), (M)] O A

MINM Put smaller of two unsigned 8-bit values in memory MIN [(A), (M)]C M

EMAXD Put larger of two unsigned 16-bit values in D MAX [(D), (M):(M +)]0 D
EMAXM Put larger of two unsigned 16-bit values in memory MAX [(D), M):(M +1)] 0 M:M + 1
MAXA Put larger of two unsigned 8-bit values in A MAX [(A), (M) O A

MAXM Put larger of two unsigned 8-bit values in memory MAX[(A), (M)] O M

82 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2
4.3.15 Multiply and Accumulate Instruction

The EMACS instruction multiplies two 16-bit operands stored in memory and accumulates the 32-bit
result in a third memory location. EMACS can be used to implement simple digital filters and
defuzzification routines that use 16-bit operands. The WAV instruction incorporates an 8-bit to 16-bit
multiply and accumulate operation that obtains a numerator for the weighted average calculation. The
EMACS instruction can automate this portion of the averaging operation when 16-bit operands are used.
A summary of the multiply and accumulate instructions is givéralrle 4-17.

Table 4-17 Multiply and Accumulate Instruction

Mnemonic fFunction Qperation
Multiply and

EMACS f‘sﬁ;ﬁ?{;’a‘e (My):(My 5 1) % (My):My 4 1) + (M):(M + 1):(M + 2):(M + 3) O M:M + 1:M + 2:M + 3
16 x 16 bit O 32 bit

4.3.16 Table Interpolation Instructions

The TBL and ETBL instructions interpolate values from tables stored in memory. Any function that can

be represented as a series of linear equations can be represented by a table. Interpolation can be used fc
many purposes, including tabular fuzzy logic membership functions. TBL uses 8-bit table entries and
returns an 8-bit result; ETBL uses 16-bit table entries and returns a 16-bit result. Indexed addressing modes
provide flexibility in structuring tables.

Consider each of the successive values stored in a table as y-values for the endpoint of a line segment. The
value in the B accumulator before instruction execution begins represents change in x from the beginning
of the line segment to the lookup point divided by total change in x from the beginning to the end of the
line segment. B is treated as an 8-bit binary fraction with radix point left of the MSB, so each line segment

is effectively divided into 256 smaller segments. During instruction execution, the change in y between
the beginning and end of the segment (a signed byte for TBL or a signed word for ETBL) is multiplied by
the value in B to obtain an intermediate delta-y term. The result (stored in the A accumulator by TBL, in
the D accumulator by ETBL) is the y-value of the beginning point plus the signed intermediate delta-y
value.

A summary of the table interpolation instructions is givehable 4-18.
Table 4-18 Table Interpolation Instructions

Mnemonic Function Qperation

M:M+1D)+[B)x[M+2):(M+3)—(M):(M+D1)]]O D
16-bit table lookup and interpolate Initialize B, and index before ETBL.

ETBL (indirect addressing not allowed) Effective address points to the first 16-bit table entry (M):(M + 1)
B is fractional part of lookup value
(M) +[(B)x[(M+1)-(M]] O A
TBL 8-bit table lookup and interpolate Initialize B, and index before TBL.
(indirect addressing not allowed) Effective address points to the first 8-bit table entry (M)

B is fractional part of lookup value.

@ MOTOROLA 83

Core User Guide — S12CPU15UG V1.2
4.3.17 Branch Instructions

A branch instruction causes a program sequence change when specific conditions exist. There are three
types of branch instructions: short, long, and bit-conditional.

Branch instructions can also be classified by the type of condition that must be satisfied in order for a
branch to be taken:

» Unary branch instructions are always executed

» Simple branch instructions are executed when a specific bit in the condition code register is in a
specific state as a result of a previous operation

* Unsigned branch instructions are executed when a comparison or test of unsigned quantities results
in a specific combination of bit states in the condition code register

» Signed branch instructions are executed when a comparison or test of signed quantities results in a
specific combination of bit states in the condition code register

Some branch instructions belong to more than one type.
4.3.17.1 Short Branch Instructions

When a specified condition is met, a short branch instruction adds a signed 8-bit offset to the value in the
program counter. Program execution continues at the new address. The numeric range of short branch
offset values is $80 (—128) to $7F (127) from the address of the next memory location after the offset value.
A summary of the short branch instructions is givemable 4-19.

Table 4-19 Short Branch Instructions

Mnemonic [ype Function Jondition Equation
BRA Branch always 1=1
Unary
BRN Branch never 1=0
BCC Branch if carry clear C=0
BCS Branch if carry set c=1
BEQ Branch if equal Z=1
BMI . Branch if minus N=1
Simple -
BNE Branch if not equal Z=0
BPL Branch if plus N=0
BVvVC Branch if overflow clear V=0
BVS Branch if overflow set V=1
BHI Branch if higher (R > M) C+Z=0
BHS . Branch if higher or same (R = M) C=0
Unsigned -
BLO Branch if lower (R < M) c=1
BLS Branch if lower or same (R < M) C+z=1
BGE Branch if greater than or equal (R = M) NOV=0
BGT sianed Branch if greater than (R > M) Z+(NOV)=0
igne
BLE g Branch if less than or equal (R < M) Z+(NOV)=1
BLT Branch if less than (R < M) NOV=1

84

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

4.3.17.2 Long Branch Instructions

When a specified condition is met, a long branch instruction adds a signed 16-bit offset to the value in the
program counter. Program execution continues at the new address. Long branches are used when large
displacements between decision-making steps are necessary. The numeric range of long branch offset
values is $8000 (—32,768) to $7FFF (32,767) from the address of the next memory location after the offset
value. This permits branching from any location in the standard 64K byte address map to any other
location in the map. A summary of the long branch instructions is givEalle 4-20.

Table 4-20 Long Branch Instructions

Mnemonic (Class fFunction Condition Equation
LBRA Long branch always 1=1
Unary
LBRN Long branch never 1=0
LBCC Long branch if carry clear Cc=0
LBCS Long branch if carry set c=1
LBEQ Long branch if equal zZ=1
LBMI) Long branch if minus N=1
Simple -
LBNE Long branch if not equal Z=0
LBPL Long branch if plus N=0
LBVC Long branch if overflow clear V=0
LBVS Long branch if overflow set V=1
LBHI Long branch if higher (R > M) C+Z=0
LBHS . Long branch if higher or same (R = M) C=0
Unsigned -
LBLO Long branch if lower (R < M) zZ=1
LBLS Long branch if lower or same (R < M) C+Z=1
LBGE Long branch if greater than or equal (R = M) NOV=0
LBGT Sianed Long branch if greater than (R > M) Z+(NOV)=0
i
LBLE g Long branch if less than or equal (R < M) Z+(NOV)=1
LBLT Long branch if less than (R <M) NOV=1

4.3.17.3 Bit Condition Branch Instructions

Bit condition branches are taken when bits in a memory byte are in a specific state. A mask operand is used
to test the location. If all bits in that location that correspond to ones in the mask are set (BRSET) or cleared
(BRCLR), the branch is taken. The numeric range of 8-bit offset values is1&B) {o $7F (127) from

the address of the next memory location after the offset value. A summary of the bit condition branch
instructions is given ifable 4-21.

Table 4-21 Bit Condition Branch Instructions

Mnemonic Function Condition Equation
BRCLR Branch if selected bits clear (M) (mm)=0
BRSET Branch if selected bits set (M) e (mm)=0

@ MOTOROLA 85

Core User Guide — S12CPU15UG V1.2

4.3.17.4 Loop Primitive Instructions

Loop primitive instructions test a counter value in a CPU register (A, B, D, X, Y, or SP) for a zero or
nonzero value as a branch condition. There are predecrement, preincrement and test-only versions of these
instructions. The numeric range of 9-bit offset values is —256 to +255 from the address of the next memory
location after the offset value. A summary of the loop primitive instructions is giviaie 4-22.

Table 4-22 Loop Primitive Instructions

Mnemonic fFunction Qperation
DBEQ Decrement counter (counter) — 1 O counter

and branch if zero If (counter) = 0, then branch, else continue to next instruction
DBNE Decrement counter (counter) — 1 O counter

and branch if not zero |If (counter) # 0, then branch, else continue to next instruction
IBEQ Increment counter (counter) + 1 O counter

and branch if zero If (counter) = 0, then branch, else continue to next instruction
IBNE Increment counter (counter) + 1 O counter

and branch if not zero |If (counter) # 0, then branch, else continue to next instruction
TBEQ Test counter If (counter) = 0, then branch, else continue to next instruction

and branch if zero

TBNE Test counter. If (counter) # 0, then branch, else continue to next instruction
and branch if not zero

4.3.18 Jump and Subroutine Instructions

Jump instructions cause immediate changes in program sequence. The JMP instruction loads the PC with
an address in the 64K byte memory map, and program execution continues at that address. The address
can be provided as an absolute 16-bit address or determined by various forms of indexed addressing.

Subroutine instructions transfer control to a code segment that performs a particular task. A short branch
to subroutine (BSR), a jump to subroutine (JSR), or an expanded-memory call (CALL) can be used to
initiate subroutines. There is no long branch to subroutine instruction (LBSR), but a PC-relative JSR
performs the same function. A return address is stacked, then execution begins at the subroutine address.
Subroutines in the normal 64K byte address space are terminated with an RTS instruction. RTS unstacks
the return address so that execution resumes with the instruction after BSR or JSR.

The CALL instruction is intended for use with expanded memory. CALL stacks the value in the PPAGE
register and the return address, then writes a new value to PPAGE to select the memory page where the
subroutine resides. The page value is an immediate operand in all addressing modes except indexed
indirect modes; in these modes, an operand points to locations in memory where the new page value and
subroutine address are stored. The RTC instruction ends subroutines in expanded memory. RTC unstacks
the PPAGE value and the return address so that execution resumes with the next instruction after CALL.
For software compatibility, CALL and RTC operate correctly on devices that do not have expanded
addressing capability.

86 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

A summary of the jump and subroutine instructions is giveralrie 4-23.

Table 4-23 Jump and Subroutine Instructions

Mnemonic Function Qperation

BSR Branch to subroutine (SP) —$0002 O SP, RTNL:RTN_ O Mgp:Mgp 4+ 1, Subroutine address 0 PC

CALL F:a” subroutine (SP) —$0002 O SPR, RTN{:RTN, O MSP:MSP + 1,(SP) —$0001 O SPR,

in expanded memory (PPAGE) O Mgp page O PPAGE, subroutine address O PC

JMP Jump Subroutine address O PC

JSR Jump to subroutine (SP) —$0002 O SP, RTN:RTN, O Mgp:Mgp 4 1, subroutine address [PC
. M O PPAGE, (SP) + $0001 O SP, (Mgp):(M 0 PCyx:PC,,

RTS Return from subroutine ESFS>)P)+ $0002 O S(P) (Msp):(Msp +1) R

RTC Return from call (Mgp):(Mgp + 1) O PC:PC, (SP) + $0002 O SP

4.3.19 Interrupt Instructions

Interrupt instructions handle transfer of control to and from interrupt service routines.

The SWI instruction initiates a software interrupt. It stacks the return address and the values in the CPU
registers. Then execution begins at the address pointed to by the SWI vector.

The SWI instruction causes an interrupt without an interrupt request. The global mask bits I and X in the
CCR do not inhibit SWI. SWI sets the | bit, inhibiting maskable interrupts until the | bit is cleared.

The TRAP instruction The CPU uses the software interrupt for unimplemented opcode trapping. There are

opcodes in all 256 positions in the page 1 opcode map, but only 54 of the 256 positions on page 2 of the
opcode map are used. If the CPU attempts to execute one of the unimplemented opcodes on page 2, an
opcode trap interrupt occurs. Traps are essentially interrupts that share the $FFF8:3FFF9 interrupt vector.

The RTI instruction is used to terminate all exception handlers, including interrupt service routines. RTI
first restores the CCR, B:A, X, Y, and the return address from the stack. If no other interrupt is pending,
normal execution resumes with the instruction following the last instruction that executed prior to
interrupt. A summary of the interrupt instructions is givefaible 4-24.

Table 4-24 Interrupt Instructions

Mnemonic | Function Operation

(Msp) O CCR, (SP) + $0001 0 SP

(Mgp):(Mgp 4 1) O B:A, (SP) + $0002 O SP

RTI Return from interrupt | (Mgp):(Mgp + 1) O X: X[, (SP) + $0004 O SP
(Msp):(Mgp 4 1) O PC:PC, (SP) + $0002 0 SP
(Msp):(Msp + 1) O Yp:Y|, (SP) + $0004 0 SP

(SP) — $0002 [0 SP, RTN:RTN, [0 Mgp:Mgp 4 1

SWI
(SP) - $0002 O SP, (Yn):(Y) O Mgp:Mgp 4 1
Software interrupt (SP) —$0002 O SP, (Xp):(X) O Mgp:Mgp 4 1
TRAP (SP) —$0002 O SP, (B)(A) 0 Msp:Msp +1

(SP)—$0001 0 SP, (CCR) O Mgp 10 |

@ MOTOROLA 87

Core User Guide — S12CPU15UG V1.2

4.3.20 Index Manipulation Instructions

Index manipulation instructions perform 8-bit and 16-bit operations on CPU registers or memory. A

summary of the index manipulation instructions is givehdble 4-25.

Table 4-25 Index Manipulation Instructions

Mnemonic fFunction Qperation

ABX Add B to X B)+(X)O X

ABY AddBtoY B)+(M™MOY

CPS Compare SP to memory (SP) — (M):(M + 1)

CPX Compare X to memory X) = (M):(M + 1)

CPY Compare Y to memory (Y) - (M):(M + 1)

LDS Load SP from memory M:M+1)0 SP

LDX Load X from memory M:M+21)0 X

LDY Load Y from memory M:M+D)OY

LEAS Load effective address into SP Effective address 0 SP
LEAX Load effective address into X Effective address O X
LEAY Load effective address into Y Effective address O Y
STS Store SP in memory (SP)O MM +1

STX Store X in memory xX)O MM +1

STY Store Y in memory MOMM+1

TFR Transfer registers (A,B,CCR, D, X, Y,or SP) 0 A, B, CCR, D, X, Y, or SP
TSX Transfer SP to X (SP)O X

TSY Transfer SPto Y (sP)O v

TXS Transfer X to SP X)Od sP

TYS Transfer Y to SP (Y)d spP

EXG Exchange registers (A,B,CCR, D, X, Y, or SP) = (A, B, CCR, D, X, Y, or SP)
XGDX Exchange D with X (D) = (X)

XGDY Exchange D with Y (D) = (Y)

88

@ MOTOROLA

4.3.21 Stacking Instructions

There are two types of stacking instructions:

e Stack pointer manipulation

Core User Guide — S12CPU15UG V1.2

» Stack operation (saving and retrieving CPU register contents)

A summary of the stacking instructions is giveable 4-26.

Table 4-26 Stacking Instructions

Mnemonic Type Function Qperation

CPS Compare SP to memory (SP) — (M):(M + 1)

DES Decrement SP (SP)-$0001 O SP

INS Increment SP (SP) +$0001 O SP

LDS Load SP M:M+1)0 SP

LEAS Stack pointer Load effective address into SP Effective address 0 SP

STS manipulation Store SP (SP) 0 M:M +1

TSX Transfer SP to X (sP)O X

TSY Transfer SPto Y (sP)oy

TXS Transfer X to SP X)O sP

TYS Transfer Y to SP (Y)O spP

PSHA Push A (SP)—$0001 O SP, (A) O Mgp

PSHB Push B (SP)—$0001 O SP, (B) O Mgp

PSHC Push CCR (SP)—$0001 O SP, (CCR) O Mgp

PSHD Push D (SP) —$0002 O SP, (A):(B) O Mgp:Mgp +1

PSHX Push X (SP) —$0002 O SP, (X) O Mgp:Msgp +1

PSHY Push Y (SP)—$0002 O SP, (Y) O Mgp:Mgp 4+ 1
Stack operation

PULA Pull A (Mgp) O A, (SP)+10 SP

PULB Pull B (Mgp) O B, (SP)+10 SP

PULC Pull CCR (Mgp) O CCR, (SP)+10 SP

PULD Pull D (Mgp):(Mgp +1) O AB,(SP)+20 SP

PULX Pull X (Msp):(Mgp + 1) O X, (SP)+20 SP

PULY Pull Y (Mgp):(Mgp+1) O Y, (SP)+2 0 SP

@ MOTOROLA

89

Core User Guide — S12CPU15UG V1.2

4.3.22 Load Effective Address Instructions

Load effective address instructions add a constant or the value in an accumulator to the value in an index
register, the stack pointer, or the program counter. The constant can be a 5-, 8-, or 16-bit value. The

accumulator can be A, B, or D. A summary of the load effective address instructions is giabfein

4-27.
Table 4-27 Load Effective Address Instructions
Mnemonic Function Qperation
LEAS Load effective address into SP &) (Q;) ((SSPF;?,O(Jrr(EDPCS)f(Z?r]Bs:ti?tD? DSPSP
LEAX Load effective address into X EQ g; gg; 8; Egg; f ?X?;t,agrt E))D(X
LEAY Load effective address into Y E)é))p?A)(SEg 8: EE)C)DJI\? onstant [Y

4.3.23 Condition Code Instructions

A summary of the condition code instructions is givemable 4-28.

Table 4-28 Condition Code Instructions

Mnemonic Function Qperation

ANDCC Logical AND CCR with immediate value (CCR) s imm O CCR

CLC Clear C bit oo cC

CLI Clear | bit o0 |1

CLv Clear V bit oo v

ORCC Logical OR CCR with immediate value (CCR) +imm O CCR

PSHC Push CCR onto stack (SP) —$0001 O SP, (CCR) O Mgp
PULC Pull CCR from stack (Mgp) O CCR, (SP) + $0001 O SP
SEC Set C bit 10cC

SEI Set | bit 101

SEV Set V bit 10V

TAP Transfer A to CCR (A) O CCR

TPA Transfer CCR to A (CCR)O A

90

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2
4.3.24 STOP and WAI Instructions

The STOP and WAI instructions put the MCU in a standby state to reduce power consumption.

The STOP instruction stacks a return address and the values in the CPU registers, then stops all system
clocks, halting program execution. A reset or an external interrupt request recovers the stacked values and
restarts the system clocks, and program execution resumes.

The WA instruction stacks a return address and the values in the CPU registers, then stops the CPU
clocks, halting program execution. A reset or any enabled interrupt request recovers the stacked values and
restarts the CPU clocks, and program execution resumes.

Although recovery from STOP or WAI takes the same number of clock cycles, restarting after STOP
requires extra time for the oscillator to reach operating speed.

A summary of the STOP and WAI instructions is giveitable 4-29.
Table 4-29 STOP and WAI Instructions

Mnemonic Function Qperation

(SP) —$0002 [0 SP, RTN:RTN_ 0 Mgp:Mgp 4 1
(SP) —$0002 00 SP, (Yy):(Yy) O Mgp:Mgp 4 1
(SP) —$0002 00 SP, (X4y):(X) 0 Mgp:Mgp 4 1
(SP) — $0002 O SP, (B):(A) 0 Mgp:Mgp + 1
(SP) —$0001 00 SP, (CCR) 0 Mgp

Stop all clocks

(SP) —$0002 [0 SP, RTNy:RTN_ 0 Mgp:Mgp + 1
(SP) —$0002 00 SP, (Yn):(Yy) O Mgp:Mgp 4 1
(SP) —$0002 00 SP, (X4y):(X) 0 Mgp:Mgp 4 1
(SP) — $0002 00 SP, (B):(A) 0 Mgp:Mgp + 1
(SP) —$0001 O SP, (CCR) O Mgp

Stop CPU clocks

STOP Stop

WAI Wait for interrupt

4.3.25 Background Mode and Null Operation Instructions
Executing the BGND instruction when BDM is enabled puts the MCU in background debug mode for
system development and debugging.

Null operations are often used to replace other instructions during software debugging. Replacing
conditional branch instructions with BRN, for instance, permits testing a decision-making routine without
actually taking the branches.

A summary of the background mode and null operation instructions is gili@bla 4-30.
Table 4-30 Background Mode and Null Operation Instructions

Mnemonic Function Qperation

BGND Enter background debug mode If BDM enabled, enter BDM, else resume normal processing
BRN Branch never Does not branch

LBRN Long branch never Does not branch

NOP Null operation Does nothing

@ MOTOROLA 91

Core User Guide — S12CPU15UG V1.2
4.4 High-Level Language Support

Many programmers are turning to high-level languages such as C as an alternative to coding in native
assembly languages. High-level language (HLL) programming can improve productivity and produce
code that is more easily maintained than assembly language programs. Historically, the most serious
drawback to the use of HLL in microcontrollers has been the relatively large size of programs written in
HLL. Larger program memory space size requirements translate into increased system costs.

Motorola solicited the cooperation of third-party software developers to assure that the HCS12 instruction
set would meet the needs of a more efficient generation of compilers. Several features of the HCS12 were
specifically designed to improve the efficiency of compiled HLL, and thus minimize cost.

This subsection identifies HCS12 instructions and addressing modes that provide improved support for
high-level language. C language examples are provided to demonstrate how these features support
efficient HLL structures and concepts. Since the HCS12 instruction set is a superset of the M68HC11
instruction set, some of the discussions use the M68HC11 as a basis for comparison.

4.4.1 Data Types

The HCS12 CPU supports the bit-sized data type with bit-manipulation instructions that are available in
extended, direct, and indexed variations. The char data type is a simple 8-bit value that is commonly used
to specify variables in a small microcontroller system because it requires less memory space than a 16-bit
integer (provided the variable has a range small enough to fit into eight bits). The 16-bit HCS12 CPU can
easily handle 16-bit integer types and the set of conditional branches, including long branches, allows
branching based on signed or unsigned arithmetic results. Some of the higher math functions allow for
division and multiplication involving 32-bit values, although it is somewhat less common to use such long
values in a microcontroller system.

Special sign-extension instructions allow easy type-casting from smaller data types to larger ones, such as
from char to integer. This sign extension is automatically performed when an 8-bit value is transferred to
a 16-bit register.

4.4.2 Parameters and Variables

High-level languages make extensive use of the stack, both to pass variables and for temporary and local
storage. It follows that there should be easy ways to push and pull all CPU registers, that stack
pointer-based indexing should be allowed, and that direct arithmetic manipulation of the stack pointer
value should be allowed. The HCS12 instruction set provides for all of these needs with improved indexed
addressing, the addition of an LEAS instruction, and the addition of push and pull instructions for the D
accumulator and the CCR.

4.4.2.1 Register Pushes and Pulls

The M68HC11 has push and pull instructions for A, B, X, and Y, but requires separate 8-bit pushes and
pulls of accumulators A and B to stack or unstack the 16-bit D accumulator (the concatenated combination
A:B). The PSHD and PULD instructions allow directly stacking the D accumulator in the expected 16-bit
order.

92 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Adding PSHC and PULC improved orthogonality by completing the set of stacking instructions so that
any of the CPU registers can be pushed or pulled. These instructions are also useful for preserving the CCR
value during a function call subroutine.

4.4.2.2 Allocating and Deallocating Stack Space

The LEAS instruction can be used to allocate or deallocate space on the stack for temporary variables:
LEAS -10,S ;Allocate space for 5 16-bit integers

LEAS 10,S ;Deallocate space for 5 16-bit ints

The (de)allocation can even be combined with a register push or pull as in the following example:

LDX 8,5+ ;Load return value and deallocate

Xis loaded with the 16-bit integer value at the top of the stack, and the stack pointer is adjusted up by eight
to deallocate space for eight bytes’ worth of temporary storage. Postincrement indexed addressing is used
in this example, but all four combinations of pre/post increment/decrement are available (offsets from —8
to +8 inclusive, from X, Y, or SP). This form of indexing can often be used to get an index or stack pointer
adjustment for free during an indexed operation: the instruction requires no more code space or cycles than
a zero-offset indexed instruction.

4.4.2.3 Frame Pointer

In the C language, it is common to have a frame pointer in addition to the CPU stack pointer. The frame
is an area of memory within the system stack which is used for parameters and local storage of variables
used within a function subroutine. The following is a description of how a frame pointer can be set up and
used.

First, parameters (typically values in CPU registers) are pushed onto the system stack prior to using a JSR
or CALL to get to the function subroutine. At the beginning of the called subroutine, the frame pointer of
the calling program is pushed onto the stack. Typically, an index register, such as X, is used as the frame
pointer, so a PSHX instruction would save the frame pointer from the calling program.

Next, the called subroutine establishes a new frame pointer by executing a TFR S,X. Space is allocated for
local variables by executing an LEAS —n,S, where n is the number of bytes needed for local variables.

Notice that parameters are at positive offsets from the frame pointer while locals are at negative offsets.
In the M68HC11, the indexed addressing mode uses only positive offsets, so the frame pointer always
points to the lowest address of any parameter or local. After the function subroutine finishes, calculations
are required to restore the stack pointer to the midframe position between the locals and the parameters
before returning to the calling program. The HCS12 CPU requires only the execution of TFR X,S to
deallocate the local storage and return.

The concept of a frame pointer is supported in the HCS12 through a combination of improved indexed
addressing, universal transfer/exchange, and the LEA instruction. These instructions work together to
achieve more efficient handling of frame pointers. It is important to consider the complete instruction set
as a complex system with subtle interrelationships rather than simply examining individual instructions
when trying to improve an instruction set. Adding or removing a single instruction can have unexpected
consequences.

@ MOTOROLA 93

Core User Guide — S12CPU15UG V1.2
4.4.3 Increment and Decrement Operators

In C, the notatior+ +i or i ——is often used to form loop counters. Within limited constraints, the HCS12
loop primitives can speed up the loop-count-and-branch function.

The HCS12 includes a set of six basic loop-control instructions that decrement, increment, or test a
loop-count register and then branch if the register is either equal to zero or not equal to zero. The
loop-count register can be A, B, D, X, Y, or SP. A or B could be used if the loop count fits in an 8-bit char
variable; the other choices are all 16-bit registers. The relative offset for the loop branch is a 9-bit signed
value, so these instructions can be used with loops as long as 256 bytes.

In some cases, the pre- or postincrement operation can be combined with an indexed instruction to
eliminate the cost of the increment operation. This is typically done by postcompile optimization because
the indexed instruction that could absorb the increment/decrement operation may not be apparent at
compile time.

4.4.4 Higher Math Functions

In the HCS12 CPU, subtle characteristics of higher math operations such as IDIVS and EMUL are
arranged so a compiler can handle inputs and outputs more efficiently.

The most apparent case is the IDIVS instruction, which divides two 16-bit signed numbers to produce a
16-bit result. While the same function can be accomplished with the EDIVS instruction (a 32 by 16
divide), doing so is much less efficient because extra steps are required to prepare inputs to the EDIVS,
and because EDIVS uses the Y index register. EDIVS uses a 32-bit signed numerator and the C compiler
would typically want to use a 16-bit value (the size of an integer data type). The 16-bit C value would need
to be sign-extended into the upper 16-bits of the 32-bit EDIVS numerator before the divide operation.

Operand size is also a potential problem in the extended multiply operations but the difficulty can be
minimized by putting the results in CPU registers. Having higher-precision math instructions is not
necessarily a requirement for supporting high-level language because these functions can be performed as
library functions. However, if an application requires these functions, the code is much more efficient if
the CPU can use native instructions instead of relatively large, slow routines.

4.4.5 Conditional If Constructs

In the HCS12 instruction set, most arithmetic and data manipulation instructions automatically update the
condition code register, unlike other architectures that only change condition codes during a few specific
compare instructions. The HCS12 includes branch instructions that perform conditional branching based
on the state of the indicators in the condition code register. Short branches use a single byte-relative offset
that allows branching to a destination within abtl®8 locations from the branch. Long branches use a
16-bit relative offset that allows conditional branching to any location in the 64K byte map.

94 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2
4.4.6 Case and Switch Statements

Case and switch statements (and computed GOTOs) can use PC-relative indexed-indirect addressing to
determine which path to take. Depending upon the situation, cases can use either the constant offset
variation or the accumulator D offset variation of indexed-indirect addressing.

4.4.7 Pointers

The HCS12 supports pointers with direct arithmetic operations on the 16-bit index registers (LEAS,
LEAX, and LEAY instructions) and with indexed-indirect addressing modes.

4.4.8 Function Calls

Bank switching is a common way of adapting a CPU with a 16-bit address bus to accommodate more than
64K bytes of program memory space. One of the most significant drawbacks of this technique is the
requirement of masking interrupts while the bank page value is being changed. Another problem is that
the physical location of the bank page register can change from one system to another or even due to a
change to mapping controls by a user program. In these situations, an operating system program has to
keep track of the physical location of the page register. The HCS12 addresses both of these problems with
the uninterruptible CALL and return from call (RTC) instructions.

The CALL instruction is similar to a JSR instruction, except that the programmer supplies a destination
page value as part of the instruction. When CALL executes, the old page value is saved on the stack and
the new page value is written to the bank page register. Since the CALL instruction is uninterruptible, this
eliminates the need to separately mask off interrupts during the context switch.

The HCS12 has dedicated signal lines that allow the CPU to access the bank page register without having
to use an address in the normal 64K byte address space. This eliminates the need for the program to know
where the page register is physically located.

The RTC instruction is similar to the RTS instruction, except that RTC uses the byte of information that

was saved on the stack by the corresponding CALL instruction to restore the bank page register to its old
value. A CALL/RTC pair can be used to access any function subroutine on any page. But when the called
subroutine is on the current page or in an area of memory that is always visible, it is more efficient to access
it with JSR/RTS instructions.

Push and pull instructions can be used to stack some or all the CPU registers during a function call. The
HCS12 CPU can push and pull any of the CPU registers A, B, D, CCR, X, Y, or SP.

4.4.9 Instruction Set Orthogonality

One very helpful aspect of the HCS12 instruction set, orthogonality, is difficult to quantify in terms of
direct benefit to an HLL compiler. Orthogonality refers to the regularity of the instruction set. A
completely orthogonal instruction set would allow any instruction to operate in any addressing mode,
would have identical code sizes and execution times for similar operations, and would include both signed
and unsigned versions of all mathematical instructions. Greater regularity of the instruction set makes it

@ MOTOROLA 95

Core User Guide — S12CPU15UG V1.2

possible to implement compilers more efficiently because operation is more consistent, and fewer special
cases must be handled.

96 @ MOTOROLA

V7OHOLOW @

16

4.5 Opcode Map

00 5|10 1|20 3130 340 1|50 1|60 3-6|70 4180 1|90 3|AO0 3/4/6|B0O 3|CO 1|D0 3|EO 3/4/6 |FO 3
BGND | ANDCC | BRA PULX NEGA | NEGB NEG NEG SUBA | SUBA | SUBA | SUBA | SUBB SUBB SUBB SUBB
IH 1M 2 |RL 2|IH 1|IH 1|IH 1ID 2-4|EX 3|IM 2| DI 2|ID 2-4|EX 3|IM 2| DI 2|ID 24 |EX 3
01 5/11 1121 1131 3|41 151 1161 3-6|71 4|81 191 3|Al 3/4/6 |B1 3|C1 1/D1 3|E1 3/4/6 |F1 3
MEM EDIV BRN PULY COMA | COMB COM COM CMPA | CMPA | CMPA | CMPA | CMPB | CMPB | CMPB | CMPB
IH 1|IH 1|RL 2|IH 1|IH 1|IH 1/ID 2-4|EX 3|/IM 2| DI 2|ID 2-4|EX 3|/IM 2| DI 2|ID 24 |EX 3
02 1|12 1|22 3/132 3|42 1|52 1|62 3-6|72 4182 1|92 3|A2 3/4/6|B2 3|C2 1/D2 3|E2 3/4/6 |F2 3
INY MUL BHI PULA INCA INCB INC INC SBCA | SBCA | SBCA | SBCA | SBCB SBCB SBCB SBCB
IH 1|IH 1|RL 2|IH 1|IH 1|IH 1/ID 2-4|EX 3|/IM 2| DI 2|ID 2-4|EX 3|/IM 2| DI 2|ID 24 |EX 3
03 113 323 3/1|33 3|43 1|53 1163 3-6|73 483 2193 3|A3 3/4/6 |B3 3|C3 2|D3 3|E3 3/4/6 |F3 3
DEY EMUL BLS PULB DECA | DECB DEC DEC SUBD | SUBD | SuBD | SUBD | ADDD | ADDD | ADDD | ADDD
IH 1|IH 1|RL 2|IH 1|IH 1|IH 1/ID 2-4|EX 3|/IM 3| DI 2|ID 2-4|EX 3|/IM 3| DI 2|ID 24 |EX 3
04 3|14 124 3/1|34 2|44 1|54 1|64 3-6|74 4184 1|94 3|A4 3/4/6 B4 3|C4 1|D4 3|E4 3/4/6 |F4 3
loop ORCC BCC PSHX LSRA LSRB LSR LSR ANDA | ANDA | ANDA | ANDA | ANDB | ANDB | ANDB | ANDB
RL 3/IM 2 |RL 2|IH 1|IH 1|IH 1ID 2-4|EX 3|IM 2| DI 2|ID 2-4|EX 3|IM 2| DI 2|ID 24 |EX 3
05 3/4/6|15 4/5/7|25 3/1|35 2145 1|55 165 3-6|75 485 1195 3|A5 3/4/6 |B5 3|C5 1|/D5 3 |E5 3/4/6 |F5 3
JMP JSR BCS PSHY ROLA ROLB ROL ROL BITA BITA BITA BITA BITB BITB BITB BITB
ID 2-4|ID 2-4|RL 2|IH 1|IH 1|IH 1|/ID 2-4|EX 3|/IM 2| DI 2|ID 2-4|EX 3|/IM 2| DI 2|ID 2-4|EX 3
06 3|16 4126 3/1|36 2|46 1|56 1|66 3-6|76 4186 1|96 3|A6 3/4/6|B6 3|C6 1|D6 3 |E6 3/4/6 |F6 3
JMP JSR BNE PSHA | RORA | RORB ROR ROR LDAA LDAA LDAA LDAA LDAB LDAB LDAB LDAB
EX 3 |EX 3|RL 2|IH 1|IH 1|IH 1ID 2-4|EX 3|IM 2| DI 2|ID 2-4|EX 3|IM 2| DI 2|ID 24 |EX 3
07 4|17 4127 3/1)37 2|47 1|57 1167 3-6|77 487 1197 1|A7 1,B7 1|C7 1|D7 1|E7 3/4/6 |F7 3
BSR JSR BEQ PSHB | ASRA | ASRB ASR ASR CLRA TSTA NOP |TFR/EXG| CLRB TSTB TST TST
RL 2| DI 2|RL 2|IH 1|IH 1|IH 1|/ID 2-4|EX 3|IH 1|IH 1|IH 1/IH 2|IH 1|IH 1|ID 2-4|EX 3
08 1|18 -|128 3/1|38 348 1|58 1|68 3-6|78 4188 1|98 3|A8 3/4/6|B8 3|C8 1|D8 3 |E8 3/4/6 |F8 3
INX page 2 BvVC PULC ASLA ASLB ASL ASL EORA | EORA | EORA | EORA | EORB | EORB | EORB | EORB
IH 1 - - |RL 21IH 1|IH 1|IH 1ID 2-4|EX 3|IM 2| DI 2|ID 2-4|EX 3|IM 2| DI 2|ID 24 |EX 3
09 119 229 3/1|39 2149 1159 1169 2479 3|89 1199 3|A9 3/4/6 |B9 3|C9 1/D9 3|E9 3/4/6 |F9 3
DEX LEAY BVS PSHC LSRD ASLD CLR CLR ADCA | ADCA | ADCA | ADCA | ADCB | ADCB | ADCB | ADCB
IH 1/ID 2-4|RL 2|IH 1|IH 1|IH 1|/ID 2-4|EX 3|/IM 2| DI 2|ID 2-4|EX 3|/IM 2| DI 2|ID 2-4|EX 3
0A 7|1A 2(2A 3/1|3A 3|4A 7|5A 2|6A 2-4\|7A 3|8A 1|9A 3 |AA 3/4/6 |BA 3|CA 1|DA 3 |EA 3/4/6 |FA 3
RTC LEAX BPL PULD CALL STAA STAA STAA ORAA | ORAA | ORAA | ORAA | ORAB | ORAB | ORAB | ORAB
IH 1/ID 2-4|RL 2|IH 1|EX 4| DI 2|ID 2-4|EX 3|IM 2| DI 2|ID 2-4|EX 3|IM 2| DI 2|ID 24 |EX 3
0B 8/11|1B 2|2B 3/1|3B 2|4B 7/8/10|5B 2|6B 2-4|7B 3|8B 1/9B 3 |AB 3/4/6 |BB 3|CB 1DB 3 |EB 3/4/6 |FB 3
RTI LEAS BMI PSHD CALL STAB STAB STAB ADDA | ADDA | ADDA | ADDA | ADDB | ADDB | ADDB | ADDB
IH 1/ID 2-4|RL 2|IH 1|/ID 2-5|DI 2|ID 2-4|EX 3|/IM 2| DI 2|ID 2-4|EX 3|/IM 2| DI 2|ID 2-4|EX 3
0C 4/6|1C 4]2C 3/1|3C 914C 4|5C 2|6C 2-4\7C 3|8C 219C 3|AC 3/4/6 |BC 3|CC 2|DC 3 |EC 3/4/6 |FC 3
BSET BSET BGE wavr BSET STD STD STD CPD CPD CPD CPD LDD LDD LDD LDD
ID 3-5|EX 4 |RL 2|SP 1|DI 3| DI 2|ID 2-4|EX 3|IM 3| DI 2|ID 2-4|EX 3|IM 3| DI 2|ID 24 |EX 3
0D 4/6|1D 412D 3/1|3D 5|4D 45D 2|6D 2-4|7D 3|8D 2|9D 3|AD 3/4/6 |BD 3|CD 2|DD 3 |ED 3/4/6 |FD 3
BCLR BCLR BLT RTS BCLR STY STY STY CPY CPY CPY CPY LDY LDY LDY LDY
ID 3-5|EX 4 |RL 2|IH 1|DI 3| DI 2|ID 2-4|EX 3|/IM 3| DI 2|ID 2-4|EX 3|/IM 3| DI 2|ID 2-4|EX 3
OE 4-6|1E 5(2E 3/1|3E 7+6|4E 4 |5E 2|6E 2-4\7E 3 |8E 2 |9E 3 |AE 3/4/6 |BE 3|CE 2 |DE 3 |EE 3/4/6 |FE 3
BRSET | BRSET BGT WAI BRSET STX STX STX CPX CPX CPX CPX LDX LDX LDX LDX
ID 4-6|EX 5|RL 2|IH 1|DI 4| DI 2|ID 2-4|EX 3|IM 3| DI 2|ID 2-4|EX 3|IM 3| DI 2|ID 24 |EX 3
OF 4-6|1F 5(2F 3/1|3F 9|4F 4 |5F 2|6F 2-4|7F 3|8F 2|9F 3 |AF 3/4/6 |BF 3|CF 2 |DF 3 |EF 3/4/6 |FF 3
BRCLR | BRCLR BLE SWI BRCLR STS STS STS CPS CPS CPS CPS LDS LDS LDS LDS
ID 4-6|EX 5|RL 2|IH 1|DI 4| DI 2|ID 2-4|EX 3|IM 3| DI 2|ID 2-4|EX 3|IM 3| DI 2|ID 2-4|EX 3

Opcode $04 is for one of the loop primitive instructions DBEQ, DBNE, IBNE, TBEQ, or TBNE.
Address mode abbreviations: DI — direct

EX — extended
ID — indexed

IH—inherent SP — special
IM — immediate
RL — relative

Hex opcode —»
Mnemonic —»|
Address mode —»|

5-—— Number of cycles

1-<—— Number of bytes

¢'TA ONSTNdICTS — 3pIND 19sN 310D

8 00 4110 12|20 4130 10|40 10|50 10|60 10|70 10|80 10|90 10 |AO 10 |BO 10|CO 10 |DO 10 |EO 10 |FO 10
MOVW IDIV LBRA TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
IM=ID 5|IH 2 |RL 4| IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2| IH 2
01 5|11 12 (21 3(31 10 (41 10 (51 10 (61 10|71 10 (81 10 (91 10 (Al 10 |B1 10 (C1 10 |D1 10 |E1 10 |F1 10
MOVW FDIV LBRN TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
EX-ID 5|IH 2 |RL 4| IH 2|IH 2|IH 2|IH 2 1H 2|IH 2|IH 2|IH 2 1H 2|IH 2|IH 2|IH 2|IH 2
02 5|12 13122 4/3|32 10|42 10|52 10|62 10|72 10|82 10|92 10 |A2 10 B2 10|C2 10 |D2 10 |E2 10 |F2 10
MOVW | EMACS LBHI TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
ID-ID 4|SP 4 |RL 4| IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2| IH 2
03 5113 3|23 4/3|33 10 (43 10 (53 10 (63 10|73 10 (83 10 (93 10 (A3 10 B3 10|C3 10/D3 10/E3 10|F3 10
MOVW | EMULS LBLS TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
IM—EX 6 | IH 2 |RL 4| IH 2| IH 2| IH 2| IH 2| 1H 2| IH 2| IH 2| IH 2 1H 2| IH 2|IH 2|IH 2|IH 2
04 6|14 1224 4/3|34 10|44 10|54 10|64 10|74 10|84 10|94 10 |A4 10 |B4 10|C4 10 |D4 10 |E4 10 |F4 10
MOVW | EDIVS LBCC TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
EX-EX 6| IH 2 |RL 4| IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2| IH 2
05 5115 12|25 4/3|35 10 (45 10 |55 10 |65 10|75 10 (85 10 (95 10 [A5 10|B5 10 |C5 10 D5 10 [E5 10 [F5 10
MOVW IDIVS LBCS TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
ID-EX 5|IH 2 |RL 4 |IH 2|IH 2|IH 2|IH 2IH 2|IH 2|IH 2|IH 2IH 2|IH 2|IH 2|IH 2|IH 2
06 2|16 2|26 4/3|36 10|46 10|56 10|66 10|76 10|86 10|96 10 |A6 10 |B6 10|C6 10 |D6 10 |E6 10 |F6 10

ABA SBA LBNE TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
IH 2| IH 2 |RL 4| IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2| IH 2
07 3117 227 4/3|37 10 (47 10 |57 10 |67 10|77 10 (87 10 (97 10 (A7 10 |B7 10 [C7 10 (D7 10 (E7 10 [F7 10

DAA CBA LBEQ TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
IH 2|IH 2 |RL 4 |IH 2|IH 2|IH 2|IH 2|IH 2|IH 2|IH 2|IH 2IH 2|IH 2|IH 2|IH 2|IH 2
08 4118 4/5/728 4/3|38 10|48 10|58 10|68 10|78 10|88 10|98 10 |A8 10 |B8 10|C8 10 |D8 10 |E8 10 |F8 10
MOVB MAXA LBVC TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
IM=ID 4|ID 3-5|RL 4| IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2| IH 2
09 5|19 4/5/7|29 4/3|39 10 (49 10 (59 10 (69 10|79 10 (89 10 (99 10 (A9 10 B9 10|C9 10(D9 10|E9 10|F9 10
MOVB MINA LBVS TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
EX-ID 5|/ID 3-5|RL 4 |IH 2|IH 2|IH 2|IH 2|IH 2|IH 2| IH 2|IH 2IH 2|IH 2|IH 2|IH 2|IH 2
0A 5|1A 4/5/7 |2A 4/3[3A 3n |4A 10 |5A 10 |6A 10 |7A 10 |8A 10 |9A 10|AA 10BA 10|CA 10|DA 10|EA 10|FA 10
MOVB | EMAXD LBPL REV TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
ID-ID 4|ID 3-5|RL 4 |SP 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2| IH 2
0B 411B 4/5/7|2B 4/3|3B5n/3n |4B 10 (5B 10 (6B 10|7B 10 (8B 10 (9B 10 |AB 10 BB 10/CB 10|DB 10|EB 10 [FB 10
MOVB EMIND LBMI REVW TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
IM-EX 5|ID 3-5|RL 4 |SP 2|IH 2|IH 2|IH 2|IH 2|IH 2|IH 2|IH 2| IH 2| IH 2| IH 2|IH 2|IH 2
oC 6|1C 4-7|2C 4/3|3C 7n |4C 10|5C 10|6C 10|7C 10|8C 10|9C 10 |AC 10 BC 10|CC 10/DC 10|EC 10|FC 10
MOVB MAXM LBGE WAV TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
EXEX 6|ID 3-5|RL 4 |SP 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2| IH 2
oD 5|/1D 4-7|2D 4/3|3D 64D 10 (5D 10 (6D 10|7D 10 (8D 10 (9D 10 [AD 10BD 10|CD 10/DD 10|ED 10|FD 10
MOVB MINM LBLT TBL TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
ID-EX 5|ID 3-5|RL 4|ID 3|IH 2|IH 2|IH 2 IH 2|IH 2|IH 2|IH 2 IH 2|IH 2|IH 2|IH 2|IH 2
OE 2|1E 4-7|2E 4/3|3E 8+6 |4E 10 |5E 10 |6E 10 |7E 10 |8E 10 |9E 10 |AE 10 |BE 10|CE 10|DE 10 |EE 10 |FE 10

TAB EMAXM | LBGT STOP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
IH 2/ID 3-5|RL 4| IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2|IH 2| IH 2| IH 2| IH 2| IH 2
OF 2|1F 4-7|2F 4/3|3F 10 [4F 10 |5F 10 |6F 10| 7F 10 [8F 10 |9F 10 |AF 10 |BF 10 |[CF 10 |DF 10 [EF 10 [FF 10

TBA EMINM LBLE ETBL TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP TRAP
IH 2|EX 3-5|RL 4 |ID 3|IH 2|IH 2|IH 2 IH 2|IH 2|IH 2|IH 2 IH 2|IH 2|IH 2|IH 2|IH 2

Address mode abbreviations: DI — direct IM — immediate Hex opcode —{ 00 5<—— Number of cycles

V7OHO.LOW @

EX — extended RL — relative

ID — indexed
IH — inherent

SP — special

Mnemonic —»|

Address mode —»{IH

BGND

1<—— Number of bytes

¢'TA ONSTNdOCZTS — 9pINY 18sN 810D

Core User Guide — S12CPU15UG V1.2

4.6 Transfer and Exchange Postbyte Encoding

Transfers
1 LS|mMs- 0 1 2 3 4 5 6 7
0 ADA BOA CCROA TMP3,0 A BOA X, OA Y. OA SP.OA
1 ADB BOB CCROB TMP3,0 B BOB X.0B Y.OB SP OB
2 A CCR BO CCR CCROCCR | TMP3,0CCR | BOCCR | X [OCCR | Y, OCCR | SP.OCCR
3 sex:Al TMP2 | sex:B0 TMP2 | sex:CCRO TMP2 | TMP3OTMP2 | DOTMP2 | XOTMP2 | YOTMP2 | SPOTMP2
4 Sseé;(AAD’DD sseé;(BS’g SseéfggS’DD TMP30 D DOD XOD YOD SPOD
5 Sseé;(AE’;((S‘Seé;(BE; Sseéfggs; TMP30 X DO X X0 X YO X SPO X
6 Sseé;(AE’J S‘Seé;(st Sseéfggs,: TMP3O Y DOY XOY YOY SPOY
7 sseé;(AE,SSPP Sseé;(BE;E S‘Seéfggs’gpp TMP30 SP DO SP X0 SP YO SP SPO SP
Exchanges
I Ls|ms— 8 9 A B c D E F
0 A=A B-A CCR-A $0To|\:/|:§ I:I'DMAI;3 ig g $(;(oinDA X $CI)L:§£ Y $oSo|T/E\E| gP
! A-B B-B CCR-B $I;I—IL\{IIIBD§L'I|']M?33 $EEEIBA $I2(FL:DBDBX $|IFL:DBDB Y $FSFP:EDD gP
- A=CCR | B=CCR | CCR-CCR |o e o R b|sPrCoRN x| SFEGCRD ¥ | SFF-ECRD 5P
3 $0T0r\:/|APD2LTDMAP 2 $(')I'OI\:II?DDZJ—DM; 2 $OTO|\:/|$>2T§ CT CMF': 2| TMP3-TMP2 | D=TMP2 | X=TMP2 | Y-TMP2 | SP-TMP2
4 $00:A0D | $00:B0D $Og§ggg D TMP3 <D D-D XD YD SP-D
5 $(;?L:Six $2(0L:SDBX $(§?L:§%Féix TMP3 = X Do X XX Yo X SP-X
6 $$’;Si\($?(0L:SDBY $(\’?L:§%FéiY TMP3 =Y Doy XY Yoy SPoY
7 $C§F;’?E' EP $OSOF:,EES SP $OSO};TDCEE:P TMP3 < SP D-SP X <SP Y- SP SP-SP

TMP2 and TMP3 registers are for factory use only.

@ MOTOROLA

99

Core User Guide — S12CPU15UG V1.2

4.7 Loop Primitive Postbyte (Ib) Encoding

00 Al 10 Al 20 Al 30 Al 40 Al 50 Al 60 Al 70 Al 80 Al 90 Al A0 A BO A
DBEQ DBEQ DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE IBNE
*)) *)) *)) *)) *)) *))
01 B[11 B[21 B[31 B[41 B[51 B 61 B[71 B 81 B[o1 B[AL B[B1 B
DBEQ DBEQ DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE IBNE
*) (@) *) (@) *) (@) *) (@) *) (@) *) (@)
02 12 22 32 42 52 62 72 82 92 A2 B2
03 13 23 33 43 53 63 73 83 93 A3 B3
04 D|14 D|24 D|34 D |44 D|54 D|64 D|74 D|84 D[94 D[A4 D[B4 D
DBEQ DBEQ DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE IBNE
*)) *)) *)) *)) *)) *))
05 X[15 X[25 ES X[45 X[55 X | 65 x| 75 x| 85 X |95 X | A5 X | B5 X
DBEQ DBEQ DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE IBNE
*) (@) *) (@) *) (@) *) (@) *) (@) *) (@)
06 Y| 16 Y| 26 Y| 36 Y[46 Y |56 Y| 66 Y| 76 Y| 86 Y[96 Y| A6 Y| B6 Y
DBEQ DBEQ DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE IBNE
*)) *)) *)) *)) *)) *))
07 SP [17 SP | 27 SP [37 SP | 47 SP | 57 SP | 67 SP |77 SP | 87 SP | 97 SP | A7 SP | B7 SP
DBEQ DBEQ DBNE DBNE TBEQ TBEQ TBNE TBNE IBEQ IBEQ IBNE IBNE
*) (@) *) (@) *) (@) *) (@) *) (@) *) (@)
Hex postbyte (bit 3 is don’t care) —® 00 Ar— Counter

/—> DBEQ
Mnemonic (+) |<— Sign of 9-bit relative branch offset
(lower eight bits are an extension byte following postbyte)

100 @ MOTOROLA

V7OHOLOW @

TOT

4.8 Indexed Addressing Postbyte (xb) Encoding

00 10 20 30 40 50 60 70 80 90 A0 BO Cco DO EO FO

0,X -16,X 1,+X 1,X+ 0,Y -16,Y 1,+Y 1Y+ 0,SP -16,SP 1,+SP 1,SP+ 0,PC -16,PC n,X n,SP
5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |9bconst |[9b const
01 11 21 31 41 51 61 71 81 91 Al Bl C1 D1 El F1

1,X -15,X 2,+X 2, X+ 1Y -15,Y 2,+Y 2,Y+ 1,SP -15,SP 2,+SP 2,SP+ 1,PC -15,PC —n,X -n,SP
5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |9bconst |9b const
02 12 22 32 42 52 62 72 82 92 A2 B2 c2 D2 E2 F2

2,X -14,X 3,+X 3, X+ 2,Y -14,Y 3,+Y 3,Y+ 2,SP -14,SP 3,+SP 3,SP+ 2,PC -14,PC n,X n,SP
5b const |5b const |pre-inc post-inc 5b const |5b const |pre-inc post-inc 5b const |5b const |pre-inc post-inc 5b const [5bconst |16b const |16b const
03 13 23 33 43 53 63 73 83 93 A3 B3 C3 D3 E3 F3

3,X -13,X 4,+X 4 X+ 3Y -13,Y 4.+Y 4.Y+ 3,SP -13,SP 4 +SP 4,SP+ 3,PC -13,PC [n,X] [n,SP]
5b const |5bconst |pre-inc post-inc 5b const |5b const |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |16b indr 16b indr
04 14 24 34 44 54 64 74 84 94 A4 B4 c4 D4 E4 F4

4.X -12,X 5,+X 5X+ 4.Y -12,Y 5+Y 5Y+ 4,SP -12,SP 5,+SP 5,SP+ 4,PC -12,PC AX A,SP
5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |A offset A offset
05 15 25 35 45 55 65 75 85 95 A5 B5 C5 D5 E5 F5

5,X -11,X 6,+X 6,X+ 5Y -11,Y 6,+Y 6,Y+ 5,SP -11,SP 6,+SP 6,SP+ 5PC -11,PC B,X B,SP
5b const |5b const |pre-inc post-inc 5b const |5b const |pre-inc post-inc 5b const |5b const |pre-inc post-inc 5b const |5b const |B offset B offset
06 16 26 36 46 56 66 76 86 96 A6 B6 C6 D6 E6 F6

6,X -10,X 7,+X 7,X+ 6,Y -10,Y 7,+Y 7Y+ 6,SP -10,SP 7,+SP 7,SP+ 6,PC -10,PC D,X D,SP
5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |D offset D offset
07 17 27 37 47 57 67 77 87 97 A7 B7 Cc7 D7 E7 F7

7,X —9,X 8,+X 8,X+ 7Y -9,Y 8,+Y 8,Y+ 7,SP -9,SP 8,+SP 8,SP+ 7,PC —-9,PC [D,X] [D,SP]
5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5b const |5bconst |pre-inc post-inc 5bconst |5bconst |Dindirect |D indirect
08 18 28 38 48 58 68 78 88 98 A8 B8 C8 D8 E8 F8

8,X -8,X 8,—X 8,X— 8,Y -8,Y 8,-Y 8,Y— 8,SP -8,SP 8,-SP 8,SP— 8,PC -8,PC nY n,PC
5b const |5b const |pre-dec post-dec [5b const |5bconst |pre-dec post-dec |5b const |5bconst |pre-dec post-dec [5bconst |5bconst |9bconst |9b const
09 19 29 39 49 59 69 79 89 99 A9 B9 C9 D9 E9 F9

9,X —7,X 7,—X 7,X— 9,Y =7,Y 7Y 7,Y— 9,SP -7,SP 7,-SP 7,SP- 9,PC -7,PC -n,Y -n,PC
5b const |5bconst |pre-dec post-dec [5b const |5bconst |pre-dec post-dec |5b const |5bconst |pre-dec post-dec [5bconst |5bconst |9bconst |9b const
0A 1A 2A 3A 4A 5A 6A 7A 8A 9A AA BA CA DA EA FA

10,X —6,X 6,—X 6,X— 10,Y -6,Y 6,-Y 6,Y— 10,SP -6,SP 6,—SP 6,SP— 10,PC -6,PC nyY n,PC
5b const |5bconst |pre-dec post-dec [5b const |5bconst |pre-dec post-dec |5b const |5bconst |pre-dec post-dec [5b const |5bconst |16b const [16b const
0B 1B 2B 3B 4B 5B 6B 7B 8B 9B AB BB CB DB EB FB

11,X -5,X 5-X 5,X— 1Y -5Y 5-Y 5Y- 11,SP -5,SP 5,-SP 5,SP- 11,PC -5,PC [n,Y] [n,PC]
5b const 5b const |pre-dec post-dec |5b const 5b const |pre-dec post-dec |5b const |5bconst |pre-dec post-dec |5bconst |5bconst |16bindr 16b indr
oc ic 2C 3C le: 5C 6C 7C 8C 9C AC BC CcC DC EC FC

12,X -4,X 4,-X 4, X~ 12,y -4,Y 4,-Y 4,Y- 12,SP —4,SP 4,-SP 4,SP- 12,PC -4,PC AY APC
5b const |5b const |pre-dec post-dec [5b const |5bconst |pre-dec post-dec |5b const |5bconst |pre-dec post-dec [5bconst |5bconst |A offset A offset
oD 1D 2D 3D 4D 5D 6D 7D 8D 9D AD BD CD DD ED FD

13,X -3,X 3,-X 3,X— 13Y -3, 3-Y 3,Y- 13,SP -3,SP 3,-SP 3,SP- 13,PC -3,PC B,Y B,PC
5b const |5bconst |pre-dec post-dec [5b const |5bconst |pre-dec post-dec |5b const |5bconst |pre-dec post-dec [5b const |5bconst |B offset B offset
OE 1E 2E 3E 4E 5E 6E 7E 8E 9E AE BE CE DE EE FE

14,X -2,X 2,—X 2,X— 14.Y -2,Y 2-Y 2,Y— 14,SP -2,SP 2,-SP 2,SP-— 14,PC -2,PC DY D,PC
5b const |5bconst |pre-dec post-dec |5bconst |5bconst |pre-dec post-dec |5b const |5bconst |pre-dec post-dec |5bconst |5bconst |D offset D offset
OF 1F 2F 3F 4F 5F 6F 7F 8F 9F AF BF CF DF EF FF

15,X -1,X 1,-X 1,X- 15Y -1Y 1-Y 1Y- 15,SP -1,SP 1,-SP 1,SP- 15,PC -1,PC [D)Y] [D,PC]
5b const |5b const |pre-dec post-dec [5b const |5bconst |pre-dec post-dec |5b const |5bconst |pre-dec post-dec [5bconst |5bconst |D indirect |D indirect

Hex postbyte — 00
0,X ~—— Source code syntax
Type of offset —{ 5b const

¢'TA ONSTNdICTS — 3pIND 19sN 310D

Core User Guide — S12CPU15UG V1.2

102 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 5 Instruction Execution

The CPU uses a three-stage instruction queue to facilitate instruction fetching and increase execution
speed. This section provides a general description of the instruction queue during normal program
execution and during changes in execution flow. Operation of the queue is automatic and generally
transparent to the user.

5.1 Normal Instruction Execution

Queue logic prefetches program information and positions it for sequential execution, one instruction at a
time. The relationship between bus cycles and execution cycles is straightforward and facilitates tracking
and debugging.

There are three 16-bit stages in the instruction queue. Instructions enter the queue at stagel and roll out
after stage 3. Each byte in the queue is selectable. An opcode-prediction algorithm determines the location
of the next opcode in the instruction queue.

Each instruction refills the queue by fetching the same number of bytes that the instruction uses. Program
information is fetched in aligned 16-bit words. Each program fetch indicates that two bytes need to be
replaced in the instruction queue. Each optional fetch indicates that only one byte needs to be replaced.
For example, an instruction composed of five bytes does two program fetches and one optional fetch. If
the first byte of the five-byte instruction was even-aligned, the optional fetch is converted into a free cycle.
If the first byte was odd-aligned, the optional fetch is executed as a program fetch.

Two external pins, IPIPE[1:0], provide time-multiplexed information about instruction execution and data
movement in the queue. Decoding and using the IPIPE signals is discussed in.

5.2 Execution Sequence

All gueue operations are defined by two basic queue movement cycles. Queue movement cycles are only
one factor in instruction execution time and should not be confused with bus cycles.

5.2.1 No Movement

There is no data movement in the instruction queue during the cycle. This occurs during execution of
instructions that must perform a number of internal operations, such as division instructions.

5.2.2 Advance and Load from Data Bus

The content of queue stage 1 advances to stage 2, stage 2 advances to stage 3, and stage 1 is loaded wi
a word of program information from the data bus.

@ MOTOROLA 103

Core User Guide — S12CPU15UG V1.2
5.3 Changes of Flow

Most of the time, the instruction queue operates in a continuous sequence of queue movement cycles.
When program flow changes because of an exception, subroutine call, branch, or jump, the queue
automatically adjusts its movement sequence to accommodate the change in program flow.

5.3.1 Exceptions

Exceptions include three types of reset, an unimplemented opcode trap, a software interrupt instruction, X
bit maskable interrupts, and | bit maskable interrupts.

To minimize the effect of queue operation on exception handling:

* The exception vector fetch is the first part of exception processing.

» Fetches to refill the queue from the new address are interleaved with the context-stacking
operations, so that program access time does not delay the switch.

Please se8ection 6 of this guide for more detailed information on exception processing.
5.3.2 Subroutines

The CPU can branch to (BSR), jump to (JSR), or CALL subroutines. The BSR and JSR instructions are
for accessing subroutines in the normal 64K byte address space. The CALL instruction is for accessing
subroutines in expanded memory.

BSR uses relative addressing mode to generate the effective address of the subroutine, while JSR can use
other addressing modes. Both instructions calculate a return address, stack the address, then do three
program word fetches to refill the queue.

A subroutine in the normal 64K byte address space ends with a return from subroutine instruction (RTS).
RTS unstacks the return address and does three program word fetches from that address to refill the queue

CALL is similar to JSR. MCUs with expanded memory treat the 16K bytes of addresses from $8000 to
$BFFF as an expanded memory window. An 8-bit PPAGE register switches the memory pages in the
window. CALL calculates and stacks a return address along with the current PPAGE value and writes a
new instruction-supplied value to PPAGE. Then it calculates the subroutine address and fetches three
program words from that address to refill the queue.

A subroutine in expanded memory ends with a return from call instruction (RTC). RTC unstacks the
PPAGE value and the return address and does three program word fetches from that address to refill the
queue.

5.3.3 Branches

A branch instruction changes the execution flow when a specific condition exists. There are short
conditional branches, long conditional branches, and bit-condition branches. All branch instructions affect
the queue similarly, but there are differences in cycle counts between the various types. Loop primitive
instructions are a special type of branch instruction for implementing counter-based loops.

104 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

A branch instruction has two execution cases. Either the branch condition is satisfied, and a change of flow
takes place, or the condition is not satisfied, and no change of flow occurs.

5.3.3.1 Short Branches

The branch-not-taken case for a short branch is simple. Since the instruction consists of a single word
containing both an opcode and an 8-bit offset, the queue advances, the CPU fetches another program word,
and execution continues with the next instruction.

The branch-taken case for a short branch requires that the queue be refilled so that execution can begin at
a new address. First, the CPU calculates the effective address of the destination using the relative offset in
the instruction. Then it loads the address into the program counter, and performs three program word
fetches at the new address to refill the queue.

5.3.3.2 Long Branches

The branch-not-taken case for a long branch requires three cycles, while the branch-taken case requires
four cycles. This is due to differences in the amount of program information needed to fill the queue.

A long branch instruction begins with a $18 prebyte which indicates that the opcode is on page 2 of the
opcode map. The CPU treats the prebyte as a special one-byte instruction. To maintain alignment in the
two-byte queue, the first cycle of a long branch instruction is an optional cycle. If the prebyte is not
aligned, the CPU does a program word access; if the prebyte is aligned, the first cycle is a free cycle.

Optional cycles align byte-sized and misaligned instructions with aligned word-length instructions.
Program information is always fetched as aligned 16-bit words. When an instruction has an odd number
of bytes, and the first byte is not aligned with an even byte boundary, the optional cycle makes an
additional program word access that maintains queue order. In all other cases, the optional cycle is a free
cycle. In the branch-not-taken case, the queue advances so that execution can continue with the next
instruction. The CPU does one program fetch and one optional fetch to refill the queue.

In the branch-taken case, the CPU calculates the effective address of the branch using the 16-bit relative
offset contained in the second word of the instruction. It loads the address into the program counter and
then does three program word fetches at the new address to refill the queue.

5.3.3.3 Bit Condition Branches

A bit-condition branch instruction reads a location in memory and branches if the bits in that location are
in a certain state. It can use direct, extended, or indexed addressing mode. Indexed operations require
varying amounts of information to determine the effective address, so instruction length varies with the
addressing mode. The amount of program information fetched also varies with instruction length. To
shorten execution time, the CPU does one program word fetch in anticipation of the branch-taken case.
The data from this fetch is ignored if the branch is not taken, and the CPU refills the queue according to
the instruction length. If the branch is taken, the CPU refills the queue from the new address according to
the instruction length.

@ MOTOROLA 105

Core User Guide — S12CPU15UG V1.2

5.3.3.4 Loop Primitive Instructions

A loop primitive instruction tests a counter value in a register or accumulator. If the test condition is met,
the CPU branches to an address specified by a 9-bit relative offset contained in the instruction. There are
autoincrement and autodecrement versions of the instructions. The test and increment/decrement
operations are performed on internal CPU registers, and require no additional program information. To
shorten execution time, the CPU does one program word fetch in anticipation of the branch-taken case.
The data from this fetch is ignored if the branch is not taken, and the CPU does one program fetch and one
optional fetch to refill the queue. If the branch is taken, the CPU refills the queue with two additional
program word fetches at the new address.

5.3.4 Jumps

JMP is the simplest change-of-flow instruction. JMP can use extended or indexed addressing. Indexed
operations require varying amounts of information to determine the effective address, so instruction length
varies with the addressing mode. The amount of program information fetched also varies with instruction
length. In all forms of IMP, the CPU refills the queue with three program word fetches at the new address.

5.4 Instruction Timing

TheAccess Detaicolumn of the summary ifiable 5-1 shows how many bytes of information the CPU
accesses while executing an instruction. With this information and knowledge of the type and speed of
memory in the system, you can determine the execution time for any instruction in any system. Simply
count the code letters to determine the execution time of an instruction in a best-case system. An example
of a best-case system is a single-chip 16-bit system with no 16-bit off-boundary data accesses to any
locations other than on-chip RAM.

A description of the notation used in each column of the table is given in the subsections that follow
including that of théAccess Detaikcolumn. This information as well as the summaryable 5-1 is
repeated fronsection 1 of this guide for completeness.

Table 5-1 Instruction Set Summary

Address Machine

Source Form Operation Mode Coding (Hex) Access Detail SXHINzZVC

ABA AddBtoA; (A)+(B)O A INH 18 06 00 EERERRARR
ABXSame as LEAXB,X Add Bto X; (X)+(B)O X IDX 1AE5 Pf EEEEEEEE
ABYSame as LEAY B,Y AddBtoY; (Y)+(B)O Y IDX 19ED Pf EEEEEEES
ADCA #opr8i Add with carry to A; (A)+(M)+CO A IMM 89ii P
ADCA opr8a or (A)+imm+CO A DIR 99 dd rPf =I=lal-[afafala
ADCA oprl6a EXT B9 hhll PO
ADCA oprx0_xysppc IDX A9 xb Pf
ADCA oprx9,xysppc IDX1 A9 xb ff PO
ADCA oprx16,xysppc IDX2 A9 xb ee ff PP
ADCA [D,xysppc] [D,IDX] |A9xb r
ADCA [oprx16,xysppc] [IDX2] A9 xb ee ff ::fprpgf

rl

106

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Source Form Operation Ac'\iﬁjorgzs Co%iér‘]%h(lrljlzx) Access Detail SXHINZVC

ADCB #0pr8i Add with carry to B; (B)+(M)+CO B IMM C9ii P
ADCB opr8a or (B)+imm+CO B DIR D9dd rPf =I=lal-[afalala
ADCB oprl6a EXT FOhhll PO
ADCB oprx0_xysppc IDX E9 xb Pf
ADCB oprx9,xysppc IDX1 E9 xb ff e
ADCB oprx16,xysppc IDX2 E9 xb ee ff PP
ADCB [D,xysppc] [D,IDX] |E9xb
ADCB [oprx16,xysppc] [IDX2] E9 xb ee ff fifrPf

fIPrPf
ADDA #opr8i Addto A; (A)+(M)O A IMM 8Bii P
ADDA opr8a or (A)+immO A DIR 9B dd rPf =I=lal-]alajala]
ADDA oprl6a EXT BB hhll rPO
ADDA oprx0_xysppc IDX AB xb rPf
ADDA oprx9,xysppc IDX1 AB xb ff rPO
ADDA oprx16,xysppc IDX2 AB xb ee ff frPP
ADDA [D,xysppc] [D,IDX] |ABxb fifrPf
ADDA [oprx16,xysppc] [IDX2] AB xb ee ff fIPrPf
ADDB #opr8i Addto B; (B)+(M)U B IMM CBiii P
ADDB opr8a or (B)+imm{ B DIR DB dd rPf Ilal-Jalalaa
ADDB opri6a EXT FBhhll rPO
ADDB oprx0_xysppc IDX EB xb rPf
ADDB oprx9,xysppc IDX1 EB xb ff rPO
ADDB oprx16,xysppc IDX2 EB xb ee ff frPP
ADDB [D,xysppc] [D,IDX] |EBxb fIfrPf
ADDB [oprx16,xysppc] [IDX2] EB xb ee ff fIPrPf
ADDD #0pr16i Addto D; (A:B)+(M:M+1)00 A:B IMM C3jjkk PO
ADDD opr8a or (A:B)+immQO A:B DIR D3dd RPf =I=I=I=lajajala)
ADDD opri6a EXT F3hhll RPO
ADDD oprx0_xysppc IDX E3 xb RPf
ADDD oprx9,xysppc IDX1 E3 xb ff RPO
ADDD oprx16,xysppc IDX2 E3 xb ee ff fRPP
ADDD [D,xysppc] [D,IDX] |E3xb fIfRPf
ADDD [oprx16,xysppc] [IDX2] E3 xb ee ff fIPRPf
ANDA #opr8i AND with A; (A)s(M)O A IMM 84ii P
ANDA opr8a or (A)simmO A DIR 94 dd rPf =I==I-falafol
ANDA oprl6a EXT B4 hhll rPO
ANDA oprx0_xysppc IDX A4 xb rPf
ANDA oprx9,xysppc IDX1 A4 xb ff rPO
ANDA oprx16,xysppc IDX2 A4 xb ee ff frPP
ANDA [D,xysppc] [D,IDX] |A4xb fifrPf
ANDA [oprx16,xysppc] [IDX2] A4 xb ee ff fIPrPf
ANDB #o0pr8i AND with B; (B)*(M)C B IMM C4ii P
ANDB opr8a or (B)simmC B DIR D4 dd rPf BEEERRCIE
ANDB opri6a EXT F4hhll rPO
ANDB oprx0_xysppc IDX E4 xb rPf
ANDB oprx9,xysppc IDX1 E4 xb ff rPO
ANDB oprx16,xysppc IDX2 E4 xb ee ff frPP
ANDB [D,xysppc] [D,IDX] |E4xb fIfrPf
ANDB [oprx16,xysppc] [IDX2] E4 xb ee ff fIPrPf
ANDCC #opr8i AND with CCR; (CCR)*imm CCR IMM 10ii [dldldddooo
ASL opri6aSame as LSL Arithmetic shift left M EXT 78hhll rPwO
ASL oprx0_xysp (¢TI0 IDX 68 xb rPw =L=I-I-Jalalala
ASL oprx9,xysppc C b7 b0 IDX1 68 xb ff rPwO
ASL oprx16,xysppc IDX2 68 xb ee ff frPwP
ASL [D,xysppc] [D,IDX] |68xb flfrPw
ASL [oprx16,xysppc] [IDX2] 68 xb ee ff fIPrPw
ASLASame as LSLA Arithmetic shift left A INH 48 o
ASLBSame as LSLB Arithmetic shift left B INH 58 (0]
ASLDSame as LSLD Arithmetic shift left D INH 59 (0] [-[-[-]-]a[a]a]a]

(-~ --[40
C b7 A b0 b7 B bO
107

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC
ASR oprl6a Arithmetic shift right M EXT 77hhll rPwO
ASR oprx0_xysppc IDX 67 xb rPw EEEEARAR
ASR 0prx9,xysppc %:Ijj:lj:l}ﬂj IDX1 67 xb ff rPwO
ASR oprx16,xysppc b7 b0 C IDX2 67 xb ee ff frPwP
ASR [D,xysppc] [D,IDX] |67 xb flfrPw
ASR [oprx16,xysppc] [IDX2] 67 xb ee ff fIPrPw
ASRA : - chift i INH 47 (0]
Arithmetic shift right A
ASRB Arithmetic shift right B INH 57 o
BCC rel8Same as BHS Branchif C clear; if C=0, then REL 241r PPP (branch) _
(PC)+2+reld PC P (no branch) EEEEEEEE
BCLR opr8a, msk8 DIR 4D dd mm rPwO [=[=]=]=]a[a[o[]
BCLR opri6a, msk8 EXT 1D hhllmm rPwP [=-I-I-]alalo]-
BCLR oprx0_xysppc, msk8 Clear bit(s) in M; (M)»mask bytedO M [IDX 0D xb mm rPwO
BCLR oprx9,xysppc, msk8 IDX1 0D xb ffmm rPwP
BCLR oprx16,xysppc, msk8 IDX2 0D xb ee ff mm frPwPO
BCS rel8Same as BLO Branchif C set; if C=1, then REL 251r PPP (branch) _
(PC)+2+reld PC P (no branch) EEEEEEEE
BEQ rel8 Branchif equal; if Z=1, then REL 27 1r PPP (branch) EEEEEEEE
(PC)+2+reld PC P (no branch) EEEEEERE
BGE rel8 Branchif=0, signed; if NOV=0,then |REL 2Crr PPP (branch) _
(PC)+2+rell PC P (no branch) CEECSSss
BGND Enter background debug mode INH 00 VIPPP EEEEEEEE
BGT rel8 Branch if > 0, signed; ifZ | (NOV)=0, [REL 2Err PPP (branch) _
then (PC)+2+rell PC P (no branch) ==
BHI rel8 Branch if higher, unsigned,; if REL 22rr PP (branch) EEEEEEEE
C | Z=0, then (PC)+2+rell] PC P (no branch) CEEEEERE
BHS rel8Same as BCC Branchifhigherorsame,unsigned; if REL 24 PPP (branch) _
C=0,then(PC)+2+rel0 PC P (no branch) EEEEEEEE
BITA#0pr8i Bittest A; (A)*(M) IMM 85ii P
BITA opr8a or (A)simm DIR 95dd rPf =I=I=I-Ja]alo
BITA opri6a EXT B5hhll rPO
BITA oprx0_xysppc IDX A5 xb rPf
BITA oprx9,xysppc IDX1 A5 xb ff rPO
BITA oprx16,xysppc IDX2 A5 xb ee ff frPP
BITA[D,xysppc] [D,IDX] |A5xb flfrPf
BITA [oprx16,xysppc] [IDX2] A5 xb ee ff fIPrPf
BITB #opr8i Bittest B; (B)* (M) IMM C5ii P
BITB opr8a or (B)eimm DIR D5dd rPf =I=I-I-Jalalol-
BITB opri6a EXT F5hhli rPO
BITB oprx0_xysppc IDX E5 xb rPf
BITB oprx9,xysppc IDX1 E5 xb ff rPO
BITB oprx16,xysppc IDX2 E5 xb ee ff frPP
BITB [D,xysppc] [D,IDX] |E5xb flfrPf
BITB [0oprx16,xysppc] [IDX2] E5 xb ee ff fIPrPf
BLE rel8 Branchif< 0,signed;ifZ | (NOV)=1, REL 2Frr PPP (branch) _
then (PC)+2+reld PC P (no branch) CEECSSss
BLO rel8Same as BCS Branch if lower, unsigned,; if C=1, REL 25rr PPP (branch) _
then (PC)+2+rell PC P (no branch) ==
BLS rel8 Branch if lower or same, unsigned; if |[REL 23rr PPP (branch)
C | Z=1, then (PC)+2+rell PC P (no branch) EEEEEERE
BLT rel8 Branchif <0, signed; if NOV=1,then [REL 2Drr PPP (branch) _
(PC)+2+relll PC P (no branch) CEECSSss
BMI rel8 Branch if minus; if N=1, then REL 2Brr PPP (branch) _
(PC)+2+reld PC P (no branch) ==
BNE rel8 Branch if not equal to O; if Z=0,then [REL 26rr PPP (branch) EEEEEEEE
(PC)+2+reld PC P (no branch) EEEEEERE
BPL rel8 Branch if plus; if N=0, then REL 2ATr PPP (branch)
(PC)+2+relll PC P (no branch) CEECSSss
BRA rel8 Branch always REL 20rr PPP EEEEEEEE
108

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC
BRCLR opr8a, msk8, rel8 Branch if bit(s) clear; if DIR AFdd mmrr rPPP _
BRCLR oprl6a, msk8, rel8 (M) (mask byte)=0, then EXT 1Fhhllmmrr rfPPP CEEESSss
BRCLR oprx0_xysppc, msk8, rel8 | (PC)+2+rell] PC IDX OF xb mmrr rPPP
BRCLR oprx9,xysppc, msk8, rel8 IDX1 OF xb ffmm rr rfPPP
BRCLR oprx16,xysppc, msk8, rel8 IDX2 OF xbeeffmmrr |PrfPPP
BRN rel8 Branch never REL 21rr i EEEEEEEE
BRSET opr8, msk8, rel8 Branch if bit(s) set; if DIR AEdd mmrr rPPP _
BRSET oprl6a, msk8, rel8 (M)e (mask byte)=0, then EXT 1Ehhllmmrr rfPPP CEEESSsE
BRSET oprx0_xysppc, msk8, rel8 (PC)+2+rell] PC IDX OE xb mm rr rPPP
BRSET oprx9,xysppc, msk8, rel8 IDX1 OE xb ffmm rr rfPPP
BRSET oprx16,xysppc, msk8, rel8 IDX2 OExbeeffmmrr |PrfPPP
BSET opr8, msk8 Setbit(s)inM DIR 4Cdd mm rPwO EEEERRLE
BSET opri6a, msk8 (M) | mask byted M EXT 1C hhllmm rPwP =I=I-I-1alajo]-]
BSET oprx0_xysppc, msk8 IDX 0C xb mm rPwO
BSET oprx9,xysppc, msk8 IDX1 0C xb ffmm rPwP
BSET oprx16,xysppc, msk8 IDX2 0C xb ee ffmm frPwPO
BSR rel8 Branch to subroutine; (SP)-20 SP REL 07rr $PPP EEEEEEEE
RTNHRTNLD MSP:MSP+1 ========
(PC)+2+reld PC
BVC rel8 Branchif V clear; if V=0, then REL 281rr PPP (branch) _
(PC)+2+reld PC P (no branch) ==
BVS rel8 Branchif V set; if V=1, then REL 291r PPP (branch) _
(PC)+2+reld PC P (no branch) CEEEEERE
CALL oprl6a, page Callsubroutineinexpanded memory |EXT 4Ahhllpg gnSsPPP _
CALL oprx0_xysppc, page (SP)-20 sP IDX 4B xb pg gnSsPPP CEECSSss
CALL oprx9,xysppc, page RTNK{:RTN O Mgp:Mgp41 IDX1 4B xb ff pg gnSsPPP
CALL oprx16,xysppc, page (SP)-10 SP; (PPG)0 Mgp IDX2 4B xb ee ff pg fgnSsPPP
CALL [D,xysppc] pgll PPAGE register [D,IDX] |4Bxb fl!gnSsPPP
CALL [oprx16, xysppc] subroutine address] PC [IDX2] 4B xb ee ff flignSsPPP
CBA Compare Ato B; (A)—(B) INH 1817 [0]e) EEEERRRR
CLCSame as ANDCC #$FE Clear C bit IMM 10FE P EEEEEEER
CLISame as ANDCC #$EF Clear| bit IMM 10EF P EEENEEEE
CLR opri6a Clear M; $000 M EXT 79hhll PwO 1
CLR oprx0_xysppc IDX 69 xb Pw [=I=I=I-{0]2[o[0]
CLR oprx9,xysppc IDX1 69 xb ff PwO
CLR oprx16,xysppc IDX2 69 xb ee ff PwP
CLR [D,xysppc] [D,IDX] |69xb Plfw
CLR [oprx16,xysppc] [IDX2] 69 xb ee ff PIPw
CLRA Clear A; $000 A INH 87 o}
CLRB Clear B; $000 B INH C7 e}
CLVSame as ANDCC #$FD ClearV IMM 10FD P EEEEEENE
CMPA #opr8i Compare A IMM 81lii P
CMPA opr8a (A)—(M) or (A)—imm DIR 91dd rPf =I==I-falalala
CMPA opri6a EXT B1hhll rPO
CMPA oprx0_xysppc IDX Alxb rPf
CMPA oprx9,xysppc IDX1 Al xb ff rPO
CMPA oprx16,xysppc IDX2 Al xb ee ff frPP
CMPA [D,xysppc] [D,IDX] |Alxb fifrPf
CMPA [oprx16,xysppc] [IDX2] Al xb ee ff fIPrPf
CMPB #opr8i Compare B IMM Clii P
CMPB opr8a (B)—(M) or (B)—imm DIR D1dd rPf =I==I-alaala
CMPB opri6a EXT Flhhll rPO
CMPB oprx0_xysppc IDX E1xb rPf
CMPB oprx9,xysppc IDX1 E1 xb ff rPO
CMPB oprx16,xysppc IDX2 E1xb ee ff frPP
CMPB [D,xysppc] [D,IDX] |Elxb fifrPf
CMPB [oprx16,xysppc] [IDX2] E1xb ee ff fIPrPf
109

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC

COM oprlé6a Complement M; (M)=$FF—(M)0 M EXT 71hhll rPwO 1

COM oprx0_xysppc IDX 61 xb rPw =I=I=I-Jalalol

COM oprx9,xysppc IDX1 61 xb ff rPwO

COM oprx16,xysppc IDX2 61 xb ee ff frPwP

COM [D,xysppc] [D,IDX] |61xb flfrPw

COM [oprx16,xysppc) _ [IDX2] 61 xb ee ff fIPrPw

COMA Complement A; (A)=$FF-(A)0 A INH 41 (0]

comB Complement B; (B)=$FF—(B)C B INH 51 e}

CPD #opr16i Compare D IMM 8Cjj kk PO

CPD opr8a (A:B)—(M:M+1) DIR 9Cdd RPf =I=-I-Jalaala

CPD opri6a or (A:B)-imm EXT BChhll RPO

CPD oprx0_xysppc IDX AC xb RPf

CPD oprx9,xysppc IDX1 AC xb ff RPO

CPD oprx16,xysppc IDX2 AC xb ee ff fRPP

CPD [D,xysppc] [D,IDX] |ACxb fIFRPf

CPD [oprx16,xysppc] [IDX2] AC xb ee ff fIPRPf

CPS #opr16i Compare SP IMM 8F jj kk PO

CPS opr8a (SP)—~(M:M+1) DIR 9F dd RPf =I=-I-Jalaala

CPS opri6a or (SP)—-imm EXT BF hhll RPO

CPS oprx0_xysppc IDX AF xb RPf

CPS oprx9,xysppc IDX1 AF xb ff RPO

CPS oprx16,xysppc IDX2 AF xb ee ff fRPP

CPS [D,xysppc] [D,IDX] |AFxb fIFRPf

CPS [oprx16,xysppc] [IDX2] AF xb ee ff fIPRPf

CPX#opri16i Compare X IMM 8E jjkk PO

CPX opr8a (X)-(M:M+1) DIR 9E dd RPf EEEERRRE

CPXopri6a or (X)—imm EXT BE hhll RPO

CPX oprx0_xysppc IDX AE xb RPf

CPX oprx9,xysppc IDX1 AE xb ff RPO

CPX oprx16,xysppc IDX2 AE xb ee ff fRPP

CPX[D,xysppc] [D,IDX] |AExb fIfRPf

CPX [oprx16,xysppc] [IDX2] AE xb ee ff fIPRPf

CPY #opri16i Compare Y IMM 8D jj kk PO

CPY opr8a (Y)-(M:M+1) DIR 9D dd RPf =I=-I-Jalaala

CPY opri6a or (Y)—-imm EXT BD hhll RPO

CPY oprx0_xysppc IDX AD xb RPf

CPY oprx9,xysppc IDX1 AD xb ff RPO

CPY oprx16,xysppc IDX2 AD xb ee ff fRPP

CPY [D,xysppc] [D,IDX] |AD xb fIFRPf

CPY [oprx16,xysppc] [IDX2] AD xb ee ff fIPRPf

DAA Decimal adjust A for BCD INH 1807 OfO EEEERARRR

DBEQ abdxysp, rel9 Decrement and branch ifequalto 0 REL 041brr PP (branch) EEEEEEEE
(counter)-10 counter (9-bit) PPO (no branch) =]
if (counter)=0, then branch

DBNE abdxysp, rel9 Decrementand branchifnotequaltoO; [REL 041brr PP (branch) EEEEEEEE
(counter)-10 counter; (9-bit) PPO (no branch) EERRREEE
if (counter)#0, then branch

DEC opri6a Decrement M; (M)-10 M EXT 73hhll rPwO

DEC oprx0_xysppc IDX 63 xb rPw =I--I-lalajal]

DEC oprx9,xysppc IDX1 63 xb ff rPwO

DEC oprx16,xysppc IDX2 63 xb ee ff frPwP

DEC [D,xysppc] [D,IDX] |63 xb flfrPw

DEC [oprx16,xysppc] [IDX2] 63 xb ee ff fIPrPw

DECA DecrementA; (A)-10 A INH 43 (0]

DECB Decrement B; (B)-10 B INH 53 (0]

DESSame as LEAS-1,SP Decrement SP; (SP)-10 SP IDX 1B 9F Pf EEEEEEEE

DEX Decrement X; (X)-10 X INH 09 (0] F-=[=[[a[[7]

DEY DecrementY; (Y)-10Y INH 03 (0] EEEEEAEE

EDIV Extended divide, unsigned; 32by 16 INH 11 ffffffffffO
to 16-bit; (Y:D)+(X)O Y; remainderd D =I=-I-Jalaala

110

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC
EDIVS Extended divide,signed; 32 by 16 to INH 1814 OffffffffffO _
16-bit; (Y:D)=(X)O Y remainderd D =I==-alaala
EMACS opri6a Extended multiply and accumulate, |Special |18 12hhll ORROfffRRIWWP [F[-[=[=[2[2]a]4]
Signed; (MX:MX+1)X(MY:MY+1)+
(M~M+3)0 M~M+3; 16 by 16 to 32-bit
EMAXD oprx0_xysppc Extended maximum in D; put larger of | IDX 18 1A xb ORPf _
EMAXD oprx9,xysppc 2 IDX1 18 1A xb ff ORPO EI==I-alalala
EMAXD oprx16,xysppc unsigned 16-bit values in D IDX2 18 1A xb ee ff OfRPP
EMAXD [D,xysppc] MAX[(D), (M:M+1)]0 D [D,IDX] |181Axb OfIfRPf
EMAXD [oprx16,xysppc] N, Z, V, C bits reflect result of internal |[IDX2] 18 1A xb ee ff OfIPRPf
compare [(D)-(M:M+1)]
EMAXM oprx0_xysppc Extended maximum in M; put larger of [IDX 18 1E xb ORPW [<[-[-[=Ta[a[a[a]
EMAXM oprx9,xysppc 2 IDX1 18 1E xb ff ORPWO =I=-I-Jalaala
EMAXM oprx16,xysppc unsigned 16-bit values in M IDX2 18 1E xb ee ff OfRPWP
EMAXM [D, xysppc] MAX][(D), (M:M+1)]0 M:M+1 [D,IDX] |18 1Exb OfIfRPW
EMAXM [oprx16,xysppc] N, Z, V, C bits reflect result of internal | [IDX2] 18 1E xb ee ff OfIPRPW
compare [(D)-(M:M+1)]
EMIND oprx0_xysppc Extended minimum in D; put smaller [IDX 18 1B xb ORPf _
EMIND oprx9,xysppc of IDX1 18 1B xb ff ORPO =I==I-falalala
EMIND oprx16,xysppc 2 unsigned 16-bit values in D IDX2 18 1B xb ee ff OfRPP
EMIND [D,xysppc] MIN[(D), (M:M+1)]0 D [D,IDX] |181Bxb OfIfRPf
EMIND [oprx16,xysppc] N, Z, V, C bits reflect result of internal | [IDX2] 18 1B xb ee ff OfIPRPf
compare [(D)—(M:M+1)]
EMINM oprx0_xysppc Extended minimum in M; put smaller |IDX 18 1F xb ORPW _
EMINM oprx9,xysppc of IDX1 18 1F xb ff ORPWO EI==-alaala
EMINM oprx16,xysppc 2 unsigned 16-bit values in M IDX2 18 1F xb ee ff OfRPWP
EMINM [D,xysppc] MIN[(D), (M:M+1)]0 M:M+1 [D,IDX] |18 1Fxb OfIfRPW
EMINM [oprx16,xysppc] N, Z, V, C bits reflect result of internal | [IDX2] 18 1F xb ee ff OfIPRPW
compare [(D)—-(M:M+1)]
EMUL Extended multiply, unsigned INH 13 ffo
(D)x(Y)O Y:D; 16 by 16 to 32-bit =I=I==[alal-]a)
EMULS Extended multiply, signed INH 1813 OfO _
(D)x(Y)O Y:D; 16 by 16 to 32-bit OffO (if followed by =I==I-ala-a
page 2 instruction)
EORA #0pr8i Exclusive OR A IMM 88ii P
EORA opr8a A)OM)IOA DIR 98dd rPf =I=I-I-Ja]alol-
EORA opri6a or (A)JimmO A EXT B8 hhll rPO
EORA oprx0_xysppc IDX A8 xb rPf
EORA oprx9,xysppc IDX1 A8 xb ff rPO
EORA oprx16,xysppc IDX2 A8 xb ee ff frPP
EORA [D,xysppc] [D,IDX] |A8xb fIfrPf
EORA [0oprx16,xysppc] [IDX2] A8 xb ee ff fIPrPf
EORB #0pr8i Exclusive OR B IMM C8ii P
EORB opr8a (B)O(M)O B DIR D8 dd rPf =I=I=I=]a]ajol]
EORB oprl6a or (B)JimmU B EXT F8hhll rPO
EORB oprx0_xysppc IDX E8 xb rPf
EORB oprx9,xysppc IDX1 E8 xb ff rPO
EORB oprx16,xysppc IDX2 E8 xb ee ff frPP
EORB [D,xysppc] [D,IDX] |E8xb fIfrPf
EORB [0prx16,xysppc] [IDX2] E8 xb ee ff fIPrPf
ETBL oprx0_xysppc Extendedtablelookup andinterpolate, | IDX 18 3F xb ORR(fffffP EEEEAAER

16-bit; (M:M+1)+
[(B)*((M+2:M+3)—(M:M+1))]0 D

Before executing ETBL, initialize B wit|
indirect addressing allowed.

h fractional part of lookup value; initialize index register to point to first table entry (M:M+1). No extensions or

EXG abcdxysp,abcdxysp Exchange register contents INH B7 eb P EEEEEEEE
(rl) = (r2)rl and r2 same size
$00:(r1)0 r2r1=8-bit; r2=16-bit
(r1)) = (r2)r1=16-bit; r2=8-bit

FDIV Fractional divide; (D)+(X)O X INH 1811 OffffffffffO EEEEERARR

remainder(] D; 16 by 16-bit

@ MOTOROLA

111

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC

IBEQ abdxysp, rel9 Increment and branch if equal to 0 REL 041brr PPP (branch) _
(counter)+10 counter (9-bit) PPO (no branch) CEEESSss
If (counter)=0, then branch

IBNE abdxysp, rel9 Incrementand branchif notequalto0 |REL 04lbrr PPP (branch) _
(counter)+10 counter (9-bit) PPO (no branch) CEECSSss
If (counter)z0, then branch

IDIV Integer divide, unsigned; (D)+(X)0 X |INH 1810 OffffffffffO EEEEERNN
Remainder(] D; 16 by 16-bit =I==I--]ajoja)

IDIVS Integer divide, signed; (D)+(X)d X INH 1815 OffffffffffO _
Remainderd D; 16 by 16-bit =I==-alaala

INC opri6a Increment M; (M)+10 M EXT 72hhll rPwO

INC oprx0_xysppc IDX 62 xb rPw =I=I-I-Jalalal

INC oprx9,xysppc IDX1 62 xb ff rPwO

INC oprx16,xysppc IDX2 62 xb ee ff frPwP

INC [D,xysppc] [D,IDX] |62xb flfrPw

INC [oprx16,xysppc] [IDX2] 62 xb ee ff fIPrPw

INCA Increment A; (A)+10 A INH 42 (0]

INCB Increment B; (B)+10 B INH 52 (0]

INSSame as LEAS 1,SP Increment SP; (SP)+10 SP IDX 1B81 Pf EEEEEEEE

INX Increment X; (X)+10 X INH 08 (0] EEEEEREE

INY IncrementY; (Y)+10O Y INH 02 (0] EEEEEREE

JMP oprl6a Jump EXT 06 hhll PPP EEEEEEEE

JMP oprx0_xysppc Subroutine address[] PC IDX 05 xb PPP =]

JMP oprx9,xysppc IDX1 05 xb ff PPP

JMP oprx16,xysppc IDX2 05 xb ee ff fPPP

JMP [D,xysppc] [D,IDX] |05xb ffPPP

JMP [0oprx16,xysppc] [IDX2] 05 xb ee ff flfPPP

JSR opr8a Jump to subroutine DIR 17 dd SPPP FEEEEEEE

JSR opril6a (SP)-20 SP EXT 16 hhll SPPP

JSR oprx0_xysppc RTNK{:RTN O Mgp:Mgp41 IDX 15xb PPPS

JSR oprx9,xysppc Subroutine address] PC IDX1 15 xb ff PPPS

JSR oprx16,xysppc IDX2 15 xb ee ff fPPPS

JSR [D,xysppc] [D,IDX] |15xb ffPPPS

JSR [0oprx16,xysppc] [IDX2] 15 xb ee ff ffPPPS

LBCC rel16Same as LBHS Long branch if C clear; if C=0, then |REL 1824 qqrr QPPP (branch) EEEEEEEE
(PC)+4+relll PC OPO (no branch) =]

LBCS rel16Same as LBLO Long branch if C set; if C=1, then REL 1825qqrr QPPP (branch) _
(PC)+4+rell PC OPO (no branch) CEECSSss

LBEQ rel16 Long branch if equal; if Z=1, then REL 1827 qqrr QPPP (branch) _
(PC)+4+relll PC OPO (no branch) SEERREER

LBGE rel16 Long branch if = 0, signed REL 182Cqqrr OPPP (branch) EEEEEEEE
If NOV=0, then (PC)+4+reld PC OPO (no branch) EEEEEERE

LBGT rel16 Long branch if > 0, signed REL 182Eqqrr OPPP (branch)
If Z | (NOV)=0, then (PC)+4+rell PC OPO (no branch) CEECSSss

LBHI rel16 Long branch if higher, unsigned REL 1822 qqrr QPPP (branch) _
If C | Z=0, then (PC)+4+rell PC OPO (no branch) SEERREER

LBHS rel16Same as LBCC Long branch if higher or same, REL 1824 qqrr QPPP (branch) EEEEEEEE
unsigned; If C=0, (PC)+4+rell] PC OPO (no branch) =]

LBLE rel16 Long branch if < 0, signed; if REL 182Fqqrr QPPP (branch) _
Z | (NOV)=1, then (PC)+4+rell PC OPO (no branch) CEECSSss

LBLO rel16Same as LBCS Long branch if lower, unsigned; if REL 1825qqrr QPPP (branch) _
C=1, then (PC)+4+rell] PC OPO (no branch) SEERREER

LBLS rel16 Long branch if lower or same, REL 1823qqrr QPPP (branch) EEEEEEEE
unsigned; If C | Z=1, then OPO (no branch) =]
(PC)+4+reld PC

LBLT rel16 Long branch if < 0, signed REL 182D qqrr OPPP (branch)
If NOV=1, then (PC)+4+reld PC OPO (no branch) CEEEEERE

112

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC
LBMI rel16 Long branch if minus REL 182Bqqrr OPPP (branch) _
If N=1, then (PC)+4+reld PC OPO (no branch) EEEEEEEE
LBNE rel16 Long branch if not equal to 0 REL 1826 qqrr QPPP (branch) EEEEEEEE
If Z=0, then (PC)+4+reld PC OPO (no branch) CEEEEEEE
LBPL rel16 Long branch if plus REL 182Aqqrr OPPP (branch) EEEEEEEE
If N=0, then (PC)+4+rell PC OPO (no branch) EEEEEERE
LBRArel16 Long branch always REL 1820qqrr QPPP EEEEEEEE
LBRN rel16 Long branch never REL 1821 qqrr QPO EEEEEEEE
LBVC rell6 Long branchifV clear REL 1828qqrr QPPP (branch)
If V=0,then (PC)+4+reld PC OPO (no branch) CEECSSss
LBVSrell6 Long branchifV set REL 1829qqrr QPPP (branch) _
If V=1,then (PC)+4+relld PC OPO (no branch) EEEEEEEE
LDAA #opr8i Load A IMM 86ii P
LDAA opr8a MIOA DIR 96 dd rPf =I=I-I-Ja]alol
LDAA opri6a orimmQO A EXT B6 hhll rPO
LDAA oprx0_xysppc IDX A6 xb rPf
LDAA oprx9,xysppc IDX1 A6 xb ff rPO
LDAA oprx16,xysppc IDX2 A6 xb ee ff frPP
LDAA[D,xysppc] [D,IDX] |A6xb flfrPf
LDAA [oprx16,xysppc] [IDX2] A6 xb ee ff fIPrPf
LDAB #opr8i Load B IMM C6ii P
LDAB opr8a moB DIR D6 dd rPf =I=I=I=]a]ajol]
LDAB opri6a orimmU B EXT F6 hhl rPO
LDAB oprx0_xysppc IDX E6 xb rPf
LDAB oprx9,xysppc IDX1 E6 xb ff rPO
LDAB oprx16,xysppc IDX2 E6 xb ee ff frPP
LDAB [D,xysppc] [D,IDX] |E6xb fIfrPf
LDAB [oprx16,xysppc] [IDX2] E6 xb ee ff fIPrPf
LDD #opr16i Load D IMM CCjjkk PO
LDD opr8a (M:M+1)0 A:B DIR DCdd RPf =I=I=I=[a]ajol]
LDD opri6a or immO A:B EXT FChhll RPO
LDD oprx0_xysppc IDX EC xb RPf
LDD oprx9,xysppc IDX1 EC xb ff RPO
LDD oprx16,xysppc IDX2 EC xb ee ff fRPP
LDD [D,xysppc] [D,IDX] |ECxb fIFRPf
LDD [oprx16,xysppc] [IDX2] EC xb ee ff fIPRPf
LDS #opr16i Load SP IMM CF jj kk PO
LDS opr8a (M:M+1)0 SP DIR DFdd RPf =I=I-I-Ja]alol
LDS opri6a or immQd SP EXT FFhhll RPO
LDS oprx0_xysppc IDX EF xb RPf
LDS oprx9,xysppc IDX1 EF xb ff RPO
LDS oprx16,xysppc IDX2 EF xb ee ff fRPP
LDS [D,xysppc] [D,IDX] |EFxb fIFRPf
LDS [oprx16,xysppc] [IDX2] EF xb ee ff fIPRPf
LDX #opr16i Load X IMM CEjjkk PO
LDX opr8a (M:M+1)0 X DIR DE dd RPf =I=I=I=]a]ajol]
LDX oprl6a or immQ X EXT FE hhll RPO
LDX oprx0_xysppc IDX EE xb RPf
LDX oprx9,xysppc IDX1 EE xb ff RPO
LDX oprx16,xysppc IDX2 EE xb ee ff fRPP
LDX [D,xysppc] [D,IDX] |EExb fIfRPf
LDX [oprx16,xysppc] [IDX2] EE xb ee ff fIPRPf
LDY #opri6i Load Y IMM CD jjkk PO
LDY opr8a M:M+1)O Y DIR DDdd RPf =I=I=I=[a]a[ol]
LDY opri6a orimmOdY EXT FD hhll RPO
LDY oprx0_xysppc IDX ED xb RPf
LDY oprx9,xysppc IDX1 ED xb ff RPO
LDY oprx16,xysppc IDX2 ED xb ee ff fRPP
LDY [D,xysppc] [D,IDX] |EDxb fIFRPf
LDY [oprx16,xysppc] [IDX2] ED xb ee ff fIPRPf
113

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detail SXHINZVC
LEAS oprx0_xysppc Load effective address into SP IDX 1B xb Pf _
LEAS oprx9,xysppc EAO SP IDX1 1B xb ff PO CEEESSss
LEAS oprx16,xysppc IDX2 1B xb ee ff PP
LEAX oprx0_xysppc Load effective address into X IDX 1A xb Pf _
LEAX oprx9,xysppc EAO X IDX1 1A xb ff PO CEECSSss
LEAX oprx16,xysppc IDX2 1A xb ee ff PP
LEAY oprx0_xysppc Load effective addressinto Y IDX 19xb Pf FEEEEEEE
LEAY oprx9,xysppc EAOY IDX1 19 xb ff PO
LEAY oprx16,xysppc IDX2 19 xb ee ff PP
LSL opri6aSame as ASL Logical shiftleftM EXT 78 hhll rOPw
LSL oprx0_xysppc (1T I I TI1] e o0 IDX 68 xb rPw =I=-I-1alajaja)
LSL oprx9,xysppc c b7 bo IDX1 68 xb ff rPOw
LSL oprx16,xysppc IDX2 68 xb ee ff frPPw
LSL [D,xysppc] [D,IDX] |68xb flfrPw
LSL [oprx16,xysppc] [IDX2] 68 xb ee ff fIPrPw
LSLASame as ASLA Logical shiftleft A INH 48 (0]
LSLBSame as ASLB Logical shift left B INH 58 (0]
LSLDSame as ASLD Logical shiftleft D INH 59 (0] EEEERARRR
[, SHEENEE S EEENEN,
C b7 A b0 b7 B b0
LSR opri6a Logical shiftright M EXT 74hhll rPwO
LSR oprx0_xysppc o T T IIIH»] IDX 64 xb rPw =I==I-Tofajala
LSR oprx9,xysppc b7 b0 C IDX1 64 xb ff rPwO
LSR oprx16,xysppc IDX2 64 xb ee ff frPwP
LSR [D,xysppc] [D,IDX] |64xb flfrPw
LSR [oprx16,xysppc] [IDX2] 64 xb ee ff fIPrPw
LSRA Logical shiftright A INH 44 (0]
LSRB Logical shiftright B INH 54 (0]
LSRD Logical shiftright D INH 49 O EEEERRRR
o I T TTHTT TTHp]
b7 A b0 b7 B b0 C
MAXA oprx0_xysppc Maximum in A; put larger of 2 IDX 1818 xb OrPf [<[-[-[=Ta[a[a[a]
MAXA oprx9,xysppc unsigned 8-bit values in A IDX1 18 18 xb ff OrPO I=-I-Jalaala
MAXA oprx16,xysppc MAXI[(A), (M)]O A IDX2 1818 xb ee ff OfrPP
MAXA [D,xysppc] N, Z, V, C bits reflect result of internal |[D,IDX] |18 18 xb OflfrPf
MAXA [0oprx16,xysppc] compare [(A)—(M)] [IDX2] 1818 xb ee ff OfIPrpPf
MAXM oprx0_xysppc Maximum in M; put larger of 2 IDX 181Cxb OrPw [<[-[-]-TA[a[a[a]
MAXM oprx9,xysppc unsigned 8-bit values in M IDX1 18 1Cxbff OrPwO =I=-I-Jalaala
MAXM oprx16,xysppc MAX[(A), (M)]C M IDX2 181Cxb ee ff OfrPwP
MAXM [D,xysppc] N, Z, V, C bits reflect result of internal |[D,IDX] {18 1C xb OflfrPw
MAXM [oprx16,xysppc] compare [(A)—-(M)] [IDX2] 181Cxb ee ff OfIPrPw
MEM Determine grade of membership; Special |01 RRfOw 2212]2]2
U (grade)d My; (X)+40 X; (Y)+10Y =P [e[2]7]
If (A)<P1 or (A)>P2, then p=0; else p=
MIN[((A)-P1)xS1, (P2—(A))xS2, $FF]
(A)=current crisp input value; X points
at 4 data bytes (P1, P2, S1, S2) of a
trapezoidal membership function; Y
points at fuzzy input (RAM location)
MINA oprx0_xysppc Minimum in A; put smaller of 2 IDX 1819 xb OrPf
MINA oprx9,xysppc unsigned 8-bit values in A IDX1 18 19 xb ff OrPO =I=-I-Jalaala
MINA oprx16,xysppc MIN[(A), (M)]O A IDX2 1819 xb ee ff OfrPP
MINA [D,xysppc] N, Z, V, C bits reflect result of internal [[D,IDX] (1819 xb OflfrPf
MINA [oprx16,xysppc] compare [(A)—(M)] [IDX2] 1819 xb ee ff OfIPrpPf
MINM oprx0_xysppc Minimum in N; put smaller of two IDX 181D xb OrPw
MINM oprx9,xysppc unsigned 8-bit values in M IDX1 18 1D xb ff OrPwO ERRRGRAR
MINM oprx16,xysppc MIN[(A), (M)]O M IDX2 181D xb ee ff OfrPwP
MINM [D,xysppc] N, Z, V, C bits reflect result of internal [[D,IDX] (18 1D xb OflfrPw
MINM [oprx16,xysppc] compare [(A)—(M)] [IDX2] 181D xb ee ff OfIPrPw

114

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC

MOVB #opr8, oprl6a Move byte IMM-EXT [18 0B ii hh Il OPwP EEEEEEEE

MOVB #opr8i, oprx0_xysppc Memory-to-memory 8-bit byte-move |IMM-IDX |18 08 xb i OPwWO

MOVB opr16a, opri6a (MO M, EXT-EXT [180C hhIlhhll OrPwPO

MOVB oprl16a, oprx0_xysppc Firstoperand specifies byte to move |EXT-IDX [1809xbhhll OPrPw

MOVB oprx0_xysppc, oprléa IDX-EXT |18 0D xb hhll OrPwP

MOVB oprx0_xysppc, oprx0_xysppc IDX-IDX |18 0A xb xb OrPwO

MOVW #oprx16, oprl6a Move word IMM-EXT |18 03 jj kk hh I OPWPO EEEEEEEE

MOVW #opr16i, oprx0_xysppc Memory-to-memory 16-bitword-move [IMM-IDX |18 00 xb jj kk OPPW

MOVW opri6a, opri6a (M1:M1+1)0 My:My+1 EXT-EXT (1804 hhilhhl ORPWPO

MOVW opr16a, OprO_XySppC First operand Speciﬁes word to move EXT-IDX |18 01 xb hhll OPRPW

MOVW oprx0_xysppc, oprl6a IDX-EXT |18 05 xb hhll ORPWP

MOVW oprx0_xysppc, oprx0_xysppc IDX-IDX (18 02 xb xb ORPWO

MUL Multiply, unsigned INH 12 (0] EEEEEEEN
(A)x(B)O A:B; 8 by 8-bit ===

NEG oprl6a Negate M; 0—(M)C M or (M)+10 M EXT 70hhll rPwO

NEG oprx0_xysppc IDX 60 xb rPw =I==-alaala

NEG oprx9,xysppc IDX1 60 xb ff rPwO

NEG oprx16,xysppc IDX2 60 xb ee ff frPwP

NEG [D,xysppc] [D,IDX] |60xb flfrPw

NEG [oprx16,xysppc] _ [IDX2] 60 xb ee ff fIPrPw

NEGA Negate A; 0—(A)0 Aor (A)+10 A INH 40 o

NEGB Negate B; 0—(B)C Bor (B)+10 B INH 50 o}

NOP No operation INH A7 O EEEEEEEE

ORAA#0pr8i OR accumulator A IMM 8AIi P

ORAA opr8a A) | (MO A DIR 9A dd rPf =I-I-I-1alajo]-]

ORAA oprl6a or (A) | immOA EXT BAhhIl rPO

ORAA oprx0_xysppc IDX AA xb rPf

ORAA oprx9,xysppc IDX1 AA xb ff rPO

ORAA oprx16,xysppc IDX2 AAxb ee ff frPP

ORAA [D,xysppc] [D,IDX] |AAXxb fifrPf

ORAA [0oprx16,xysppc] [IDX2] AAxb ee ff fIPrPf

ORAB #0pr8i OR accumulator B IMM CAii P

ORAB opr8a B)| MIB DIR DA dd rPf =I=I-I-]a]alol-

ORAB opri6a or (B) | immO B EXT FAhhII rPO

ORAB oprx0_xysppc IDX EAxb rPf

ORAB oprx9,xysppc IDX1 EA xb ff rPO

ORAB oprx16,xysppc IDX2 EA xb ee ff frPP

ORAB [D,xysppc] [D,IDX] |EAXb fIfrPf

ORAB [oprx16,xysppc] [IDX2] EAxb ee ff fIPrPf

ORCC #opr8i OR CCR; (CCR) | immQO CCR IMM 14ii EEEEEERE

PSHA Push A; (SP)-10 SP; (A)0 Mgp INH 36 Os EEEEEEEE

PSHB Push B; (SP)-10 SP; (B)O Mgp INH 37 Os EEEEEEEE

PSHC Push CCR; (SP)-10 SP; INH 39 Os EEEEEEEE
A EEEEEEEE

PSHD Push D INH 3B oS EEEEEEEE
(SP)—ZD SP; (AB)D MSP:MSP+1 ========

PSHX Push X INH 34 (O] EEEEEEEE
(SP)—ZD SP, (XH:XL)D MSP:MSP'HL

PSHY Push Y INH 35 oS EEEEEEEE
(SP)-20 SP; (YR:Y)O Mgp:Mgp4q

PULA Pull A INH 32 ufo EEEEEEEE
(Mgp)O A; (SP)+10 SP EEEEEERE

PULB Pull B INH 33 ufo EEEEEEEE
(Mgp)O B; (SP)+10 SP EEEEEEEE

PULC Pull CCR INH 38 ufO [A[cTAA[A[A]A]4]
(Mgp)O CCR,; (SP)+10 SP DERRRRRE

PULD Pull D INH 3A Ufo
(MSP:MSP'HI.)D A:B; (SP)+2D SP ========

115

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

. Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC
PULX Pull X INH 30 ufo EEEEEEEE
(MSP:MSP+1)D XHXL’ (SP)+2D SP HHHHHHHH
PULY Pull Y INH 31 ufo EEEEEEEE
(Msp:Mgp.)0 Yy:Y|; (SP)+200 SP AR
REV Rule evaluation, unweighted; find Special |18 3A Orf(t"tx)O* EEEERRRE
smallest rule input; store to rule ff+Orft**
outputs unless fuzzy output is larger
*Thet"tx loopis executed once for each elementin the rule list. The ~ denotes a check for pending interrupt requests.
**These are additional cycles caused by aninterrupt: ff is the exit sequence and Orft* is the re-entry sequence.
REVW Rule evaluation, weighted; rule Special |18 3B ORf(t"Tx)O* EERERRRN
weights optional; find smallest rule or
input; store to rule outputs unless ORf(r fRf)O**
fuzzy output is larger ffff+ORft/ ***
ffff+ORfr/xr*

*With weighting not enabled, the t"Tx loop is executed once for each elementinthe rule list. The » denotes a check for pending interrupt requests.
**With weighting enabled, the t"Tx loop is replaced by r\fRf

***Additional cycles caused by an interrupt when weighting is not enabled: ffff
*++x Additional cycles caused by an interrupt when weighting is enabled: ffff

is the exit sequence and ORft" is the re-entry sequence.

is the exit sequence and ORfr* is the re-entry sequence.

ROL opri6a Rotate left M EXT 75hhll rPwO
ROL oprx0_xysppc IDX 65 xb rPw =I==-alalala
ROL oprx9,xysppc Lﬂﬂjjjjjjjj@ IDX1 65 xb ff rPwO
ROL oprx16,xysppc Cc b7 b0 IDX2 65 xb ee ff frPwP
ROL [D,xysppc] [D,IDX] |65xb flfrPw
ROL [oprx16,xysppc] [IDX2] 65 xb ee ff fIPrPw
ROLA Rotate left A INH 45 o}
ROLB Rotate left B INH 55 (0]
ROR opri6a Rotate right M EXT 76 hhll rPwO
ROR oprx0_xysppc IDX 66 xb rPw =I--I-1alajala)
ROR oprx9,xysppc L}Dj:ljj:l:l}b[kJ IDX1 66 xb ff rPwO
ROR oprx16,xysppc b0 b7 C IDX2 66 xb ee ff frPwP
ROR [D,xysppc] [D,IDX] |66xb flfrPw
ROR [0oprx16,xysppc] [IDX2] 66 xb ee ff fIPrPw
RORA Rotate right A INH 46 (0]
RORB Rotate right B INH 56 (0]
RTC Return from call; (Mgp)O PPAGE INH 0A uunfPPP EEEEEEEE
(SP)+10 SP;
(Mgp:Mgp.1)0 PCy:PC
(SP)+20 SP
RTI Return from interrupt INH 0B uUUUUPPP
(Mgp)O CCR,; (SP)+10 SP or DERRRRRE
(Mgp:Mgp41)0 B:A;(SP)+20 SP uUUUUVIPPP*
(MSP:MSP'HL)D XHXL,(SP)+4D SP
(MSP:MSP+1)D PCHPCL,(SP)+2D SP
(MSP:MSP+1)D YHYL,(SP)+4D SP
*RTI takes 11 cycles if an interrupt is pending.
RTS Return from subroutine INH 3D UfPPP EEEEEEEE
(Msp:Mgp.1)0 PC:PCy;
(SP)+20 SP
SBA Subtract B from A; (A)—-(B)J A INH 1816 (e]e) [F[[=[=[2[2]a]4]
SBCA#opr8i Subtract with carry from A IMM 82ii P
SBCA opr8a (A)-(M)-CO A DIR 92 dd rPf =I=I==[alajala)
SBCA oprl6a or (A)-imm-C0O A EXT B2 hhll rPO
SBCA oprx0_xysppc IDX A2 xb rPf
SBCA oprx9,xysppc IDX1 A2 xb ff rPO
SBCA oprx16,xysppc IDX2 A2 xb ee ff frPP
SBCA [D,xysppc] [D,IDX] |A2xb flfrPf
SBCA [0oprx16,xysppc] [IDX2] A2 xb ee ff fIPrPf
116

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC
SBCB #opr8i Subtract with carry from B IMM C2ii P
SBCB opr8a (B)-(M)-CO B DIR D2dd rPf =I==-alaala
SBCB oprlé6a or (B)-imm-CO B EXT F2hhll rPO
SBCB oprx0_xysppc IDX E2 xb rPf
SBCB oprx9,xysppc IDX1 E2 xb ff rPO
SBCB oprx16,xysppc IDX2 E2 xb ee ff frPP
SBCB [D, xysppc] [D,IDX] |E2xb fIifrPf
SBCB [oprx16,xysppc] [IDX2] E2 xb ee ff fIPrPf
SECSame as ORCC #$01 Set C bit IMM 1401 P EEEEEEER
SEISame as ORCC #%$10 Set | bit IMM 1410 P EEEREEEE
SEVSame as ORCC #$02 Set V bit IMM 1402 P EEEEEERE
SEX abc,dxyspSame as TFR rl, r2 [Sign extend; 8-bit r1 to 16-bit r2 INH B7eb P EEEEEEEE
$00:(r1)T r2 if bit 7 of r1is O CECESSss
$FF:(r1)0r2if bit 7 of rlis 1
STAA opr8a Store accumulator A DIR 5A dd Pw
STAA oprl6a (AOM EXT 7AhhIl PwO =I=I=I=]a]a[ol]
STAA oprx0_xysppc IDX 6A xb Pw
STAA oprx9,xysppc IDX1 6A xb ff PwO
STAA oprx16,xysppc IDX2 6A xb ee ff PwP
STAA[D,xysppc] [D,IDX] |6Axb Plfw
STAA [oprx16,xysppc] [IDX2] 6A xb ee ff PIPw
STAB opr8a Store accumulator B DIR 5B dd Pw
STAB oprl6a (B)OM EXT 7Bhhll PwO =I=I-I-]a]alol-
STAB oprx0_xysppc IDX 6B xb Pw
STAB oprx9,xysppc IDX1 6B xb ff PwO
STAB oprx16,xysppc IDX2 6B xb ee ff PwP
STAB [D,xysppc] [D,IDX] |6Bxb Plfw
STAB [0prx16,xysppc] [IDX2] 6B xb ee ff PIPw
STD opr8a Store D DIR 5Cdd PwW
STD opril6a (A:B)0 M:M+1 EXT 7Chhll PWO =I=I-I-Ja]alol-
STD oprx0_xysppc IDX 6C xb PwW
STD oprx9,xysppc IDX1 6C xb ff PWO
STD oprx16,xysppc IDX2 6C xb ee ff PWP
STD [D,xysppc] [D,IDX] |6Cxb PIfW
STD [oprx16,xysppc] [IDX2] 6C xb ee ff PIPW
STOP Stop processing; (SP)-20 SP INH 18 3E OO0SSSSsf (enter
RTNHRTNLD MSP:MSP+1 stop mode) ========
(SP)—20 SP; (Yi:Y)O Mgp:Mgp4q MPZP) (exit stop
SP)-20 SP; (Xy:X)O Mgp:M mode
(SP) . (H U ,SP SP+1 ff (continue stop
(SP)-20 SP; (B:A)O Mgp:Mgp4q mode)
Stop all clocks disabled by S=1)
STS opr8a Store SP DIR 5Fdd PW
STSopri6a (SPH:SP)O M:M+1 EXT 7Fhhll PWO =I=I-I-]a]al0l
STS oprx0_xysppc IDX 6F xb PW
STS oprx9,xysppc IDX1 6F xb ff PWO
STS oprx16,xysppc IDX2 6F xb ee ff PWP
STS [D,xysppc] [D,IDX] |6F xb PIfw
STS [oprx16,xysppc] [IDX2] 6F xb ee ff PIPW
STX opr8a Store X DIR 5E dd PwW
STX opri6a Xp:X)O M:M+1 EXT 7EhhIl PWO =I=I-I-Ja]alol-
STX oprx0_xysppc IDX 6E xb PwW
STX oprx9,xysppc IDX1 6E xb ff PWO
STX oprx16,xysppc IDX2 6E xb ee ff PWP
STXI[D,xysppc] [D,IDX] |6Exb PIfW
STX[oprx16,xysppc) [IDX2] 6E xb ee ff PIPW
117

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC
STY opr8a StoreY DIR 5D dd PW
STY opri6a (Yr:YDO M:M+1 EXT 7D hhll PWO =I=I=I=]a]ajol]
STY oprx0_xysppc IDX 6D xb PW
STY oprx9,xysppc IDX1 6D xb ff PWO
STY oprx16,xysppc IDX2 6D xb ee ff PWP
STY [D,xysppc] [D,IDX] |6Dxb PIfW
STY [oprx16,xysppc] [IDX2] 6D xb ee ff PIPW
SUBA#0pr8i Subtractfrom A IMM 80ii P
SUBA opr8a (A)-(M)O A DIR 90dd rPf EI=I=Ilalajala)
SUBA oprl6a or (A—immQO A EXT BOhhIl rPO
SUBA oprx0_xysppc IDX A0 xb rPf
SUBA oprx9,xysppc IDX1 A0 xb ff PO
SUBA oprx16,xysppc IDX2 A0 xb ee ff frPP
SUBA [D,xysppc] [D,IDX] |AO0xb fIifrPf
SUBA [0prx16,xysppc] [IDX2] A0 xb ee ff fIPrPf
SUBB #0pr8i Subtractfrom B IMM COii P
SUBB opr8a (B)-(M)O B DIR DO dd rPf =I==I-alaala
SUBB oprl6a or (B)-immQO B EXT FOhhll rPO
SUBB oprx0_xysppc IDX EO xb rPf
SUBB oprx9,xysppc IDX1 EO xb ff rPO
SUBB oprx16,xysppc IDX2 EO xb ee ff frPP
SUBB [D,xysppc] [D,IDX] |EOxb fifrPf
SUBB [oprx16,xysppc] [IDX2] EO xb ee ff fIPrPf
SUBD #opr16i Subtract from D IMM 83jjkk PO
SUBD opr8a (A:B)~(M:M+1)0 A:B DIR 93dd RPf I=-I-Jalaala
SUBD opri6a or (A:B)-imm0O A:B EXT B3 hhll RPO
SUBD oprx0_xysppc IDX A3 xb RPf
SUBD oprx9,xysppc IDX1 A3 xb ff RPO
SUBD oprx16,xysppc IDX2 A3 xb ee ff fRPP
SUBD [D,xysppc] [D,IDX] |A3xb fIFRPf
SUBD [oprx16,xysppc] [IDX2] A3 xb ee ff fIPRPf
SWi Software interrupt; (SP)-20 SP INH 3F VSPSSPSsP* 1
RTNHRTNLD MSP:MSP'HL ===I====
(SP)—ZD SP; (YH:YL)D MSP:MSP+1
(SP)-20 SP; (Xy:X)O Mgp:Mgpaq
(SP)-20 SP; (B:A)O Mgp:Mgp4+1
(SP)-10 SP; (CCR)O Mgp; 101 1
(SWI vector)O PC
*The CPU also uses VSPSSPSsPfor hardware interrupts and unimplemented opcode traps.
TAB TransferAtoB; (A)U B INH 18 0E (0] [=[-[=[=[a[2]0]]
TAP Transfer Ato CCR; (A)U CCR INH B7 02 P [a[cTA[A[A[A]A]4]
Assembled as TFR A, CCR A[afalalaala
TBA TransferBto A; (B)O A INH 18 OF (0]0) EEEERREE
TBEQ abdxysp,rel9 Test and branch if equal to O REL 041brr PPP (branch)
If (counter)=0, then (PC)+2+reld] PC | (9-bit) PPO (no branch) ==
TBL oprx0_xysppc Table lookup and interpolate, 8-bit IDX 183D xb OR(ffP EEEERAAER
(M+[(B)x((M+1)~(M))]C A
TBNE abdxysp,rel9 Testand branchif not equal to 0 REL 041brr PPP (branch) _
If (counter)#0, then (PC)+2+reld PC [(9-bit) PPO (no branch) EEEEEEEE
TFR abcdxysp,abcdxysp Transfer from register to register INH B7eb P EEEEEEEE
(r1)d r2rl and r2 same size or
$00:(r1)0 r2r1=8-bit; r2=16-bit
(r1)0 r2r1=16-bit; r2=8-bit [A[C[a[a[a[A[A]a]
TPASame as TFRCCR ,A Transfer CCRto A; (CCR)O A INH B7 20 P EEEEEEEE

118

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

: Address Machine :
Source Form Operation Mode Coding (Hex) Access Detall SXHINZVC
TRAP trapnum Trap unimplemented opcode; INH 18tn OVSPSSPSsP 1
(SP)-20 SP tn = $30-$39 CECBEERE
RTNHRTNLD MSP:MSP‘HL or
(SP)-20 SP; (Yi4:Y)0 Mgp:Mgp.q tn = $40-$FF
(SP)—ZD SP; (XH:XL)D MSP:MSP+1
(SP)—ZD SP; (BA)D MSP:MSP+1
(SP)-10 SP; (CCR)O Mgp
10 1; (trap vector)d PC
TST opri6a TestM; (M)-0 EXT F7hhll rPO
TST oprx0_xysppc IDX E7 xb rPf =I=I=I-Jalalolo
TST oprx9,xysppc IDX1 E7 xb ff rPO
TST oprx16,xysppc IDX2 E7 xb ee ff frPP
TST [D,xysppc] [D,IDX] |E7xb fIifrPf
TST [0oprx16,xysppc] [IDX2] E7 xb ee ff fIPrPf
TSTA TestA; (A)-0 INH 97 (0]
TSTB TestB; (B)-0 INH D7 o
TSXSame as TFR SP,X Transfer SP to X; (SP)O X INH B7 75 P EEEEEEEE
TSYSame as TFR SP,Y TransferSPtoY; (SP)O Y INH B7 76 P EEEEEEEE
TXSSame as TFR X,SP Transfer X to SP; (X)O SP INH B757 P EEEEEEEE
TYSSame as TFRY,SP Transfer Y to SP; (Y)O SP INH B7 67 P EEEEEEEE
WAI Wait for interrupt; (SP)-20 SP INH 3E OSSSSsf
RTN{:RTN O Mgp:Mgp.1 f\glf:)efore interrupt) ======
(SP)-20 SP; (YY) Msp:Msp.1 PPP EEEREEEE
(SP)-20 SP; (X:X)O Mgp:Mgp41 (after interrupt) ======
(SP)—ZD SP; (BA)D MSP:MSP+1 _
1]-]1
(SP)-10 SP; (CCR)0 Mgp (=12 =H
WAV Calculate weighted average; sum of [Special |183C Of(frr ffff)O** 21-12[a[2]2
products (SOP) and sum of weights SSS+UUUr**x ERERHEREE
(SOwW)*
B
z S;F; 0 Y:D
i=1
B
z F O X
i=1
*Initialize B, X, and Y: B=number of elements; X points at first elementin S;list; Y points at first element in F; list. All S; and F; elements are 8-bit values.

**The frr ffff

sequence is the loop for one iteration of SOP and SOW accu

**Additional cycles caused by an interrupt: SSSis the exit sequence and UUUrr" is the

mulation. The ~ denotes a che

ck for pending interrupt requests.

re-entry sequence. Intermediate values use six stack bytes.

wavr* Resume executing interrupted WAV | Special |3C UUUrr fff(frrn EERERRER
ffff)O**
SSS+UUUrrAx+*
*wavr is a pseudoinstruction that recovers intermediate results from the stack rather than initializing them to 0.
**The frr ffff sequence is the loop for one iteration of SOP and SOW recovery. The * denotes a check for pending interrupt requests.
***These are additional cycles caused by an interrupt: SSSis the exit sequence and UUUrr? is the re-entry sequence.
XGDXSame as EXGD, X Exchange D with X; (D) = (X) INH B7 C5 P EEEEEEEE
XGDYSame as EXGD, Y Exchange D with Y; (D) = (Y) INH B7 C6 P EEEEEEEE
119

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

5.4.1 Register and Memory Notation

120

Table 5-2 Register and Memory Notation

Aora

Accumulator A

An

Bit n of accumulator A

Borb

Accumulator B

Bit n of accumulator B

Accumulator D

Bit n of accumulator D

Index register X

High byte of index register X

Low byte of index register X

Bit n of index register X

Index register Y

High byte of index register Y

Low byte of index register Y

Bit n of index register Y

SP or sp

Stack pointer

SPn

Bit n of stack pointer

PC or pc

Program counter

PCq

High byte of program counter

PC_

Low byte of program counter

CCRorc

Condition code register

M

Address of 8-bit memory location

Mn

Bit n of byte at memory location M

Rn

Bit n of the result of an arithmetic or logical operation

In

Bit n of the intermediate result of an arithmetic or logical operation

RTNy

High byte of return address

RTN,

Low byte of return address

0

Contents of

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2
5.4.2 Source Form Notation

The Source Formcolumn of the summary ifable 5-1 gives essential information about assembler
source forms. For complete information about writing source files for a particular assembler, refer to the
documentation provided by the assembler vendor.

Everything in theSource Formcolumn,except expressions in italic characteissliteral information

which must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemonic is
always a literal expression. All commas, pound signs (#), parentheses, squaredirfoké}, plus signs

(+), minus signs (=), and the register designation (A, B, D), are literal characters.

The groups of italic characters shownTable 5-3 represent variable information to be supplied by the
programmer. These groups can include any alphanumeric character or the underscore character, but cannot
include a space or comma. For example, the groypppcandoprx0_xysppare both valid, but the two
groupsoprx0 xyspp@re not valid because there is a space between them.

Table 5-3 Source Form Notation

abc Register designator for A, B, or CCR
abcdxysp Register designator for A, B, CCR, D, X, Y, or SP
abd Register designator for A, B, or D
abdxysp Register designator for A, B, D, X, Y, or SP
dxysp Register designator for D, X, Y, or SP
msk8 8-bit mask value '
Some assemblers require the # symbol before the mask value.
opr8i 8-bit immediate value
oprl6i 16-bit immediate value
opr8a 8-bit address value used with direct address mode
oprl6a 16-bit address value

oprx0_xysp |Indexed addressing postbyte code:

oprx3,—xysp — Predecrement X, Y, or SP by 1-8

oprx3,+xysp — Preincrement X, Y, or SP by 1-8

oprx3,xysp— — Postdecrement X, Y, or SP by 1-8

oprx3,xysp+ — Postincrement X, Y, or SP by 1-8

oprx5,xysppc — 5-bit constant offset from X, Y, SP, or PC
abd,xysppc — Accumulator A, B, or D offset from X, Y, SP, or PC

oprx3 Any positive integer from 1 to 8 for pre/post increment/decrement
oprx5 Any integer from —16 to +15
oprx9 Any integer from —256 to +255
oprx16 Any integer from —32,768 to +65,535

8-bit value for PPAGE register
page Some assemblers require the # symbol before this value.
rel8 Label of branch destination within —256 to +255 locations
rel9 Label of branch destination within =512 to +511 locations
rel16 Any label within the 64K byte memory space
trapnum Any 8-bit integer from $30 to $39 or from $40 to $FF
Xysp Register designator for X or Y or SP
Xysppc Register designator for X or Y or SP or PC

@ MOTOROLA 121

Core User Guide — S12CPU15UG V1.2

5.4.3 Operation Notation

Table 5-4 Operation Notation

+ |Add
— | Subtract
« |AND
| |OR
0 |Exclusive OR
x | Multiply
+ | Divide
Concatenate
O |Transfer
= | Exchange

5.4.4 Address Mode Notation
Table 5-5 Address Mode Notation

INH | Inherent; no operands in instruction stream

IMM | Immediate; operand immediate value in instruction stream
DIR | Direct; operand is lower byte of address from $0000 to $00FF
EXT | Operand is a 16-bit address

REL | Two’s complement relative offset; for branch instructions

IDX | Indexed (no extension bytes); includes:
5-bit constant offset from X, Y, SP or PC
Pre/post increment/decrement by 1-8
Accumulator A, B, or D offset

IDX1 | 9-bit signed offset from X, Y, SP, or PC; 1 extension byte
IDX2 | 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes
[IDX2] | Indexed-indirect; 16-bit offset from X, Y, SP, or PC
[D, IDX] | Indexed-indirect; accumulator D offset from X, Y, SP, or PC

122 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

5.4.5 Machine Code Notation

In theMachine Code (Hex)column of the summary imable 5-1, digits 0—-9 and upper case letters A—F
represent hexadecimal values. Pairs of lower-case letters represent 8-bit values as Sablerbt .

Table 5-6 Machine Code Notation

dd | 8-bit direct address from $0000 to $00FF; high byte is $00
ee | High byte of a 16-bit constant offset for indexed addressing

eb | Exchangel/transfer postbyte

Low eight bits of a 9-bit signed constant offset in indexed addressing, or low byte of a 16-bit
constant offset in indexed addressing

hh | High byte of a 16-bit extended address

ii | 8-bitimmediate data value

jj | High byte of a 16-bit immediate data value
kk | Low byte of a 16-bit immediate data value
Ib | Loop primitive (DBNE) postbyte

Il | Low byte of a 16-hit extended address

8-bit immediate mask value for bit manipulation instructions; bits that are set indicate bits to be
affected

mm

pg | Program page or bank number used in CALL instruction
aq | High byte of a 16-bit relative offset for long branches
tn | Trap number from $30 to $39 or from $40 to $FF

Signed relative offset $80 (—128) to $7F (+127) relative to the byte following the relative offset byte,
or low byte of a 16-bit relative offset for long branches

r

xb |Indexed addressing postbyte

5.4.6 Access Detail Notation

A single-letter code in thAccess Detailcolumn ofTable 5-1 represents a single CPU access cycle. An
upper-case letter indicates a 16-bit access.

Table 5-7 Access Detail Notation

f | Free cycle. During an f cycle, the CPU does not use the bus. An f cycle is always one cycle of the
system bus clock. An f cycle can be used by a queue controller or the background debug system to
perform a single-cycle access without disturbing the CPU.

g | Read PPAGE register. A g cycle is used only in CALL instructions and is not visible on the external
bus. Since PPAGE is an internal 8-bit register, a g cycle is never stretched.

| | Read indirect pointer. Indexed-indirect instructions use the 16-bit indirect pointer from memory to
address the instruction operand. An | cycle is a 16-bit read that can be aligned or misaligned. An |
cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the
corresponding data is stored in external memory. There can be additional stretching when the
address space is assigned to a chip-select circuit programmed for slow memory. An | cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access.

@ MOTOROLA 123

Core User Guide — S12CPU15UG V1.2

124

Table 5-7 Access Detail Notation (Continued)

Read indirect PPAGE value. Ani cycle is used only in indexed-indirect CALL instructions. The 8-bit
PPAGE value for the CALL destination is fetched from an indirect memory location. Ani cycle is
stretched only when controlled by a chip-select circuit that is programmed for slow memory.

Write PPAGE register. An n cycle is used only in CALL and RTC instructions to write the destination
value of the PPAGE register and is not visible on the external bus. Since the PPAGE register is an
internal 8-bit register, an n cycle is never stretched.

Optional cycle. An Ocycle adjusts instruction alignment in the instruction queue. An Ocycle can be a
free cycle (f) or a program word access cycle (P). When the first byte of an instruction with an odd
number of bytes is misaligned, the Ocycle becomes a P cycle to maintain queue order. If the first
byte is aligned, the Ocycle is an f cycle.

The $18 prebyte for a page-two opcode is treated as a special one-byte instruction. If the prebyte is
misaligned, the Ocycle at the beginning of the instruction becomes a P cycle to maintain queue
order. If the prebyte is aligned, the Ocycle is an f cycle. If the instruction has an odd number of
bytes, it has a second Ocycle at the end. If the first Ocycle is a P cycle (prebyte misaligned), the
second Ocycle is an f cycle. If the first Ocycle is an f cycle (prebyte aligned), the second Ocycle is
a P cycle.

An Ocycle that becomes a P cycle can be extended to two bus cycles if the MCU is operating with an
8-bit external data bus and the program is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An Ocycle that becomes an f cycle is never stretched.

Program word access. Program information is fetched as aligned 16-bit words. A P cycle is extended
to two bus cycles if the MCU is operating with an 8-bit external data bus and the program is stored
externally. There can be additional stretching when the address space is assigned to a chip-select
circuit programmed for slow memory.

8-bit data read. An r cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

16-bit data read. An Rcycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An Rcycle is also stretched if it corresponds to a misaligned access to a memory that is not
designed for single-cycle misaligned access.

Stack 8-bit data. An s cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

Stack 16-bit data. An S cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching if the
address space is assigned to a chip-select circuit programmed for slow memory. An S cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access. The internal RAM is designed to allow single cycle misaligned word access.

8-bit data write. A wcycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

16-bit data write. A Wcycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
A Wecycle is also stretched if it corresponds to a misaligned access to a memory that is not designed
for single-cycle misaligned access.

Unstack 8-bit data. A Wcycle is stretched only when controlled by a chip-select circuit programmed
for slow memory.

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table 5-7 Access Detail Notation (Continued)

Unstack 16-bit data. A U cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching
when the address space is assigned to a chip-select circuit programmed for slow memory. A Ucycle
is also stretched if it corresponds to a misaligned access to a memory that is not designed for
single-cycle misaligned access. The internal RAM is designed to allow single-cycle misaligned word
access.

16-bit vector fetch. Vectors are always aligned 16-bit words. A V cycle is extended to two bus cycles
if the MCU is operating with an 8-bit external data bus and the program is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory.

8-bit conditional read. At cycle is either a data read cycle or a free cycle, depending on the data and
flow of the REVW instruction. At cycle is stretched only when controlled by a chip-select circuit
programmed for slow memory.

16-bit conditional read. A T cycle is either a data read cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. A T cycle is extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the corresponding data is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory. A T cycle is also stretched if it corresponds to a misaligned access to
a memory that is not designed for single-cycle misaligned access.

8-bit conditional write. An x cycle is either a data write cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. An x cycle is stretched only when controlled by a
chip-select circuit programmed for slow memory.

Special Notation for Branch Taken/Not Taken

PPP/P

A short branch requires three cycles if taken, one cycle if not taken. Since the instruction consists of
a single word containing both an opcode and an 8-bit offset, the not-taken case is simple — the
gueue advances, another program word fetch is made, and execution continues with the next
instruction. The taken case requires that the queue be refilled so that execution can continue at a
new address. First, the effective address of the destination is determined, then the CPU performs
three program word fetches from that address.

OPPP/OPQ

A long branch requires four cycles if taken, three cycles if not taken. An Ocycle is required because
all long branches are page two opcodes and thus include the $18 prebyte. The prebyte is treated as
a one-byte instruction. If the prebyte is misaligned, the Ocycle is a P cycle; if the prebyte is aligned,
the Ocycle is an f cycle. As a result, both the taken and not-taken cases use one Ocycle for the

prebyte. In the not-taken case, the queue must advance so that execution can continue with the next
instruction, and another Ocycle is required to maintain the queue. The taken case requires that the
queue be refilled so that execution can continue at a new address. First, the effective address of the
destination is determined, then the CPU performs three program word fetches from that address.

@ MOTOROLA

125

Core User Guide — S12CPU15UG V1.2

5.4.7 Condition Code State Notation

Table 5-8 Condition Code State Notation

Not changed by operation

Cleared by operation
Set by operation
Set or cleared by operation

May be cleared or remain set, but not set by operation

May be set or remain cleared, but not cleared by operation

May be changed by operation but final state not defined

—|~V|lololb|lr|lo]l

Used for a special purpose

5.5 External Visibility Of Instruction Queue

The instruction queue buffers program information and increases instruction throughput. The queue
consists of three 16-bit stages. Program information is always fetched in aligned 16-bit words. Normally,
at least three bytes of program information are available to the CPU when instruction execution begins.

Program information is fetched and queued a few cycles before it is used by the CPU. In order to monitor
cycle-by-cycle CPU activity, it is necessary to externally reconstruct what is happening in the instruction
queue.

Two external pins, IPIPE[1:0], provide time-multiplexed information about data movement in the queue
and instruction execution. To complete the picture for system debugging, it is also necessary to include
program information and associated addresses in the reconstructed queue.

The instruction queue and cycle-by-cycle activity can be reconstructed in real time or from trace history
captured by a logic analyzer. However, neither scheme can be used to stop the CPU at a specific
instruction. By the time an operation is visible outside the system, the instruction has already begun
execution. A separate instruction tagging mechanism is provided for this purpose. A tag follows the
information in the queue as the queue is advanced. During debugging, the CPU enters active background
debug mode when a tagged instruction reaches the head of the queue, rather than executing the tagged
instruction. For more information about tagging, refet4a1.8 Instruction Tagging

5.5.1 Instruction Queue Status Signals

The IPIPE[1:0] signals carry time-multiplexed information about data movement and instruction
execution during normal operation. The signals are available on two multifunctional device pins. During
reset, the pins are mode-select inputs MODA and MODB. After reset, information on the pins does not
become valid until an instruction reaches stage two of the queue.

To reconstruct the queue, the information carried by the status signals must be captured externally. In
general, data-movement and execution-start information are considered to be distinct two-bit values, with
the low bit on IPIPEO and the high bit on IPIPE1. Data-movement information is available when E clock
is high or on falling edges of the E clock; execution-start information is available when E clock is low or
on rising edges of the E clock, as showrFigure 5-1 . Data-movement information refers to data on the

126 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

bus. Execution-start information is delayed one bus cycle to guarantee the indicated opcode is in stage
three.Table 5-9 summarizes the information encoded on the IPIPE[1:0] pins.

cPucLock | T4 | [T2 | [T4 | [T2 | [T4 | [T2 |
E CLOCK | | | | | |
EX DM EX DM EX DM
PIPE[L:0] oo X 10 X 10 X o0 X 1 X 10
NONE ALD ® SEV NONE sop(© ALD
DATA[15:0] PROGRAM DATA X OPERAND OR FREE CYCLE X PROGRAM DATA
STAGE THREE | [© |
STAGE TWO | [|
STAGE ONE | | | ®
ALD — Advance and load data <
SEV — Start even instruction f’;}
SOD — Start odd instruction la) @

Figure 5-1 Queue Status Signal Timing

Data movement status is valid when the E clock is high and is represented by two states:

* No movement — There is no data shifting in the queue.

* Advance and load from data bus — The queue shifts up one stage with stage one being filled with
the data on the read data bus.

Execution start status is valid when the E clock is low and is represented by four states:

* No start — Execution of the current instruction continues.
» Start interrupt — An interrupt sequence has begun.

NOTE: The start-interrupt state is indicated when an interrupt request or tagged
instruction alters program flow. SWI and TRAP instructions are part of normal
program flow and are indicated as start even or start odd depending on their
alignment. Since they are present in the queue, they can be tracked in an external

queue rebuild. An external event that interrupts program flow is indeterministic.
Program data is not present in the queue until after the vector jump.

» Start even instruction — The current opcode is in the high byte of stage three of the queue.
e Start odd instruction — The current opcode is in the low byte of stage three of the queue.

Table 5-9 IPIPE[1:0] Decoding when E Clock is High

Data Movement
(capture at E fall)

0:0 — No movement

Mnemonic Meaning

W) mororora 127

Core User Guide — S12CPU15UG V1.2

Table 5-9 IPIPE[1:0] Decoding when E Clock is High

Data Movement .]
(capture at E fall) Mnemonic Meaning
0:1 — Reserved
1:0 ALD Advance queue and load from bus
1.1 — Reserved

Table 5-10 IPIPE[1:0] Decoding when E Clock is Low

Execution Start . .
(capture at E rise) Mnemonic Meaning
0:0 — No start
0:1 INT Start interrupt sequence
1.0 SEV Start even instruction
1:1 SOD Start odd instruction

The execution-start status signals are delayed by one E clock cycle to allow a lagging program fetch and
gueue advance. Therefore the execution-start status always refers to the data in stage three of the queue

The advance and load from bus signal can be used as a load-enable to capture the instruction word on the
data bus. This signal is effectively the queue advance signal inside the CPU. Program data is registered
into stage one on the rising edge of t4 when queue advance is asserted.

5.5.2 No Movement (0:0)

The 0:0 state at the falling edge of E indicates that there is no data movement in the instruction queue
during the current cycle. The 0:0 state at the rising edge of E indicates continuation of an instruction or
interrupt sequence during the previous cycle.

5.5.3 ALD — Advance and Load from Data Bus (1:0)

The three-stage instruction queue is advanced by one word and stage one is refilled with a word of program
information from the data bus. The CPU requested the information two bus cycles earlier but, due to access
delays, the information was not available until the E cycle immediately prior to the ALD.

5.5.4 INT — Start Interrupt (0:1)

This state indicates program flow has changed to an interrupt sequence. Normally this cycle is a read of
the interrupt vector. However, in systems that have interrupt vectors in external memory and an 8-bit data
bus, this cycle reads only the lower byte of the 16-bit interrupt vector.

5.5.5 SEV — Start Even Instruction (1:0)

This state indicates that the instruction is in the even (high) half of the word in stage three of the instruction
gueue. The queue treats the $18 prebyte of an instruction on page two of the opcode map as a special

128 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

one-byte, one-cycle instruction. However, interrupts are not recognized at the boundary between the
prebyte and the rest of the instruction.

5.5.6 SOD — Start Odd Instruction (1:1)

This state indicates that the instruction in the odd (low) half of the word in stage three of the instruction
gueue. The queue treats the $18 prebyte of an instruction on page two of the opcode map as a special
one-byte, one-cycle instruction. However, interrupts are not recognized at the boundary between the
prebyte and the rest of the instruction.

W) mororora 129

Core User Guide — S12CPU15UG V1.2

130 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 6 Exception Processing

Exceptions are events that require a change in the sequence of instruction execution. This section describes
the exceptions supported by the Core and their functionality.

6.1 Exception Processing Overview

The Core supports two basic types of exceptions; those from resets and those from interrupt requests.
Regardless of the source, the first cycle in exception processing is a vector fetch cycle. The exception
processing flow is shown iRigure 6-1 below. Relevant points within the flow are detailed in the
paragraphs that follow.

1.0-V

During the vector fetch cycle, the CPU indicates to the system that it is requesting that the vector address
of the pending exception having the highest priority be driven onto the address bus. The CPU does not
provide this address.

The vector points to the address where the exception service routine begins. Exception vectors are stored
in a table at the top of the memory map ($FFB6—$FFFF). The CPU begins using the vector to fetch
instructions in the third cycle of the exception processing sequence.

After the vector fetch, the CPU selects one of the three processing paths based on the source of the
exception:

* Reset
* X bit maskable and | bit maskable interrupt request
 SWI and TRAP

@ MOTOROLA 131

Core User Guide — S12CPU15UG V1.2

132

(START)

Y
| 1.0-v |Fetch vector |

Y

Y

Yes -~
N

Reset? >
No
Y . _Yes
< SWIorTRAP? >
No

Y

Y

Set S, X, and | bits and clear all
other bits in programmer’s model

Address of next instruction that
would have been executed

Address of instruction after SWI
or unimplemented opcode

Y

Finish filling instruction queue

Y
END

i

A

Start filling instruction queue

Y
| 4.1-S |PushY |

Y
| 5.1-S |PushX |

Y

Continue filling instruction queue

Y
| 7.1-S | Push B:A

Y

< XIRQ interrupt? > Yes
No
Y Y
8.1-s | Push CCR (byte) 8.2-s | Push CCR (byte)

Set X and | bits

Finish filling instruction queue

Y
END

Figure 6-1 Exception Processing Flow

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

6.1.1 Reset Processing

2.0-f

This cycle sets the S, X and | bits.

3.0-P 5.0-P

through

These cycles are program word fetches that refill the instruction queue. Fetches start at the address pointed
to by the reset vector. When the fetches are completed, reset processing ends, and the CPU starts executing
the instruction at the head of the instruction queue.

6.1.2 Interrupt Processing

The SWI and TRAP interrupts have no mask or interrupt request and are always recogn¥i& An
interrupt request is recognized any time after the X bit is cleared. An enabled | bit maskable interrupt
request is recognized any time after the | bitis cleared. The CPU responds to an interrupt after it completes
the execution of its current instruction. Interrupt latency depends on the number of cycles required to
complete the instruction.

After the vector fetch, the CPU calculates a return address. The return address depends on the type of
exception:

* When an X bit maskable or | bit maskable interrupt causes the exception, the return address points
to the next instruction that would have been executed had processing not been interrupted.

* When an SWI opcode or TRAP causes the exception, the return address points to the next address
after the SWI opcode or to the next address after the unimplemented opcode.

2.1-S 2.2-S

and

These are both S cycles (16-bit writes) that push the return address onto the stack.

3.1-P

This cycle is the first of three program word fetches to refill the instruction queue. Instructions are fetched
from the address pointed to by the vector.

4.1-S

This cycle pushes Y onto the stack.

5.1-S

@ MOTOROLA 133

Core User Guide — S12CPU15UG V1.2

This cycle pushes X onto the stack.

6.1-P

This cycle is the second of three program word fetches to refill the instruction queue. During this cycle,
the contents of the A and B accumulators are concatenated in the order B:A, making register order in the
stack frame the same as that of the M68HC11, M6801, and the M6800.

7.1-S

This cycle pushes the 16-bit word containing B:A onto the stack.

8.1-s

8.2-s

and

These are both s cycles (8-bit writes) that push the 8-bit CCR onto the stack and then update the X and |
mask bits:

* When anXIRQ interrupt causes the exception, both X and | are set to inhibit further interrupts
during exception processing.

* When any other interrupt causes the exception, the | bit is set to inhibit further | bit maskable
interrupts during exception processing, but the X bit is not changed.

134 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

9.1-P

This cycle is the third of three program word fetches to refill the instruction queue. It is the last cycle of
exception processing. After this cycle the CPU begins the interrupt service routine by executing the
instruction at the head of the instruction queue.

At the end of the interrupt service routine, an RTI instruction restores the stacked registers, and the CPU
returns to the return address. RTI is an 8-cycle instruction when no other interrupt is pending, and an
11-cycle instruction when another interrupt is pending. In either case, the first five cycles are used to pull
the CCR, B:A, X, Y, and the return address from the stack.

If no other interrupt is pending at this point, three program words are fetched to refill the instruction queue
from the area of the return address and processing proceeds from there.

If another interrupt is pending after registers are restored, a new vector is fetched, and the stack pointer is
adjusted to point at the CCR value that was just recovered (SP = SP — 9). This makes it appear that the
registers have been stacked again. After the SP is adjusted, three program words are fetched to refill the
instruction queue, starting at the address the vector points to. Processing then continues with execution of
the instruction at the head of the queue.

6.2 Exception Vectors

Each exception has a 16-bit vector that points to the memory location where the routine that handles the
exception is located. Vectors are stored in the upper 128 bytes of the standard 64K byte address map and
are prioritized as shown ihable 6-1 below from highest (system reset) to lowest (lowest priority |
maskable interrupt).

Table 6-1 Exception Vector Map and Priority

Vector Address Source
$FFFE-$FFFF System reset
$FFFC-$FFFD Crystal Monitor reset
$FFFA-$FFFB COP reset
$FFF8-$FFF9 Unimplemented opcode trap
$FFF6-$FFF7 Software interrupt instruction (SWI) or BDM vector request
$FFF4-$FFF5 XIRQ signal
$FFF2-$FFF3 IRQ signal
$FFFO—$FF00 (Ej)eeg/éceen-siazc(i)ﬁr((:jégit maskable interrupt sources (priority in

The six highest vector addresses are used for resets and nonmaskable interrupt sources. The remaining
vectors are used for maskable interrupts. All vectors must be programmed to point to the address of the
appropriate service routine.

@ MOTOROLA 135

Core User Guide — S12CPU15UG V1.2
6.3 Exception Types

As stated previously, the Core supports exceptions from resets within the system as well as interrupt
requests. Each of these exception types are discussed in the subsections that follow.

6.3.1 Resets

A block (or blocks) within the SoC design must evaluate any/all reset sources and request the proper reset
vector from the Core. The CPU then fetches a vector determined by the source of the reset, configures the
CPU registers to their reset states and fills the instruction queue from the address pointed to by the vector.

There are three reset sources supported by the Core:

e System reset
» Crystal Monitor reset
» COP Watchdog reset

The priority and vector addresses assigned to these reset sources are StadoMn6r2 below. Please

note that the inclusion of Crystal Monitor and COP reset requests is based upon the two most common and
predominately used requests historically implemented in HC12 based systems. (It is assumed that all
systems will have a system reset). Each SoC integration of the Core will determine whether the system
contains both requests, one or the other or neither request. Each source is described in the subsections tha
follow.

Table 6-2 Reset Sources

Reset Exception Vector

Source Priority Address
System reset 1 $FFFE-$FFFF
Crystal Monitor block 2 $FFFC—$FFFD
Computer Operating Properly (COP) block 3 $FFFA-$FFFB

6.3.1.1 System reset

All systems generally have a block or sub-block within the system that determines the validity and priority

of all possible sources of a system reset request. When a valid system reset request becomes active, the
block or sub-block will request the appropriate reset vector from the Core. The Core will then
acknowledge the request and provide the vector.

6.3.1.2 Crystal Monitor Reset

A Crystal Monitor sub-block typically contains a mechanism to determine whether or not the system clock
frequency is above a predetermined limit. If the clock frequency falls below the limit when the Crystal
Monitor is enabled, the sub-block will typically request the reset vector that is associated with this function
from the Core.

136 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

6.3.1.3 COP Reset

A Computer Operating Properly (COP) sub-block helps protect against software failures. When the COP
is enabled, software might, for example, write a particular code sequence to a specific address in order to
keep a watchdog timer from timing out. If software fails to execute the sequence properly, the sub-block
will typically then request a reset vector from the Core.

6.3.2 Interrupts

The Core supports the following types of interrupt sources:

* nonmaskable interrupt requests
— Unimplemented Opcode Trap
— Software Interrupt instruction
— XIRQ pin interrupt request
* Maskable interrupt requests
— Optional highest priority maskable interrupt (defaultBRIQ pin)
— IRQ pin interrupt request
— System peripheral block | bit maskable interrupt requests

A block (or blocks) within the SoC design must evaluate the system peripheral block | bit maskable
interrupt sources and request the proper interrupt vector from the Core. All other interrupt requests are
handled within the Core. Once the CPU receives the request it then fetches the vector to the proper
interrupt service routine. The CPU will then calculate and stack a return address and the contents of the
CPU registers. Finally, it will set the | bit (and the X biMIRQ is the source) and fill the instruction queue

from the address pointed to by the vector. The vector mapping for all interrupt sources is shiafarein

6-3 below with detailed descriptions given in the sub-sections that follow.

Table 6-3 Interrupt Sources

Interrupt Exception Mask Vector

Source Priority Address
Unimplemented opcode trap (TRAP) 4 None | $FFF8-$FFF9
Software interrupt instruction (SWI) 4 None | $FFF6-$FFF7
Nonmaskable external interrupt pin (XIRQ pin) 5 X bit | $FFF4-$FFF5
Highest priority I-Maskable interrupt (defaults to IRQ pin) 6 I bit SFFXX-$FFxx+1
Maskable external interrupt pin (IRQ pin) 6or7 | bit $FFF2-$FFF3
System peripheral block interrupt requests >8 | bit $FFFO-$FF00

Interrupts can be classified according to their maskability. TRAP and SWI are nonmaskablE&RQ@he
pin is masked at reset by the X bit, but once software clears the X biXIR@ pin is nonmaskable until
another reset occurs. The remaining interrupt sources can be masked by the I bit. | bit maskable interrupt

@ MOTOROLA 137

Core User Guide — S12CPU15UG V1.2

requests come from thRQ pin and peripheral blocks within the system such as timers and serial ports.
These | bit maskable sources have default priorities that follow the address order of the interrupt vectors:
the higher the address, the higher the priority of the interrupt requestRIpin is initially assigned the
highest | bit maskable interrupt priority. The system can give one | bit maskable source priority over other

| bit maskable sources configured at integration of the Core into the SoC design. The documentation for
each system should provide more information.

6.3.2.1 Unimplemented Opcode Trap (TRAP)

Only 54 of the 256 positions on page 2 of the opcode map are used. Attempting to execute one of the 202
unused opcodes on page 2 causes a nonmaskable interrupt without an interrupt request. All 202 unused
opcodes share the same interrupt vector, $FFF8:$FFF9.

TRAP processing stacks the CCR and then sets the | bit to prevent other interrupts during the TRAP
service routine. An RTl instruction at the end of the service routine restores the | bit to its preinterrupt state.

The CPU uses the next address after an unimplemented page 2 opcode as a return address. This differs
from the M68HC11 illegal opcode interrupt, which uses the address of an illegal opcode as the return
address. The stacked return address can be used to calculate the address of the unimplemented opcode fo
software-controlled traps.

6.3.2.2 Software Interrupt Instruction (SWI)

Execution of the SWI instruction causes a nonmaskable interrupt without an interrupt request.

SWI processing stacks the CCR and then sets the | bit to prevent other interrupts during the SWI service
routine. An RTI instruction at the end of the service routine restores the | bit to its preinterrupt state.

NOTE: CPU processing of a TRAP or SWI cannot be interrupted. Also, TRAP and SWI are
mutually exclusive instructions with no relative priority.

6.3.2.3 Nonmaskable External Interrupt Request Pin (XIRQ)

Driving the XIRQ pin low generates an external interrupt request, subject initially to masking by the X bit.
Reset sets the X bit, maskiddRQ interrupt requests. Software can unm$RQ interrupt requests once
after reset by clearing the X bit with an instruction such as ANDCC #3$BF. After the X bit has been cleared,
it cannot be set andIRQ interrupt requests are nonmaskable until another reset occurs.

XIRQ interrupt request processing stacks the CCR and then sets both the X and | bits to prevent other
interrupts during th&XIRQ service routine. An RTI instruction at the end of the service routine restores
the X and | bits to their preinterrupt states.

6.3.2.4 Maskable External Interrupt Request Pin (IRQ)

Driving thelRQ pin low generates an external interrupt request, subject to masking by thRQbit.

interrupt request processing stacks the CCR and then sets the | bit to prevent other interrupts during the
IRQ service routine. An RTI instruction at the end of the service routine restores the | bit to its preinterrupt
state.

138 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

The Interrupt sub-block of the Core (INT) also has a control bit to disconnd&@hiaput. Please see
Section 10 of this guide for a more detailed description.

6.3.2.5 System Peripheral Block Interrupt Requests

Some system peripheral blocks can generate interrupt requests that are subject to masking by the | bit.
Processing of an interrupt request from one of these sources stacks the CCR and then sets the | bit to
prevent other interrupts during the service routine. An RTI instruction at the end of the service routine
restores the | bit to its preinterrupt state.

Interrupt requests from a system peripheral block may also be subject to masking by interrupt enable bits
in control registers. In addition, there may be interrupt flags with register read-write sequences required
for flag clearing. The documentation for the system peripheral block should provide a detailed functional
description.

@ MOTOROLA 139

Core User Guide — S12CPU15UG V1.2

140 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 7 Core Interface

This section provides a brief description of the Core interface to the rest of the SoC design. Detailed
information on the Core interface, such as more complete descriptions of all signals and timing
information, is provided in thelCS12 V1.5 Core Integration Guide

7.1 Core Interface Overview

The Core is designed to be integrated into a SoC design as a fully synthesizable block. The Core interface
is shown inFigure 7-1 below with the interface signals grouped by function. All signals related to the
internal and I.P. bus interfacing appear on the right side of the Core block in the diagram. In addition to
bus interfacing, the Core receives reset and clock inputs from the system and provides signals for
interacting with the CPU for vector request and acknowledge and for functional operation of the stop and
wait modes. The Core interacts with the external blocks of the overall system through the port/pad logic
for Ports A, B, E (which include the physidRIQ andXIRQ pins) and K and the BDM BKGD pin

interfaces. The memory configuration switches shown in the diagram are inputs to the Core block that are
tied to a constant logic state at the time of integration into the SoC design to correctly define the on-chip
memory configuration for proper Core operation within the system.

@ MOTOROLA 141

Core User Guide — S12CPU15UG V1.2

Memory Configuration Switches

8
g
3
ol o 2| o 2| o T 2| gle| &
HEEEEEEEEEEE
SEEEEEEEEEEE
—peri_reset tad p,
Resets - core_ramregsel_t, .
—loselpoind . On-Chip
core ramarrayselg RAM
pericle —core ramhal 2y, |nterface
Clocks peri_clka) ‘ram rdb_L12[15:0;
—perickea 5 —core_eeregsel 23, On-Chip
peri_clk34 > CPU MMC core_eearraysel ti EEPROM
—periclkez Central Module =-1db LI2[150) Interface
peri_phase oscdz' Processing Mapping % .
ECLK eecolcload unit Control core_feeregsel 12y, On-Chip
Control ened! k_t2 core_feearraysel 8 Flash
‘Iee rdb_L12[15:0; EEF;SOM
Vector peri_rstv_req ESI' ‘Iee hold_t1 eriace
Request/ _peri_xmony_requeg —core_ab_12[19:0] ,
Acknowledge_peri_copy_req esi) core_wdh_14[15:0)
€Qestop 124 —core w2y Common Bus
Stopand = et INT —core 282 Interface
Wait Mode ~ ewakeup a BDM Interrupt coe ep 2y, Signals
Control/ i_cwai_f (Memory and
—hercwal i3 ___p, Background —coreperz ?
Status peri_syswai 3y Debug > Peripherals)
_test_clk_ Mode BKP core perisel 2y,
PLL —MSIEL’ Breakpoint —core_hdmact 14y,
BDM ad in) queanmode o000 control
—core_secure 12,)
BKGD Qe-bkgd dout t4 MEBI €88 Security
m{:erface | _ibe_| Multiplexed External Bus Interface :—H, —0.3 - Eﬁg%]ﬁlr;ﬂ
@uebkgdpue 2 ST
Interface
4| _ _ Signals
gl=|2 IR Slz|2 HIER
SRIEEIG SRIEEER] SRR] SRS |«
Zle|elg|zl<| BlE|elg |z | Blele|g |z 2| Els|a|g| 2]
= |T Q|= [N =4 =T o= |2 |= =T o= || = R =T o|l= ol |a
C |G |C|C|c|c Qo |lala |2 |a v|lo|lo|lo || £ X|x|xX|X|xX|X|c
olala|lalala olalalala|a olala|lalal|la olalalalala|X
ool ol | &l o' ool | [|| &[] & ||| ¢e]]|]|
8(8(8|8|8(8] 8(8]|8]|8|38|8| 8(3]|8|8[8]|8]|8| 8)8|8[8]|8|8(8
v
Port A[7:0] Port B[7:0] Port E[7:0] Port K[7:0]
Interface Interface Interface Interface

Figure 7-1 Core Interface Signals

7.1.1 Signal Summary

A brief summary of the Core interface signals is giveifable 7-1 below. For detailed descriptions and
timing information please consult theCS12 V1.5 Core Integration Guide

Table 7-1 Core Interface Signal Definitions

Signal Name |Type | Functional Description
Internal Bus Interface Signals

peri_rdb_L12[15:0] 16-bit Read Data Bus data from Peripheral block
ram_rdb_L12[15:0] 16-bit Read Data Bus data from on-chip RAM array
ee_rdb_L12[15:0] 16-bit Read Data Bus data from on-chip EEPROM array

core_ab_12[19:0] O |Core 16-bit Address Bus [19:0]
|
|
|

fee_rdb_L12[15:0] | 16-bit Read Data Bus data from on-chip Flash EEPROM or ROM
array

core_wdb_t4[15:0] O | Core 16-bit Write Data Bus [15:0]

core_rw_t2 O | Core Read/Write signal - active low Write

142 @ MOTOROLA

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table 7-1 Core Interface Signal Definitions

Signal Name Type Functional Description
Core bus data size requested signal
core_sz8_t2 O |0 - 16-bit access
1 - 8-bit access
core_exp_t2 O |Expanded Mode selected signal
core_per_t2 O | Peripheral Test Mode selected signal
core_smod_t2 O | Special Mode selected signal
core_secure_t2 O | Core secure mode signal
core_perisel_t2 O | Core peripheral select to I.P. Bus Interface
core_ramregsel_t2 O | On-chip RAM Register select from Core to memory and/or bus
core_ramarraysel_t2 O | On-chip RAM Array select from Core to memory and /or bus
core_ramhal_t2 O | On-chip RAM Array align signal from Core to memory and/or bus
core_eeregsel_t2 O | On-chip EEPROM Register select from Core to memory and/or bus
core_eearraysel_t2 O | On-chip EEPROM Array select from Core to memory and/or bus
core_feeregsel_t2 o bOuns-chip Flash EEPROM Register select from Core to memory and/or
core_feearraysel t2 o bOunsjchip Flash EEPROM Array select from Core to memory and/or
ee_hold_t1 I On-chip EEPROM signal to Core to suspend CPU operation
fee_hold_t1 | On-chip Flash EEPROM signal to Core to suspend CPU operation
secreq | Security mode request from applicable memory
peri_ffxx_t3 | Interrupt Bus from I.P. Bus Interface
peri_rtifffOi_t3 | Real Time Interrupt signal
core_bdmact_t4 O | Core BDM active signal for I.P. Bus Interface (freeze signal)
External Bus Interface Signals
core_paind[7:0] | Port A input data [7:0]
core_pado[7:0] O |Port A data output [7:0]
core_paobe[7:0] O | Port A output buffer enable [7:0]
core_paibe_t2 O |Port A input buffer enable
core_papue_t2 O |Port A pullup enable
core_padse_t2 O |Port A drive strength enable
core_pbind[7:0] | Port B input data [7:0]
core_phbdo[7:0] O | Port B data output [7:0]
core_pbobe[7:0] O | Port B output buffer enable [7:0]
core_pbibe_t2 O | Port B input buffer enable
core_pbpue_t2 O | Port B pullup enable
core_pbdse_t2 O | Port B drive strength enable
core_peind[7:0] ! chtﬂ?gpl)iuf 26%7;?2] input; PEOQ is XIRQ pin input.
core_pedo[7:0] O | Port E data output [7:0]
core_peobe[7:0] O | Port E output buffer enable [7:0]
core_peibe_t2 O |Port E input buffer enable
core_pepue_t2 O |Port E pullup enable
core_mdrste O | Enable signal for EBI Mode pin pullups at the pad
core_pedse_t2 O | Port E drive strength enable

143

Core User Guide — S12CPU15UG V1.2

144

Table 7-1 Core Interface Signal Definitions

Signal Name Type Functional Description
core_pkind[7:0] | Port K input data [7:0]
core_pkdo[7:0] O |Port K data output [7:0]
core_pkobe[7:0] O | Port K output buffer enable [7:0]
core_pkibe_t2 O |Port K input buffer enable
core_pkpue_t2 O |Port K pullup enable
core_pkdse_t2 O | Port K drive strength enable

Clock and Reset Signals

See Section 8 of this guide.

Vector Request/Acknowledge Signals

core_vector_fetch_t4

o

Core CPU vector request

peri_rstv_request

System level reset vector request

peri_xmonv_request

System level Crystal Monitor reset vector request

peri_copv_request

System level COP Watchdog reset vector request

Stop and Wait Mode Control/Status Signals

See Section 8 of this guide.

Background Debug Mode (BDM) Interface Signals

bkgd_ind

BDM BKGD pin input data

core_bkgd_dout_t4

Data output for BDM BKGD pin

core_bkgd_obe

BDM BKGD pin output buffer enable

core_bkgd_ibe_t2

BDM BKGD pin input buffer enable

core_bkgdpue_t2

O| 0| 0| 0| —

BDM BKGD pin pullup enable

Memory Configuration Signals

Register space size select switch to be tied to the appropriate logic
level at system integration:

reg_swo ! 0 - 1K byte register space aligned to lower address
1 - 2K byte register space.
On-chip memory size select switch bit 1 to be tied to the appropriate
pag_swl | . . .
logic level at system integration.
On-chip memory size select switch bit O to be tied to the appropriate
pag_swO | . . .
logic level at system integration.
On-chip RAM fast memory transfer select to be tied to the
ram_fmts | . .) .
- appropriate logic level at system integration.
On-chip RAM size select switch bit 2 to be tied to the appropriate
ram_sw2 | . ! -
- logic level at system integration.
On-chip RAM size select switch bit 1 to be tied to the appropriate
ram_swl | . . .
logic level at system integration.
On-chip RAM size select switch bit O to be tied to the appropriate
ram_swO | . . .
logic level at system integration.
On-chip EEPROM size select switch bit 1 to be tied to the appropriate
eep_swl | . . .
logic level at system integration.
On-chip EEPROM size select switch bit O to be tied to the appropriate
eep_swO | . - f
logic level at system integration.
On-chip Flash EEPROM or ROM size select switch bit 1 to be tied to
rom_swil | : . - .
- the appropriate logic level at system integration.
On-chip Flash EEPROM or ROM size select switch bit O to be tied to
rom_swO |

the appropriate logic level at system integration.

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table 7-1 Core Interface Signal Definitions

Signal Name Type Functional Description
Reset state of the ROMON bit in the MISC Register to be tied to the
romon_exp_state appropriate literal logic level at system integration (i.e. tied level is the
state out of reset and not inverted).

Scan Control Interface Signals
ipt_scan_mode | I | Scan mode select signal

7.2 Signal Descriptions

General descriptions of the Core interface signals are given in the subsections below. The clock, reset and
wait and stop mode signals are discussesieiction 8 of this guide. For detailed descriptions of these
signals including timing information please consulti@S12 V1.5 Core Integration Guide

7.2.1 Internal Bus Interface Signals

These descriptions apply to the Core signals that interface with the on-chip memories either directly or
through the Core bus and with the system peripheral blocks through the I.P. Bus Interface.

7.2.1.1 Core 20-bit Address Bus (core_ab_t2[19:0])

This 20-bit wide Core output provides the Core Address Bus to the system memory and peripheral blocks.
7.2.1.2 16-bit Read Data Bus from system peripheral blocks (peri_rdb_L12[15:0])

16-bit wide Read Data Bus input to the Core from the system peripherals via the I.P. Bus Interface block.
7.2.1.3 16-bit Read Data Bus from on-chip RAM (ram_rdb_L12[15:0])

16-bit wide Read Data Bus input to the Core from the on-chip RAM memory block.

7.2.1.4 16-bit Read Data Bus from on-chip EEPROM (ee_rdb_L12[15:0])

16-bit wide Read Data Bus input to the Core from the on-chip EEPROM memory block.

7.2.1.5 16-bit Read Data Bus from on-chip Flash EEPROM or ROM (fee_rdb_L12[15:0])

16-bit wide Read Data Bus input to the Core from the on-chip Flash EEPROM or ROM memory block.
7.2.1.6 Core 16-bit Write Data Bus (core_wdb_t4[15:0])

This 16-bit wide Core output provides the Core Write Data Bus to the system memory and peripheral
blocks.

@ MOTOROLA 145

Core User Guide — S12CPU15UG V1.2

7.2.1.7 Core Read/Write signal (core_rw_t2)

This single bit Core output indicates the direction of bus access (read or write with write being active low)
by the Core.

7.2.1.8 Core bus data size request indicator (core_sz8 t2)

This single bit Core output indicates the size of data (8-bit or 16-bit when high or low, respectively) being
read/written by a Core bus access.

7.2.1.9 Core Expanded Mode indicator (core_exp_t2)

This single bit Core output indicates that the Core is in Expanded Mode (i.e. the Core has been configured
in one of the expanded modes via the MODE pins)

7.2.1.10 Core Peripheral Test Mode indicator (core_per_t2)

This single bit Core output indicates that the Core is in Peripheral Test Mode. In this mode, the cpu is
disabled and the direction of the bus interface is switched such that the on-chip peripherals can be
addressed directly. This mode is used for factory test only.

7.2.1.11 Core Special Mode indicator (core_smod_t2)

This single bit Core output indicates that the Core is in Special Mode (i.e. the Core has been configured in
Special Mode via the MODE pins)

7.2.1.12 Core Secure Mode indicator (core_secure_t2)

This single bit Core output indicates that the Core is operating in secured mode. Pl&asticed5
of this guide for functional details.

7.2.1.13 Peripheral select signal (core_perisel_t2)

This single bit Core output indicates that the Core is accessing an address within the peripheral space of
the system memory map.

7.2.1.14 On-Chip RAM register space select signal (core_ramregsel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip RAM register
space of the system memory map.

7.2.1.15 On-Chip RAM array select signal (core_ramarraysel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip RAM array
space of the system memory map.

146 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

7.2.1.16 On-Chip RAM array align signal (core_ramhal_t2)

This single bit Core output reflects the state of the RAMHAL bit in the INITRAM register within the
Module Mapping Control (MMC) sub-block of the Core. PleaseSeetion 11 of this guide for further
functional detalils.

7.2.1.17 On-Chip EEPROM register select signal (core_eeregsel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip EEPROM
register space of the system memory map.

7.2.1.18 On-Chip EEPROM array select signal (core_eearraysel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip EEPROM
array space of the system memory map.

7.2.1.19 On-Chip Flash EEPROM register select signal (core_feeregsel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip Flash
EEPROM register space of the system memory map.

7.2.1.20 On-Chip Flash EEPROM array select signal (core_feearraysel_t2)

This single bit Core output indicates that the Core is accessing an address within the on-chip Flash
EEPROM array space of the system memory map.

7.2.1.21 On-Chip EEPROM hold signal to Core (ee_hold_t1)

This single bit input to the Core is used to suspend operation of the CPU when needed for functions of the
on-chip EEPROM memory block.

7.2.1.22 On-Chip Flash EEPROM hold signal to Core (fee_hold_t1)

This single bit input to the Core is used to suspend operation of the CPU when needed for functions of the
on-chip Flash EEPROM memory block.

7.2.1.23 Core Security Request (secreq)

This single bit input indicates to the Core that the system memory is in a secured state and that the Core
should operate in secured mode. Pleas&seton 15 for functional details.

7.2.1.24 56-bit Interrupt request signals from peripheral block to Core (peri_ffxx_t3)

This 56-bit wide input to the Core provides the Core with the Interrupt request signals from all the system
interrupt sources via the I.P. Bus Interface.

@ MOTOROLA 147

Core User Guide — S12CPU15UG V1.2

7.2.1.25 System Real Time Interrupt request (peri_rtifffOi_t3)

This input signal indicates to the Core that the system is requesting the interrupt vector for a Real Time
Interrupt (RTI) from the Core.

7.2.1.26 Background Debug Mode active indicator (core_bdmact_t4)

This single bit output from the Core indicates that the Background Debug Mode (BDM) is active.
7.2.2 External Bus Interface Signals

These descriptions apply to the interface signals between the Core and the system External Bus Interface
pad logic. Please s&ection 12 of this guide for further functional details of the External Bus Interface.

7.2.2.1 Port A Input Data to Core (core_paind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad logic for
Port A.

7.2.2.2 Port A Output Data from Core (core_pado[7:0])

This 8-bit wide output from the Core provides the Port A data output to the system port/pad logic for Port
A.

7.2.2.3 Port A output buffer enable from Core (core_paobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the system
port/pad logic for Port A.

7.2.2.4 Port A input buffer enable from Core (core_paibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad logic
for Port A.

7.2.2.5 Port A pullup enable from Core (core_papue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad logic for
Port A should be enabled for all Port A pins.

7.2.2.6 Port A drive strength enable from Core (core_padse_t2)

This single bit output from the Core indicates whether all Port A pins will operate with full or reduced
drive strength.

7.2.2.7 Port B Input Data to Core (core_pbind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad logic for
Port B.

148 W) mororora

Core User Guide — S12CPU15UG V1.2

7.2.2.8 Port B Output Data from Core (core_pbdo[7:0])

This 8-bit wide output from the Core provides the Port B data output to the system port/pad logic for Port
B.

7.2.2.9 Port B output buffer enable from Core (core_pbobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the system
port/pad logic for Port B.

7.2.2.10 Port B input buffer enable from Core (core_pbibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad logic
for Port B.

7.2.2.11 Port B pullup enable from Core (core_pbpue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad logic for
Port B should be enabled for all Port B pins.

7.2.2.12 Port B drive strength enable from Core (core_pbdse_t2)

This single bit output from the Core indicates whether all Port B pins will operate with full or reduced drive
strength.

7.2.2.13 Port E Input Data to Core (core_peind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad logic for
Port E. When the system has an extetR&) pin implemented, the input signal from thQ pin pad logic

must be tied to Port E Input Data Bit 1. Likewise, when the system has an exx¢R@lpin implemented,

the input signal from thEIRQ pin pad logic must be tied to Port E Input Data Bit 0. BotHRitg and

XIRQ signals are active low (i.e. their asserted state is logic 0).

7.2.2.14 Port E Output Data from Core (core_pedo[7:0])
This 8-bit wide output from the Core provides the Port E data output to the system port/pad logic for Port E.
7.2.2.15 Port E output buffer enable from Core (core_peobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the system
port/pad logic for Port E.

7.2.2.16 Port E input buffer enable from Core (core_peibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad logic
for Port E.

@ MOTOROLA 149

Core User Guide — S12CPU15UG V1.2

7.2.2.17 Port E pullup enable from Core (core_pepue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad logic for
Port E should be enabled for all Port E pins except the MODA (PE5) and MODB (PE6) pins.

7.2.2.18 Port E MODE pin pullup enable from Core (core_mdrste)

This single bit output from the Core indicates that the pullup devices within the system port/pad logic for
the MODA (PE5) and MODB (PE6) pins within Port E should be enabled.

7.2.2.19 Port E drive strength enable from Core (core_pedse_t2)

This single bit output from the Core indicates whether all Port E pins will operate with full or reduced drive
strength.

7.2.2.20 Port K Input Data to Core (core_pkind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad logic for
Port K.

7.2.2.21 Port K Output Data from Core (core_pkdo[7:0])

This 8-bit wide output from the Core provides the Port K data output to the system port/pad logic for Port
K.

7.2.2.22 Port K output buffer enable from Core (core_pkobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the system
port/pad logic for Port K.

7.2.2.23 Port K input buffer enable from Core (core_pkibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad logic
for Port K.

7.2.2.24 Port K pullup enable from Core (core_pkpue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad logic for
Port K should be enabled for all Port K pins.

7.2.2.25 Port K drive strength enable from Core (core_pkdse_t2)

This single bit output from the Core indicates whether all Port K pins will operate with full or reduced
drive strength.

7.2.3 Clock and Reset Signals

Please se8ection 8 of this guide.

150 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

7.2.4 Vector Request/Acknowledge Signals

These descriptions apply to signals that provide for vector requesting to and corresponding
acknowledgment from the Core.

7.2.4.1 CPU vector fetch (core_vector_fetch_t4)

This Core output signal indicates that the CPU is executing a vector fetch as a result of a reset or interrupt
sequence.

7.2.4.2 System level reset vector request (peri_rstv_request)
This input signal indicates to the Core that the system is requesting the external reset vector from the Core.
7.2.4.3 System level Crystal Monitor reset vector request (peri_xmonv_request)

This input signal indicates to the Core that the system is requesting the Crystal Monitor reset vector from
the Core.

7.2.4.4 System level COP Watchdog reset vector request (peri_copv_request)

This input signal indicates to the Core that the system is requesting the COP Watchdog reset vector from
the Core.

7.2.5 Stop and Wait Mode Control/Status Signals
Please se8ection 8 of this guide.
7.2.6 Background Debug Mode (BDM) Interface Signals

These descriptions apply to the Core BDM sub-block interface with the system BKGD pad logic. Please
seeSection 14 of this guide for further functional details of the BDM.

7.2.6.1 BKGD pin Input Data to Core (bkgd_ind)

This single bit input to the Core provides the Core with the input data from the system port/pad logic for
BDM BKGD pin.

7.2.6.2 BKGD pin Output Data from Core (core_bkgd_dout_t4)

This single bit output from the Core provides the BKGD pin data output to the system port/pad logic for
the BDM BKGD pin.

7.2.6.3 BKGD pin output buffer enable from Core (core_bkgd_obe)

This single bit output from the Core provides the output buffer enable signal to the system port/pad logic
for the BDM BKGD pin.

@ MOTOROLA 151

Core User Guide — S12CPU15UG V1.2

7.2.6.4 BKGD pin input buffer enable from Core (core_bkgd_ibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad logic
for the BDM BKGD pin.

7.2.6.5 BKGD pin pullup enable from Core (core_bkgdpue_t2)

This single bit output from the Core indicates that the pullup device within the system port/pad logic for
the BKGD pin should be enabled for the BKGD pin.

7.2.7 Memory Configuration Signals

These input signals to the Core establish the system memory configuration. Each of these signals is to be
tied off to the appropriate logic state at integration of the Core into the SoC design in order to configure
the Core memory partitioning according to the needs of the system. Please cons@@&h2 V1.5 Core
Integration Guide for details on defining the states of these signals.

7.2.8 Scan Control Interface Signals

These descriptions apply to the Core Scan test control signals.
7.2.8.1 Scan mode enable(ipt_scan_mode)

This single bit input indicates to the Core that the system is in Scan test mode and all logic within the Core
that needs special conditions for Scan test mode will be handled appropriately.

7.3 Interface Operation

The subsections below give general descriptions of basic read and write operations of the Core. These
operations include interfacing with system peripheral registers, on-chip memory registers and array
elements, internal Core registers and external bus interface. For more detailed descriptions and timing
information please consult thCS12 V1.5 Core Integration Guide

7.3.1 Read Operations

All read data coming into the Core is implemented by multiplexing the various input read data buses
(peri_rdb_L12[15:0], ram_rdb_L12[15:0], ee_rdb_L12[15:@hdfee_rdb_L12[15:0] onto the main

internal Core read data bus. The active input read data bus is defined by the select signal that is active
during the Core read cycle. The subsections below briefly discuss each of peripheral, on-chip memory
register and array element and internal core register reads. In each of the figures used in these subsections,
the read sequences are separated by write sequences to better illustrate the timing edges.

7.3.1.1 Peripheral Reads

The Core supports both 8-bit and 16-bit reads of peripheral registers. The timing relationship for a basic
8-bit read of a peripheral register is showirigure 7-2 and that of a basic 16-bit readRigure 7-3 .

152 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

The Core clockgeri_clk29 provides the timing reference within the Core for all data transfers with the
peripherals. The peripheral cloghgri_clk39 is the timing reference for all peripherals within the system
tied to the I.P. Bus.

pericke4 _ /TAT3/TATy/T2\ / \/ /. S S
core_ab_t2 [addr0) addrl
peri_rdb_L12 | data0 X datal X data? (data3]
core_perisel 2/ \ [\ [\
coerwt2 N\ /. /

core_sz8_t2 8 _BIT \ / 8 BIT \ / 8_BIT
peri_clk34 4/—_/—\ / / \ / -/

Figure 7-2 Basic 8-bit Peripheral Read Timing

pericke4 __ /TATg/TATy/T2_/ _/ ./ ./ \/ . S\
core_ab_t2 [addr0) addrl
peri_rdb_L12 | data0 X datal X data2 Y data3 |
core_perisel_t2 m
core_rw_t2 m
core_sz8_t2 16_BIT 16_BIT 16_BIT

peri_clk34 / \ / \ / \ / \ / \ /

Figure 7-3 Basic 16-bit Peripheral Read Timing

7.3.1.2 Memory Reads

The timing relationship for a basic 8-bit read of a on-chip memory register or array byte by the Core is
shown in below irFigure 7-4 and that of a basic 16-bit readRigure 7-5 . In the diagrams, the
MEM_rdb_L12signal represents any of the on-chip memory read data bus sigmalsdb 112

ee rdb_Ll2rfee rdb_L12andcore MSEL_tZepresents any of the on-chip memory register or array
selects (such aore_ramregsel_tdr core_ramarraysel_t2or the RAM and likewise for the EEPROM
and Flash EEPROM).

@ MOTOROLA 153

Core User Guide — S12CPU15UG V1.2

perickza _ /TAT3/TATa/T2\ [_/ /S S
core_ab_t2 [addr0)_ addrl
MEM _rdb_L12 | data0 X datal X data2 Y data3 |
core MSELt2 /[\ [/ "\ /0
core_rw_t2 m

core_sz8_t2 8 BIT \ / 8 BIT \ / 8_BIT
peri_clk34 Y A U A / \ \ / |

Figure 7-4 Basic 8-bit Memory Read Timing

perick2a _ /TATy/TATyYT2 / \/ ./ /. S S\
core_ab_t2 [addr0) addrl
MEM_rdb_L12 | data0 X datal X data2 X data3 |
coe MSELt2 /[\ [/ \
core_rw_t2 m
core_sz8_t2 16 BIT 16 BIT 16 BIT

peri_clk34 / \ / \ / \ / \ / |

Figure 7-5 Basic 16-bit Memory Read Timing

7.3.1.3 Internal Core Register Reads

The timing for basic 8-bit and 16-bit reads of internal Core registers are shdvigure 7-6 andFigure
7-7, respectively.

154 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

peri_clk24 T2 T3/ TATL/ T2

core_ab_t2 [addr0)__addrl
rdb_t4 [data0 \ datal) data2 X___ data3

cooeRSELW [\ [\ [
coerwte / ____ [/ A\ [\
core_sz8_t2 \ / \ / \

Figure 7-6 Basic 8-bit Core Register Read Timing

peri_clk24 TAT3/TATL/ T2

core_ab_t2 [addro)_ _ addrl
rdb_t4 [_dataO datal X data2 K data3 |

coe RSEL t4 /" \ [/ \ [/
core_rw_t2 m
core_sz8_t2 A A e R e

Figure 7-7 Basic 16-bit Core Register Read Timing

7.3.2 Write Operations

All write data exits the Core via the Core write data loosg wdb_t4[15:0). The subsections below

briefly discuss each of peripheral, on-chip memory register and array element and internal core register
writes. In each of the figures used in these subsections, the write sequences are separated by read
sequences to better illustrate the timing edges.

7.3.2.1 Peripheral Writes

The Core supports both 8-bit and 16-bit writes of peripheral registers. The timing relationship for a basic
8-bit write of a peripheral register is shownhkigure 7-8 and that of a basic 16-bit write fhigure 7-9 .
An example of the I.P. Bus read data bus timing is provided in the figures for further illustration purposes.

@ MOTOROLA 155

Core User Guide — S12CPU15UG V1.2

peri_clk24 T2ATI/ TATL T2

core_ab_t2 | {_ addrl addr3 X |
core_wdb_t4 |) data1
ipb_rdb | X datal X data2) data3 |

core_perisel_t2 m
coe_rw t2 O\ [\ /]
core_sz8_t2 8 BIT \ Js8BT [/
peri_clk34 [\ [\ [\ [

Figure 7-8 Basic 8-bit Peripheral Write Timing

peri_clk24 TATI TATL T2

core_ab_t2 | {_ addrl addr3 X |
core_wdb_t4 | }__ datal
ipb_rdb | X datal X data2 _data3 |

core perisel t2 /[\ [/ \ [\
core_rw_t2 L/—\—/—\J

core sz8 2 _1emBIT / _wBIT / \ [
peri_clk34 / \ / \ / \ / \ / v/

Figure 7-9 Basic 16-bit Peripheral Write Timing

7.3.2.2 Memory Writes

The timing relationship for a basic 8-bit write of a on-chip memory register or array byte by the Core is
shown in below irFigure 7-10 and that of a basic 16-bit write igure 7-11 . As before, the
MEM_rdb_L12signal represents any of the on-chip memory read data bus sigmalsdb 112

ee rdb_Llrfee rdb_L12andcore MSEL_tZepresents any of the on-chip memory register or array
selects (such aore_ramregsel_tdr core_ramarraysel_t2or the RAM and likewise for the EEPROM

and Flash EEPROM).

156 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

peri_clk24 T2 T3/ TATL/ T2

core_ab_t2 |)\ addr1 addr3 \ |
core_wdb_t4 | X datal

coe MSEL t2 / \ [\ [\
core_rw_t2 m
core_sz8_t2 8 BIT M
peri_clk34 [\ /A / \ S

Figure 7-10 Basic 8-bit Memory Write Timing

peri_clk24 TAT3/ TATL/ T2

core_ab_t2 | X addrl addr3 | |
core_wdb_t4 | X datal

core MSELt2 /[____ [/ \ [\
coerwt2 _ [/ \ /[

coesz8 2 _1emBIT / _amBIT / ___ [
peri_clk34 / \ / \ / \ / \ / J

Figure 7-11 Basic 16-bit Memory Write Timing

7.3.2.3 Internal Core Register Writes

The timing for basic 8-bit and 16-bit writes of internal Core registers are shdviguire 7-12 and
Figure 7-13, respectively.

@ MOTOROLA 157

Core User Guide — S12CPU15UG V1.2

peri_clk24 T2 T3/ TATL/ T2

core_ab_t2 | X addrl addr3 X |
core_wdb_t4 | X datal

coe RSEL t4 [\ [\ [
corewt2 ./ /[
coesz8t2 [\ /[

Figure 7-12 Basic 8-bit Core Register Write Timing

peri_clk24 TAT3/TATL/ T2

core_ab_t2 | {_ addrl addr3 X |
core_wdb_t4 | X datal

coe RSELt2 [\ [\
corerwt2 O\ [/ /[
core_sz8_t2 \ / \ / \

Figure 7-13 Basic 16-bit Core Register Write Timing

7.3.3 Multiplexed External Bus Interface

A timing diagram of the multiplexed external bus is shown in . Major bus signals are included in the
diagram. While both a data write and data read cycle are shown, only one would occur on a particular bus
cycle.Table 7-2gives the preliminary timing characteristics for the signals illustrated in .

158 @ MOTOROLA

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

g 1 -
g 2 | | 3 |
\ ‘ \
ECLK \. / ~
51 72311 P
10 22 - - 12
/ \
Addr/Data data addr data §>><:
(read) \ Z
g

—9
Addr/Data data addr data
(write)
137 15 14

LSTRB

Figure 7-14 General External Bus Timing

159

Core User Guide — S12CPU15UG V1.2

Table 7-2 Multiplexed Expansion Bus Timing - Preliminary Targets

16 MHz 20 MHz 25 MHz
Num Characteristic 123 Symbol Unit
Min Max Min Max Min Max
Frequency of operation (E-clock) fo D.C. | 16.0 | D.C. | 20.0 | D.C. | 25.0 MHz
1 Cycle time teye 62 50 40 ns
2 Pulse width, E low PWg 28 22 18 ns
3 Pulse width, E high* PWey 28 22 18 ns
5 Address delay time tAD 12 10 8 ns
6 n/a n/a ns
7 Address valid time to E rise (PWg_-Tap) tav 16 12 10 ns
8 Muxed address hold time tvMAH 2 2 1 ns
9 Address hold to data valid taAHDS 4 3 2 ns
10 Data hold to address tDHA 5 4 3 ns
11 Read data setup time tbsr 14 10 8 ns
12 Read data hold time {DHR 0 0 0 ns
13 Write data delay time topw 12 10 8 ns
14 Write data hold time tDHw 2 2 1 ns
15 | Write data setup time* (PWgy-tppw) tbsw 16 12 10 ns
16 Read/write delay time tRwD 12 10 8 ns
17 Read/write valid time to E rise (PWg-trwp) | trwy 16 12 10 ns
18 Read/write hold time tRWH 2 2 1 ns
19 Low strobe delay time tLsp 12 10 8 ns
20 Low strobe valid time to E rise (PWg -t sp) | tisv 16 12 10 ns
21 Low strobe hold time t sH 2 2 1 ns
22 Address access time* (teyc-taptosr) tacca 36 30 24 ns
23 | E high access time* (PWgy-tpsr) tacce 14 12 10 ns
26 Chip select delay time tcsp 22 18 15 ns
27 Chip select access time* (teyctesptosr) taccs 26 22 17 ns
28 Chip select hold time tesH 1 1 1 ns
29 Chip select negated time tcsn 12 10 8 ns

160 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

NOTES:

1. Crystal input is required to be within 45% to 55% duty.

2. Reduced drive must be off to meet these timings.

3. Unequal loading of pins will affect relative timing numbers.

4. Affected by clock stretch: add N x teye where N=0,1,2 or 3, depending on the number of clock stretches.

7.3.4 General Internal Read Visibility Timing

Internal writes have the same timing as external writes. Internal read visibility is shBwgaia 7-15
andTable 7-3shows the associated timing numbers.

g 1
g

ECLK _\\ /l \

y
A

ADDR X X

3
-t

Muxed \ 32
Addr/Data data >>< addr
(read) /

VIS data
Figure 7-15 General Internal Read Visibility Timing
Table 7-3 Expansion Bus Timing - Preliminary Targets
Num Characteristic 123 Symbol 16 MHz 20 MHz 25 MHz Unit

Min | Max | Min | Max | Min |[Max

Frequency of operation (E-clock) fo D.C. | 160 | D.C. | 20.0 | D.C. | 25.0 | MHz
1 Cycle time teye 62 50 40 ns
2 Pulse width, E low PWg 28 22 18 ns
3 Pulse width, E high? PWen 28 22 18 ns
31RG | IVIS read data set-up time - Registers 11 5 2 ns
31RM | IVIS read data set-up time - RAM 11 5 2 ns
31EE E/EIE)Fr{e(;a,\(j| data set-up time - 11 5 2 ns
31FL | IVIS read data set-up time - FLASH® 6 0 0 ns

@ MOTOROLA 161

Core User Guide — S12CPU15UG V1.2

Table 7-3 Expansion Bus Timing - Preliminary Targets

Num Characteristic 123 Symbol 16 MHz 20 MHz 25 MHz Unit
32 IVIS read data hold time (all) 2 2 1 ns
NOTES:

1. Crystal input is required to be within 45% to 55% duty.

2. Reduced drive must be off to meet these timings.

3. Unequal loading of pins will affect relative timing numbers.

4. Affected by clock stretch: add N x teye where N=0,1,2 or 3, depending on the number of clock stretches.
5. Timing is tighter than other memories due to larger array size.

7.3.5 Detecting Access Type from External Signals

The external signalsSTRB, RIWV, and A0 indicate the type of bus access that is taking place. Accesses

to the internal RAM are the only type of access that would prdde¢&B=A0=1 because the internal

RAM is specifically designed to allow misaligned 16-bit accesses in a single cycle. In these cases, the data
for the address that was accessed is on the low half of the data bus and the data for address+1 is on the high
half of the data bus. This operation only occurs when internal visibility is on.

Table 7-4shows the relationship between these signals and the type of access.
Table 7-4 Access Type vs. Bus Control Pins

LSTRB | A0 R/W Type of Access

1 0 1 8-bit read of an even address

0 1 1 8-bit read of an odd address

1 0 0 8-bit write of an even address

0 1 0 8-bit write of an odd address

0 0 1 16-bit read of an even address

1 1 1 16-bit regd of an odd address
(low/high data swapped)

0 0 0 16-bit write to an even address

1 1 0 16-bit wr!te to an odd address
(low/high data swapped)

162 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 8 Core Clock and Reset Connections

This section details the HCS12 V1.5 Core external clock connections. In addition, this section will discuss
the reset timing needs of the Core since this is associated very closely with the external clocking
requirements.

8.1 Clocking Overview

The HCS12 V1.5 Core is implemented as a single clock source design with complete Mux-D scan test
implementation. Since the Core is compatible with the feature set of the MHC12 microcontroller product
family, many signal and timing requirements exist for the system clock and reset generation block(s) to
support these features. Many of these requirements are driven by the interaction of the Core with the clock
and reset generation block(s) in the system due to CPU wait and stop mode functionality and the various
time based reset and interrupt functions (such as Crystal Monitor and COP Watchdog resets and Real Time
Interrupt functions) available on the HCS12 family of products. A diagram of the Core interface signals is
given inFigure 8-1 below.

W) mororora 163

Core User Guide — S12CPU15UG V1.2

Memory Configuration Switches

ol
g
3
ol o 2| o 2| o T 2| gle| &
HEEEEEEEEEEE
HEEEEEEEHERE
—peri_reset tad p,
Resets - core_ramregsel_t, .
—leseipind . On-Chip
core ramarrayselg RAM
—peick2 —core ramhal 2y, |nterface
Clocks peri_cli4 > ‘ram rdb_L12[15:0;
—perickea 5 —core_eeregsel 23, On-Chip
peri_clk34 » CPU MMC core_eearraysel ti EEPROM
—periclkez Central Module =-1db LI2[150) Interface
peri_phase oscdz' Processing Mapping e_hold_t1 .
ECLK €xe—eclk_load Unit Control core_feeregsel 12’ On-Chip
Control 2e-ned k_t2 core_feearraysel g Flash
‘Iee rdb_L12[15:0; EEF;’FOM
Vector —herl_Isiv_request DAL
Request/ _peri_xmony_requeg —core_ab_12[19:0] ,
Acknowledge_peri_capy_req esl) core_wdb_14[15:0)
€Qestop 124 —core w2y Common Bus
Stop and = e waitd INT —core sz8. 2y Interface
Wait Mode ~ ewakeup a BDM Interrupt coe ep 2y, Signals
Control/ i_cwai_f (Memory and
—hell oAl 3 Background —coreperz ?
Status peri_syswai 3y Debug > Peripherals)
i_test clk Mode BKP core perisel 2,
PLL —peri test dk___j, Breakpoint —core_hdmact 14y,
kad_in ! qoscanmode Scan Control
BDM _mLe,'aamme;L’)
BKGD Qe-bkgd dout t4 MEBI € Security
i §e-bkgd obe] i_rdb | :
m{:erface ¥ _ihe_| Multiplexed External Bus Interface i —0.3 . Eﬁg%]ﬁlr;ﬂ
§oebkgdpue 12 i tiffioL ¢
Interface
A — . _ Signals
gz || | Tl | ASIIME HAERME
%’g.%i‘ m‘g‘ %g%%wl‘@', %g%%wls\“,ﬂ %E%EI w‘%‘.‘i
cl2l8le|dle| £[B|8le || |8 |8l=(d|=|E| E(8|Ele]|d|els
©|@|C|@C | C|T Qo |lala |2 |a v|lo|lo|lo || £ X|x|xX|X|xX|X|c
olala|lalala olalalala|a olala|lalal|la olalalalala|X
ool ol | &l o' ool | [|| &[] & ||| ¢e]]|]|
8(8(8|8|8(8] 8(8]|8]|8|38|8| 8(3]|8|8[8]|8]|8| 8)8|8[8]|8|8(8
v
Port A[7:0] Port B[7:0] Port E[7:0] Port K[7:0]
Interface Interface Interface Interface

Figure 8-1 Core Interface Signals

The Core interfaces with the system clock and reset generation block(s) in order to synchronize the actions
of the HCS12 CPU with the rest of the system. Through the interface signals, the Core supports the use of
a system Phase-Locked Loop (PLL), Crystal Monitor, COP Watchdog and Real Time Interrupt as well as

clocking options during CPU wait and stop modes. Each of these aspects are discussed in the subsections
that follow.

8.1.1 Basic Clock Relationship

The basic system clock timing in showrHigure 8-2 below. The system clock generation block is
required to provide the main Core clocke(i_clk24, peri_clk2, and peri_clkdthe main peripheral clock
(peri_clk34 and the system clk2®éri_clk23 to the Core (the Core usperi_clk23to generate the ECLK
signal). The method of clock generation (i.e. crystal, PLL, etc.) is left up to the system integrator as long
as the clocks provided meet the phase relationship shown in the figure.

164 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

peri_cke4 | /TAT/TATYT2T3/TA_/ _/ _/ \/ ./ S S
peri_clk34 /T3T4\1212/ \ [\ / \ (.
peri ck23 | /T2T3\T4aTa/ \ A A W U A
peri_clk2 /T2, T2\ [\ [\ /\ [\
peri_clk4 /T4, /T4\ / [\ [\

Figure 8-2 System Clock Timing Diagram

The remaining clock input to the Copeeri_phase_oscdXs the same frequency as frexi_clk34as

derived directly from the oscillator. When using the PLL for the system clocks, the BDM sub-block must
maintain a constant rate clock and cannot depend upon the use of the PLL generated clock. Because of
this, this signal operates at the same frequenpgmsclk34prior to engaging the PLL (or as derived

directly from the oscillator). Once the PLL is engaged, this clock must maintain the pre-PLL frequency in
order to keep the BDM synchronized.

8.1.2 Reset Relationship

The Core depends upon the use of two input sigmetet_pin_indindperi_reset_tadfor controlling the

reset conditions of all logic within the Core. The active lmget_pin_indignal timing follows that of the
physical system reset pin indicating immediately when a system reset is requested (for example when the
RESET pin is pulled low externally). This signal is used as a load enable on the MODE pins of the MEBI
sub-block to ensure that the Core mode of operation is known and set up immediately upon a system reset
request. Theeri_reset_taignal will generally be asserted (logic 1) asynchronously by the reset
generation block at the time that a system reset is requested. Further, the assumption is that this signal will
stay asserted until such time that the clock generation block has determined that the clocks to the Core are
stable and that the Core should proceed with a system reset sequence.

8.1.3 Phase-Locked Loop Interface

The Core allows for the implementation of a on-chip Phase-Locked Loop (PLL) and interacts with it
through theperi_plisel_t3peri_test_clk_enablandperi_test_clknput signals. If a PLL is implemented,

the Core assumes it will operate on the peripheral cloel _(clk34 and thus theeri_pllsel_t3signal

must be asserted (logic 1) on the phase three rising edge of this clock when the PLL is first engaged and
to be negated (logic 0) when the PLL is disabled. ddre test_clkandperi_test_clk_enablsignals are
provided in order to facilitate test features for the PLL. Wheméhe test_clk _enablsignal is asserted

(logic 1), the Core will register the signal on the phase four rising edgerof clk24and will then output

the clock signal being input gueri_test_clidirectly on Port E Bit 6 of the system. This test feature is only

valid in Special modes and setting of the PIPOE bit in the PEAR register overrides the clock output.

@ MOTOROLA 165

Core User Guide — S12CPU15UG V1.2
8.1.4 HCS12 CPU Wait and Stop Modes

The Core inputperi_cwai_t3andperi_syswai_t3ndicate to the Core what the state of the system clocks

will be during CPU wait mode with the former reflecting the Core clpeki(clk29 state and the latter

the state of all system clocks. These inputs typically come from the clock and reset generation block(s) and
could either be hard-wired to a given logic value or reflect the state of software bits controlling the clock
functionality. The Core assumes that the asserted (logic 1) state indicates that the clock(s) will cease during
wait mode and that the negated (logic 0) state indicates that the clock(s) will run during wait mode.

The Core will reflect the CPU mode through the state otibre _wait_t24andcore_stop_t24ignals. The
core_wait_t24or core_stop_t24ignal will assert when the CPU executes a WAI or STOP instruction,
respectively, and both will remain negated (logic 0) during normal operation. In the case of exit from either
wait or stop mode due to a valid interrupt, tt@e_wakeup_taignal will assert (logic 1) asynchronously
upon receiving the valid interrupt request. This signal will then negate (logic 0) asynchronously once the
interrupt source is negated (indicating that the interrupt has been serviced and is no longer being
requested).

8.2 Signal Summary

Each of the Core I/O signals that interface with the system clock and reset generation block(s) are listed

in Table 8-1 below with the signal type and a brief functional description for completeness.

166

Table 8-1 Core Clock and Reset Interface Signals

Signal Name [Type | Functional Description
Clock and Reset Signals
peri_reset_ta4 | System reset signal
reset_pin_ind | System level reset pin input data
peri_clk2 | System clock clk2 for Core
peri_clk4 | System clock clk4 for Core
peri_clk24 | System clock clk24 for Core
peri_clk34 | System clock clk34 for peripherals on I.P. Bus Interface
peri_clk23 | System clock clk23 used by Core to generate ECLK
peri_phase_oscdX | Oscillator Clock divided by ‘X’
peri_test_clk_enable | PLL test feature clock enable signal
peri_test_clk | PLL test feature clock signal
peri_plisel_t3 | PLL selected signal
core_eclk_load O | External clock load enable signal
core_neclk_t2 O |External clock disable signal
Stop and Wait Mode Control/Status Signals

core_stop_t24 O |Core CPU stop mode signal
core_wait_t24 O |Core CPU wait mode signal
core_wakeup_ta O | Core wakeup from stop or wait mode due to interrupt

. . Core wait signal: controls whether clk24 runs during CPU wait mode. O -
peri_cwai_t3 ! clk24 runs during wait, 1 - clk24 ceases during wait.

. . System level wait signal: controls whether system clocks run during CPU
peri_syswai_t3 ! wait mode. O - all clocks run during wait, 1 - no clocks run during wait.

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2
8.3 Detailed Clock and Reset Signal Descriptions

General descriptions of the Core clock and reset interface signals are given in the subsections below. Also
included are the stop and wait mode signals due to the necessary interaction with the clock and reset
requirements. For detailed descriptions of these signals including timing information please consult the
HCS12 V1.5 Core Integration Guide

8.3.1 Clock and Reset Signals

These descriptions apply to system level clock and reset signals needed by the Core.
8.3.1.1 System Reset signal (peri_reset_ta4)

This single bit asynchronous input to the Core indicates the system reset condition.
8.3.1.2 System level reset input data (reset_pin_ind)

This active-low single bit input is used within the Core as a load enable for the MODE pin logic on Port
E of the system.

8.3.1.3 System level clock for the Core (peri_clk2)

This clock input is one of the main clocks for the Core.
8.3.1.4 System level clock for the Core (peri_clk4)

This clock input is one of the main clocks for the Core.
8.3.1.5 System level clock for the Core (peri_clk24)

This clock input is one of the main clocks for the Core.
8.3.1.6 System level clock for peripheral blocks (peri_clk34)

This clock input is the main clock source for all peripheral blocks integrated in the system and accessed
by the Core through the I.P. Bus Interface.

8.3.1.7 System ECLK clock (peri_clk23)
This clock input is the main clock source used by the Core to generate the system ECLK.
8.3.1.8 Divided Down System Oscillator Clock (peri_phase_oscdX)

This clock input to the Core is used within the Core by the Background Debug Mode sub-block to keep
the BDM synchronized.

@ MOTOROLA 167

Core User Guide — S12CPU15UG V1.2

8.3.1.9 System Test Clock enable (peri_test_clk_enable)

This single bit input to the Core indicates that the phase-locked loop (PLL) test clock should be output on
the system Port E bit 6 pin when the PIPOE bit is zero.

8.3.1.10 System Test Clock (peri_test_clk)
This clock input to the Core is the PLL test clock.
8.3.1.11 System clock source select signal (peri_pllsel_t3)

This single bit input to the Core indicates whether clocks within the system are derived from the crystal or
PLL.

8.3.1.12 ECLK load enable signal (core_eclk load)
This single bit output from the Core is the load enable signal for the system external clock, ECLK.
8.3.1.13 ECLK disable signal (core_neclk_t2)

This single bit output from the Core is the disable signal for the system external clock, ECLK.
8.3.2 Stop and Wait Mode Control/Status Signals

These descriptions apply to signals that provide for controlling some of the functionality and status
indication of CPU stop and wait modes.

8.3.2.1 CPU stop mode indicator (core_stop_t24)

This Core output signal indicates whether the CPU is in stop mode.
8.3.2.2 CPU wait mode indicator (core_wait_t24)

This Core output signal indicates whether the CPU is in wait mode.
8.3.2.3 Core wakeup indicator for wait and stop mode (core_wakeup_ta)

This asynchronous Core output signal indicates that the CPU has received an interrupt request and is ready
to resume normal operation.

8.3.2.4 Core wait signal from system clock generation block (peri_cwai_t3)

This Core input signal indicates to the CPU whether the main Core gdeck,clk24 will run during CPU
wait mode.

8.3.2.5 System level wait signal (peri_syswai_t3)

This Core input signal indicates to the Core whether all system clocks will run during CPU wait mode.

168 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 9 Core Power Connections

This section details the HCS12 V1.5 Core power connections.

9.1 Power Overview
The HCS12 V1.5 Core operates from a single power and a single ground connection.

9.1.1 Power and Ground Summary

The Core requires a single power (typically termed VDD) and a single ground (typically termed VSS)
connection that is implicit when integrating into a synthesized design. There are no signals at the Core
interface for power and ground.

@ MOTOROLA 169

Core User Guide — S12CPU15UG V1.2

170 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 10 Interrupt (INT)

This section describes the functionality of the Interrupt (INT) sub-block of the Core.

10.1 Overview

The Interrupt sub-block decodes the priority of all system exception requests and provides the applicable
vector for processing the exception. The INT supports I-bit maskable and X-bit maskable interrupts, a
nonmaskable Unimplemented Opcode Trap, a nonmaskable software interrupt (SWI) or Background
Debug Mode request, and three system reset vector requests. All interrupt related exception requests are
handled by the Interrupt.

10.1.1 Features

» Provides 2 to 122 | bit maskable interrupt vectors ($FF00-$FFF2)
* Provides 1 X bit maskable interrupt vector ($FFF4)
» Provides a nonmaskable Unimplemented Opcode Trap (TRAP) vector ($FFF8)

* Provides a nonmaskable software interrupt (SWI) or Background Debug Mode request vector
($FFF6)

* Provides 3 system reset vectors ($FFFA-$FFFE)

» Determines the appropriate vector and drives it onto the address bus at the appropriate time
» Signals the CPU that interrupts are pending

* Provides control registers which allow testing of interrupts

» Provides additional input signals which prevents requests for servicing | and X interrupts

» Wakes the system from stop or wait mode when an appropriate interrupt occurs or whéidyer
is active, even IKIRQ is masked

» Provides asynchronous path for all | and X interrupts, ($FFO0-$FFF4)

» (Optional) Selects and stores the highest priority | interrupt based on the value written into the
HPRIO register

@ MOTOROLA 171

Core User Guide — S12CPU15UG V1.2
10.1.2 Block Diagram

A block diagram of the Interrupt sub-block is showirigure 10-1 below.

INT
HPRIO (OPTIONAL)
WRITE DATA BUS
-
HIGHEST PRIORITY
INTERRUPT
INTERRUPTS
> GISTERS
INTERRUPT INPUT REGISTER
XMASK g AND CONTROL REGISTERS READ DATA BUS
IMASK
>,
WAKEUP
. x
S
O
w
>
o
QUALIFIED x
INTERRUPTS T
y INTERRUPT
PENDING
-
RESET FLAGS - PRIORITY DECODER
VECTOR REQUEST VECTOR
- ADDRESS

Figure 10-1 Interrupt Block Diagram

10.2 Interface Signals

All interfacing with the Interrupt sub-block is done within the Core. The Interrupt does however receive
direct input from the Multiplexed External Bus Interface (MEBI) sub-block of the Core foR@@nd
XIRQ pin data.

172 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

10.3 Registers

A summary of the registers associated with the Interrupt sub-block is shéwgurme 10-2 below.
Detailed descriptions of the registers and associated bits are given in the subsections that follow.
Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0015 ITCR \:\?r?tz 0 0 0 WRTINT| ADR3 ADR2 ADR1 ADRO

s0016 1TEST 24| NTE | INTC | INTA | INTE | INTE | INT4 | INT2 | INTO

write
read 0
$001F HPRIO write PSEL7 | PSEL6 | PSELS5 | PSEL4 | PSEL3 | PSEL2 | PSEL1
|:| = Unimplemented X = Indeterminate
Figure 10-2 Interrupt Register Summary
10.3.1 Interrupt Test Control Register
Address:$0015
Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0 0
WRTINT| ADR3 | ADR2 | ADR1 | ADRO
Write:
Reset: 0 0 0 0 1 1 1 1

Figure 10-3 Interrupt Test Control Register (ITCR)

Read: see individual bit descriptions
Write: see individual bit descriptions

WRTINT - Write to the Interrupt Test Registers
Read: anytime

Write: only in special modes and with | bit mask and X bit mask set.
1 = Disconnect the interrupt inputs from the priority decoder and use the values written into the

ITEST registers instead.
0 = Disables writes to the test registers; reads of the test registers will return the state of the interrupt

inputs.

NOTE: Any interrupts which are pending at the time that WRTINT is set will remain until
they are overwritten.

ADRS3 - ADRO - Test register select bits

@ MOTOROLA 173

Core User Guide — S12CPU15UG V1.2

Read: anytime
Write: anytime

These bits determine which test register is selected on a read or write. The hexadecimal value written
here will be the same as the upper nibble of the lower byte of the vector selects. That is, an “F” written
into ADR3 - ADRO will select vectors $FFFE - $FFFO while a “7” written to ADR3 - ADRO will select
vectors $FF7E - $FF70.

10.3.2 Interrupt Test Registers

Address:$0016
Bit 7 6 5 4 3 2 1 Bit O
Read:
INTE INTC INTA INT8 INT6 INT4 INT2 INTO
Write:
Reset: 0 0 0 0 0 0 0 0

Figure 10-4 Interrupt TEST Registers (ITEST)

Read: Only in special modes. Reads will return either the state of the interrupt inputs of the
Interrupt sub-block (WRTINT = 0) or the values written into the TEST registers (WRTINT
= 1). Reads will always return zeroes in normal modes.

Write: Only in special modes and with WRTINT =1 and CCR | mask = 1.

INTE - INTO - Interrupt TEST bits

These registers are used in special modes for testing the interrupt logic and priority independent of the
system configuration. Each bit is used to force a specific interrupt vector by writing it to a logic one
state. Bits are named with INTE through INTO to indicate vectors $FFxE through $FFx0. These bits
can be written only in special modes and only with the WRTINT bit set (logic one) in the Interrupt Test
Control Register (ITCR). In addition, I interrupts must be masked using the | bit in the CCR. In this
state, the interrupt input lines to the Interrupt sub-block will be disconnected and interrupt requests will
be generated only by this register. These bits can also be read in special modes to view that an interrupt
requested by a system block (such as a peripheral block) has reached the INT module.

There is a test register implemented for every 8 interrupts in the overall system. All of the test registers
share the same address and are individually selected using the value stored in the ADR3 - ADRO bits of
the Interrupt Test Control Register (ITCR).

NOTE: When ADR3-ADRO have the value of $F, only bits 2-0 in the ITEST register will be
accessible. That is, vectors higher than $FFF4 cannot be tested using the test
registers and bits 7-3 will always read as a logic zero. If ADR3-ADRO point to an
unimplemented test register, writes will have no effect and reads will always return
a logic zero value.

174 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

10.3.3 Highest Priority | Interrupt (Optional)

Address:$001F
Bit 7 6 5 4 3 2 1 Bit O
Read: 0
PSEL7 | PSEL6 | PSEL5 | PSEL4 | PSEL3 | PSEL2 | PSEL1
Write:
Reset: 1 1 1 1 0 0 1 0

Figure 10-5 Highest Priority | Interrupt Register (HPRIO)

Read: anytime
Write: only if | mask in CCR =1

PSEL7 - PSEL1 - Highest priority | interrupt select bits

The state of these bits determines which | bit maskable interrupt will be promoted to highest priority
(of the I bit maskable interrupts). To promote an interrupt, the user writes the least significant byte of
the associated interrupt vector address to this register. If an unimplemented vector address or a non |
bit masked vector address (value higher than $F2) is written, IRQ ($FFF2) will be the default highest
priority interrupt.

10.4 Operation

The Interrupt sub-block processes all exception requests made by the CPU. These exceptions include
interrupt vector requests and reset vector requests. Each of these exception types and their overall priority
level is discussed in the subsections below.

10.4.1 Interrupt Exception Requests

As shown inFigure 10-1 above, the INT mainly contains a register block to provide interrupt status and
control, an optional Highest Priority | Interrupt (HPRIO) block and a priority decoder to evaluate whether
pending interrupts are valid and assess their priority.

10.4.1.1 Interrupt Registers

The INT registers are accessible only in special modes of operation and function as dest€itid in
and10.3.2 previously.

10.4.1.2 Highest Priority | bit Maskable Interrupt

When the optional HPRIO block is implemented, the user is allowed to promote a single | bit maskable
interrupt to be the highest priority | interrupt. The HPRIO evaluates all interrupt exception requests and
passes the HPRIO vector to the priority decoder if the highest priority | interrupt is active.

@ MOTOROLA 175

Core User Guide — S12CPU15UG V1.2

10.4.1.3 Interrupt Priority Decoder

The priority decoder evaluates all interrupts pending and determines their validity and priority. When the
CPU requests an interrupt vector, the decoder will provide the vector for the highest priority interrupt
request. Because the vector is not supplied until the CPU requests it, it is possible that a higher priority
interrupt request could override the original exception that caused the CPU to request the vector. In this
case, the CPU will receive the highest priority vector and the system will process this exception instead of
the original request.

NOTE: Care must be taken to ensure that all exception requests remain active until the
system begins execution of the applicable service routine; otherwise, the exception
request may not get processed.

If for any reason the interrupt source is unknown (e.g. an interrupt request becomes inactive after the
interrupt has been recognized but prior to the vector request), the vector address will default to that of the
last valid interrupt that existed during the particular interrupt sequence. If the CPU requests an interrupt
vector when there has never been a pending interrupt request, the INT will provide the Software Interrupt
(SWI) vector address.

10.4.2 Reset Exception Requests

The INT supports three system reset exception request types: normal system reset or power-on-reset
request, Crystal Monitor reset request and COP Watchdog reset request. The type of reset exception
request must be decoded by the system and the proper request made to the Core. The INT will then provide
the service routine address for the type of reset requested.

10.4.3 Exception Priority

The priority (from highest to lowest) and address of all exception vectors issued by the INT upon request
by the CPU is shown imable 10-1 below.

Table 10-1 Exception Vector Map and Priority

Vector Address Source
$FFFE-$FFFF System reset
$FFFC-$FFFD Crystal Monitor reset
$FFFA-$FFFB COP reset
$FFF8-$FFF9 Unimplemented opcode trap
$FFF6-$FFF7 Software interrupt instruction (SWI) or BDM vector request
$FFFA-$FFF5 XIRQ signal
$FFF2-$FFF3 IRQ signal
SEFEO—$FF00 ggg/é(;i-jiazcgirc& égit maskable interrupt sources (priority in

176 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

10.5 Modes of Operation

The functionality of the INT sub-block in various modes of operation is discussed in the subsections that
follow.

10.5.1 Normal Operation
The INT operates the same in all normal modes of operation.
10.5.2 Special Operation

Interrupts may be tested in special modes through the use of the interrupt test registers as described in
10.3.1 and10.3.2 previously.

10.5.3 Emulation Modes

The INT operates the same in emulation modes as in normal modes.

10.6 Low-Power Options

The INT does not contain any user-controlled options for reducing power consumption. The operation of
the INT in low-power modes is discussed in the following subsections.

10.6.1 Run Mode
The INT does not contain any options for reducing power in run mode.
10.6.2 Wait Mode

Clocks to the INT can be shut off during system wait mode and the asynchronous interrupt path will be
used to generate the wakeup signal upon recognition of a valid interrupt ¥iR@yequest.

10.6.3 Stop Mode

Clocks to the INT can be shut off during system stop mode and the asynchronous interrupt path will be
used to generate the wakeup signal upon recognition of a valid interrupt ¥iR@yequest.

10.7 Motorola Internal Information

The INT does not contain any functionality that is considered to be for Motorola internal use only.

@ MOTOROLA 177

Core User Guide — S12CPU15UG V1.2

178 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 11 Module Mapping Control (MMC)

This section describes the functionality of the Module Mapping Control (MMC) sub-block of the Core.

11.1 Overview

The Module Mapping Control (MMC) sub-block of the Core performs all mapping and select operations
for the on-chip and external memory blocks. The MMC also handles mapping functions for the system
peripheral blocks and provides a global peripheral select to be decoded by the Motorola I.P. Bus when the
Core is addressing a portion of the peripheral register map space. All bus-related data flow and
multiplexing for the Core is handled within the MMC as well. Finally, the MMC contains logic to
determine the state of system security.

11.1.1 Features

* Registers for mapping of address space for on-chip RAM, EEPROM, and Flash EEPROM (or
ROM) memory blocks and associated registers

* Memory mapping control and selection based upon address decode and system operating mode
» Core Address Bus control

» Core Data Bus control and multiplexing

» Core Security state decoding

« Emulation Chip Select signal generati®@CQ)

« External Chip Select signal generatitCS)

* Internal memory expansion

» Miscellaneous system control functions via the MISC register

* Reserved registers for test purposes

» Configurable system memory options defined at integration of Core into the System-on-a-Chip
(SOC).

@ MOTOROLA 179

Core User Guide — S12CPU15UG V1.2

11.1.2 Block Diagram

The block diagram of the MMC is shownfigure 11-1 below.

secure

bdm_unsecure

L
L

Stop, Wait >

Read & Write Enables

-
Clocks, Reset -

Mode Information

EBI Alternate Address bus

MMmC

SECURITY

mmc_secure

Ad

ADDRESS DECODE

REGISTERS

INTERNAL MEMORY
EXPANSION

-

< Port K Interface >

memory space select(s)

peripheral select

EBI Alternate Write data bu&

EBLAlternate Read data bus
-

CPU Address bus

-
CPU Read Data bus

CPU Write Data bus

CPU Control

L

BUS CONTROL

Yyvy

Core select (s)

Alternate Address bus (BDM)

Alternate Write data bus (BDM)

A

Alternate Read data bus (BDM)
-

Figure 11-1 Module Mapping Control Block Diagram

11.2 Interface Signals

All interfacing with the MMC sub-block is done within the Core.

180

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2
11.3 Registers

A summary of the registers associated with the MMC sub-block is shoWwigire 11-2 below. Detailed
descriptions of the registers and bits are given in the subsections that follow.

Address Name Bit 7 6 5 4 3 2 1 Bit 0
$0010 INITRM \:\i?t‘i RAMI15 | RAM14 | RAM13 | RAM12 | RAMI1 0 0 RAMHAL
$0011 INITRG \:\i‘?‘t‘i 0 REG14 | REG13 | REGI2 | REGI11 0 0 0
$0012 INITEE \:\i?t‘i EE15 EE14 EE13 EE12 EE11 0 0 EEON
$0013 MISC \:\i‘?‘t‘i 0 0 0 0 EXSTR1 | EXSTRO | ROMHM | ROMON
$0014 Reserved regd Bit 7 6 5 4 3 2 1 Bit 0
write

$0017 Reserved regd Bit 7 6 5 4 3 2 1 Bit 0
write

$001C MEMSIZO regd reg_swoO 0 eep_swl | eep_swO 0 ram_sw2 | ram_swl | ram_swO0
write

$001D MEMSIZ1 regd rom_swl | rom_swO 0 0 0 0 pag_swl | pag_swO
write

$0030 PPAGE \:\i‘;‘i 0 0 PIX5 PIX4 PIX3 PIX2 PIX1 PIXO

$0031 Reserved regd 0 0 0 0 0 0 0 0
write

|:| = Unimplemented X = Indeterminate

Figure 11-2 Module Mapping Control Register Summary

@ MOTOROLA 181

Core User Guide — S12CPU15UG V1.2

11.3.1 Initialization of Internal RAM Position Register (INITRM)

Address: Base + $10
Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0 RAM-
RAM15 | RAM14 | RAM13 | RAM12 | RAM11
Write: HAL
Reset: 0 0 0 0 1 0 0 1
= Unimplemented

Figure 11-3 INITRM Register

Read: Anytime
Write: Once in Normal and Emulation Modes, anytime in Special Modes

NOTE: Writes to this register take one cycle to go into effect.
This register initializes the position of the internal RAM within the on-chip system memory map.

RAM15 - RAM11 - Internal RAM Map Position
These bits determine the upper five bits of the base address for the system’s internal RAM array.

RAMHAL - RAM High-align

RAMHAL specifies the alignment of the internal RAM array.
0 = Aligns the RAM to the lowest address ($0000) of the mappable space
1 = Aligns the RAM to the higher address ($FFFF) of the mappable space

11.3.2 Initialization of Internal Registers Position Register (INITRG)

Address: Base + $11
Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0 0 0
REG14 REG13 REG12 REG11
Write:
Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 11-4 INITRG Register

Read: Anytime
Write: Once in Normal and Emulation modes and anytime in Special modes

182 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

This register initializes the position of the internal registers within the on-chip system memory map. The

registers occupy either a 1K byte or 2K byte space and can be mapped to any 2K byte space within the first
32K bytes of the system’s address space.

REG14 - REGL11 - Internal Register Map Position

These four bits in combination with the leading zero supplied by bit 7 of INITRG determine the upper

five bits of the base address for the system’s internal registers (i.e. the minimum base address is $0000
and the maximum is $7FFF).

11.3.3 Initialization of Internal EEPROM Position Register (INITEE)

Address: Base + $12
Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0
EE15 EE14 EE13 EE12 EE11 EEON
Write:
Reset: 0 0 0 0 0 0 0 1
= Unimplemented

Figure 11-5 INITEE Register

Read: Anytime

Write: Once in Normal and Emulation modes with the exception of the EEON bit which can be
written anytime and write anytime in Special modes

NOTE: Writes to this register take one cycle to go into effect.
This register initializes the position of the internal EEPROM within the on-chip system memory map.

EE15 - EE11 - Internal EEPROM map position
These bits determine the upper five bits of the base address for the system’s internal EEPROM array.

@ MOTOROLA 183

Core User Guide — S12CPU15UG V1.2

11.3.4 Miscellaneous System Control Register (MISC)

Address:; Base + $13

Bit 7 6 5 4 3 2 1 Bit0
Read: 0 0 0 0
EXSTR1 | EXSTRO | ROMHM | ROMON
Write:
Expanded 0 0 0 1 1 0 1
Reset:
Peripheral
or Single 0 0 0 0 1 1 0 1
Chip Reset

= Unimplemented

Figure 11-6 Miscellaneous System Control Register (MISC)

NOTES:
1. The reset state of this bit is determined at the chip integration level.

Read: Anytime
Write: As stated in each bit description below

NOTE:Writes to this register take one cycle to go into effect

This register initializes miscellaneous control functions.

EXSTR1,0 - External Access Stretch Bits 1 & 0
Write: Once in Normal and Emulation modes and anytime in Special modes

This two bit field determines the amount of clock stretch on accesses to the external address space as
shown inTable 11-1 below. In Single Chip and Peripheral modes these bits have no meaning or
effect.

Table 11-1 External Stretch Bit Definition

Stretch bit EXSTR1 |Stretch bit EXSTRO INumber of E Clocks Stretched
0 0 0
0 1 1
1 0 2
1 1 3

ROMHM - Flash EEPROM or ROM only in second half of memory map
Write: Once in Normal and Emulation modes and anytime in Special modes

184

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

1 = Disables direct access to the Flash EEPROM or ROM in the lower half of the memory map.
These physical locations of the Flash EEPROM or ROM can still be accessed through the
Program Page window.

0 = The fixed page(s) of Flash EEPROM or ROM in the lower half of the memory map can be
accessed.

ROMON - Enable Flash EEPROM or ROM
Write: Once in Normal and Emulation modes and anytime in Special modes

This bit is used to enable the Flash EEPROM or ROM memory in the memory map.
1 = Enables the Flash EEPROM or ROM in the memory map.
0 = Disables the Flash EEPROM or ROM from the memory map.

11.3.5 Reserved Test Register Zero (MTSTO)

Address: Base + $17
Read: 0 0 0 0 0 0 0 0
Write:
Reset: 0 0 0 0 0 0 0 0
= Unimplemented

Figure 11-7 Reserved Test Register Zero (MTSTO)

Read: Anytime

Write: No effect - this register location is used for internal test purposes.

11.3.6 Reserved Test Register One (MTST1)

Address: Base + $14
Read: 0 0 0 0 0 0 0 0
Write:
Reset: 0 0 0 1 0 0 0 0
= Unimplemented

Figure 11-8 Reserved Test Register One (MTST1)

Read: Anytime

Write: No effect - this register location is used for internal test purposes.

@ MOTOROLA 185

Core User Guide — S12CPU15UG V1.2

11.3.7 Memory Size Register Zero (MEMSIZO0)

Address: Base + $1C
Read: | reg_swO 0 eep_swl | eep_swO 0 ram_sw2 | ram_sw1 | ram_swO
Write:
Reset: - - - - - - - -
= Unimplemented

Figure 11-9 Memory Size Register Zero

Read: Anytime
Write: Writes have no effect

The MEMSIZO register reflects the state of the register, EEPROM and RAM memory space configuration
switches at the Core boundary which are configured at system integration. This register allows read
visibility to the state of these switches.

reg_swo - Allocated System Register Space
1 = Allocated system register space size is 2K byte
0 = Allocated system register space size is 1K byte

eep_swl:eep_swO - Allocated System EEPROM Memory Space
The allocated system EEPROM memory space size is as giVable 11-2 below.

Table 11-2 Allocated EEPROM Memory Space

eep_swl:eep_swO |Allocated EEPROM Space
00 OK byte
01 2K byte
10 4K byte
11 8K byte

ram_sw2:ram_swO - Allocated System RAM Memory Space
The allocated system RAM memory space size is as givEalle 11-3 below.

Table 11-3 Allocated RAM Memory Space

ram_sw2:ram_sw0 |Allocated RAM Space RAM mappable region INITRM bits used
000 2k Byte 2k Byte RAM15-RAM11
001 4k Byte 4k Byte RAM15-RAM12
010 6k Byte 8k Byte! RAM15-RAM13
011 8k Byte 8k Byte RAM15-RAM13
100 10k Byte 16k Bytel RAM15-RAM14

186 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table 11-3 Allocated RAM Memory Space

ram_sw2:ram_swO |Allocated RAM Space RAM mappable region INITRM bits used
101 12k Byte 16k Bytel RAM15-RAM14
110 14k Byte 16k Bytel RAM15-RAM14
111 16k Byte 16k Byte RAM15-RAM14
NOTES:
1. glfl\r/]lmirlit of the Allocated RAM space within the RAM mappable region is dependent on the value of

NOTE: As stated, the bits in this register provide read visibility to the system physical
memory space allocations defined at system integration. The actual array size for
any given type of memory block may differ from the allocated size. Please refer to
the chip-level documentation for actual sizes.

11.3.8 Memory Size Register One (MEMSIZ1)

Address: Base + $1D
Read: |rom_swl | rom-swO 0 0 0 0 pag_swl | pag_swO
Write:
Reset: - - - - - - - -
= Unimplemented

Figure 11-10 Memory Size Register One

Read: Anytime
Write: Writes have no effect

The MEMSIZ1 register reflects the state of the Flash EEPROM or ROM physical memory space and
paging switches at the Core boundary which are configured at system integration. This register allows read
visibility to the state of these switches.

rom_swl:rom_swO - Allocated System Flash EEPROM or ROM Physical Memory Space

The allocated system Flash EEPROM or ROM physical memory space is as giadeiil-4
below.

Table 11-4 Allocated Flash EEPROM/ROM Physical Memory Space

rom_swl:rom_swO ‘g:‘ﬁ%ﬁdgﬂﬁg
00 OK byte
o1 16K byte
10 48K byte!
11 64K bytel

1 The ROMHM software bit in the MISC register determines the accessibility of the Flash EEPROM/ROM memory space.
Please refer to 11.3.4 for a detailed functional description of the ROMHM bhit.

@ MOTOROLA 187

Core User Guide — S12CPU15UG V1.2

pag_swl:pag_swo - Allocated Off-Chip Flash EEPROM or ROM Memory Space
The allocated off-chip Flash EEPROM or ROM memory space size is as givieabie 11-5 below.

Table 11-5 Allocated Off-Chip Memory Options

pag_swl:pag_sw0 Off-Chip Space On-Chip Space
00 876K byte 128K byte
01 768K byte 256K byte
10 512K byte 512K byte
11 OK byte 1M byte

NOTE: As stated, the bits in this register provide read visibility to the system memory space
and on-chip/off-chip partitioning allocations defined at system integration. The
actual array size for any given type of memory block may differ from the allocated
size. Please refer to the chip-level documentation for actual sizes.

11.3.9 Program Page Index Register (PPAGE)

Address: Base + $30
Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0
PIX5 PIX4 PIX3 PIX2 PIX1 PIXO0
Write:
Reset: 0 0 0 0 0 0 0 0
= Unimplemented

Figure 11-11 Program Page Index Register (PPAGE)

Read: Anytime
Write: Anytime

The HCS12 Core architecture limits the physical address space available to 64K bytes. The Program Page
Index Register allows for integrating up to 1M byte of Flash EEPROM or ROM into the system by using
the six page index bits to page 16K byte blocks into the Program Page Window located from $8000 to
$BFFF as defined imable 11-6 below. CALL and RTC instructions have a special single wire

mechanism to read and write this register without using the address bus.

NOTE: Normal writes to this register take one cycle to go into effect. Writes to this register
using the special single wire mechanism of the CALL and RTC instructions will be
complete before the end of the associated instruction.

PIX5 - PIX0 - Program Page Index Bits 5-0

These six page index bits are used to select which of the 64 Flash EEPROM or ROM array pages is to
be accessed in the Program Page Window as shovabie 11-6.

188 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table 11-6 Program Page Index Register Bits

PIX5 PIX4 PIX3 PIX2 PIX1 PIX0 | Program Space Selected
0 0 0 0 0 0 16K page 0
0 0 0 0 0 1 16K page 1
0 0 0 0 1 0 16K page 2
0 0 0 0 1 1 16K page 3
1 1 1 1 0 0 16K page 60
1 1 1 1 0 1 16K page 61
1 1 1 1 1 0 16K page 62
1 1 1 1 1 1 16K page 63

11.4 Operation

The MMC sub-block performs four basic functions of the Core operation: bus control, address decoding
and select signal generation, memory expansion and security decoding for the system. Each aspect is
described in the subsections following.

11.4.1 Bus Control

The MMC controls the address bus and data buses that interface the Core with the rest of the system. This
includes the multiplexing of the input data buses to the Core onto the main CPU read data bus and control
of data flow from the CPU to the output address and data buses of the Core. In addition, the MMC handles
all CPU read data bus swapping operations.

11.4.2 Address Decoding

As data flows on the Core address bus, the MMC decodes the address information, determines whether the
internal Core register or firmware space, the peripheral space or a memory register or array space is being
addressed and generates the correct select signal. This decoding operation also interprets the mode of
operation of the system and the state of the mapping control registers in order to generate the proper select.
The MMC also generates two external chip select signals, Emulation Chip SEG%} &nd External Chip

Select KCS).

@ MOTOROLA 189

Core User Guide — S12CPU15UG V1.2

11.4.2.1 Select Priority and Mode Considerations

Although internal resources such as control registers and on-chip memory have default addresses, each can
be relocated by changing the default values in control registers. Normally, I/O addresses, control registers,
vector spaces, expansion windows, and on-chip memory are mapped so that their address ranges do not
overlap. The MMC will make only one select signal active at any given time. This activation is based upon
the priority outlined inTable 11-7 below. If two or more blocks share the same address space, only the
select signal for the block with the highest priority will become active. An example of this is if the registers
and the RAM are mapped to the same space, the registers will have priority over the RAM and the portion
of RAM mapped in this shared space will not be accessible. The expansion windows have the lowest
priority. This means that registers, vectors, and on-chip memory are always visible to a program regardless
of the values in the page select registers.

Table 11-7 Select Signal Priority

Priority Address Space
Highest BDM (internal to Core) firmware or register space
Internal register space

RAM memory block
EEPROM memory block
On-chip Flash EEPROM or ROM

Lowest Remaining external space

In expanded modes, all address space not used by internal resources is by default external memory space.
The data registers and data directions registers for Ports A and B are removed from the on-chip memory
map and become external accesses. If the EME bit in the MODE registelfd<e8) is set, the data and

data direction registers for Port E are also removed from the on-chip memory map and become external
accesses.

In Special Peripheral mode, the first 16 registers associated with bus expansion are removed from the
on-chip memory map (PORTA, PORTB, DDRA, DDRB, PORTE, DDRE, PEAR, MODE, PUCR,
RDRIV and the EBI reserved registers).

In emulation modes, if the EMK bit in the MODE register (s€23.8) is set, the data and data direction
registers for Port K are removed from the on-chip memory map and become external accesses.

11.4.2.2 Emulation Chip Select Signal

When the EMK bitin the MODE register (s&2.3.8) is set, Port K bit 7 is used as an active-low emulation
chip select signaE.CS. This signal is active when the system is in Emulation mode, the EMK bit is set
and the Flash EEPROM or ROM space is being addressed subject to the conditions outlitved.ih
below. When the EMK bit is clear, this pin is used for general purpose 1/0.

11.4.2.3 External Chip Select Signal

When the EMK bit in the MODE register (s&2.3.8) is set, Port K bit 6 is used as an active-low external
chip select signalXCS. This signal is active only when tlCS signal described above is not active and
when the system is addressing the external address space. Accesses to unimplemented locations within the

190 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

register space or to locations that are removed from the map (i.e. Ports A and B in Expanded modes) will
not cause this signal to become active. When the EMK bit is clear, this pin is used for general purpose 1/0O.

11.4.3 Memory Expansion

The HCS12 Core architecture limits the physical address space available to 64K bytes. The Program Page
Index Register allows for integrating up to 1M byte of Flash EEPROM or ROM into the system by using
the six page index bits to page 16K byte blocks into the Program Page Window located from $8000 to
$BFFF in the physical memory space. The paged memory space can consist of solely on-chip memory or
a combination of on-chip and off-chip memory. This partitioning is configured at system integration
through the use of the paging configuration switcipag (swl:pag_swt the Core boundary. The

options available to the integrator are as givehahle 11-8 below (this table match&sable 11-5 but

is repeated here for easy reference).

Table 11-8 Allocated Off-Chip Memory Options

pag_swl:pag_sw0 Dff-Chip Space On-Chip Space
00 876K byte 128K byte
01 768K byte 256K byte
10 512K byte 512K byte
11 OK byte 1M byte

Based upon the system configuration, the Program Page Window will consider its access to be either
internal or external as definedTiable 11-9 below.

Table 11-9 External/Internal Page Window Access

pag_swl:pag_swO [Partitioning PJX5:0 Value Page Window Access
- 876K off-chi'p, $00 - $37 external
128K on-Chip $38 - $3F internal
o1 768K off-chip, $00 - $2F external
256K on-chip $30 - $3F internal
10 512K off-chip, $00 - $1F external
512K on-chip $20 - $3F internal
OK off-chip, n/a external
11 . -
1M on-chip $00 - $3F internal

NOTE: The partitioning as defined ifable 11-9 above applies only to the allocated
memory space and the actual memory sizes implemented in the system may differ.
Please refer to the chip-level documentation for actual sizes.

The PPAGE register holds the page select value for the Program Page Window. The value of the PPAGE
register can be manipulated by normal read and write instructions as well as the CALL and RTC
instructions.

@ MOTOROLA 191

Core User Guide — S12CPU15UG V1.2

Control registers, vector spaces and a portion of on-chip memory are located in unpaged portions of the
64K byte physical address space. The stack and I/O addresses should also be in unpaged memory to make
them accessible from any page.

The starting address of a service routine must be located in unpaged memory because the 16-bit exception
vectors cannot point to addresses in paged memory. However, a service routine can call other routines that
are in paged memory. The upper 16K byte block of memory space ($C000-$FFFF) is unpaged. It is
recommended that all reset and interrupt vectors point to locations in this area.

11.4.3.1 CALL and Return from Call Instructions

CALL and RTC are uninterruptable instructions that automate page switching in the program expansion
window. CALL is similar to a JSR instruction, but the subroutine that is called can be located anywhere
in the normal 64K byte address space or on any page of program expansion memory. CALL calculates and
stacks a return address, stacks the current PPAGE value, and writes a new instruction-supplied value to
PPAGE. The PPAGE value controls which of the 64 possible pages is visible through the 16K byte
expansion window in the 64K byte memory map. Execution then begins at the address of the called
subroutine.

During the execution of a CALL instruction, the CPU:
» Writes the old PPAGE value into an internal temporary register and writes the new
instruction-supplied PPAGE value into the PPAGE register.

» Calculates the address of the next instruction after the CALL instruction (the return address), and
pushes this 16-bit value onto the stack.

* Pushes the old PPAGE value onto the stack.
» Calculates the effective address of the subroutine, refills the queue, and begins execution at the new
address on the selected page of the expansion window.

This sequence is uninterruptable; there is no need to inhibit interrupts during CALL execution. A CALL
can be performed from any address in memory to any other address.

The PPAGE value supplied by the instruction is part of the effective address. For all addressing mode
variations except indexed-indirect modes, the new page value is provided by an immediate operand in the
instruction. In indexed-indirect variations of CALL, a pointer specifies memory locations where the new
page value and the address of the called subroutine are stored. Using indirect addressing for both the new
page value and the address within the page allows values calculated at run time rather than immediate
values that must be known at the time of assembly.

The RTC instruction terminates subroutines invoked by a CALL instruction. RTC unstacks the PPAGE
value and the return address and refills the queue. Execution resumes with the next instruction after the
CALL.

During the execution of an RTC instruction, the CPU:

* Pulls the old PPAGE value from the stack
e Pulls the 16-bit return address from the stack and loads it into the PC
* Writes the old PPAGE value into the PPAGE register

192 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

* Refills the queue and resumes execution at the return address

This sequence is uninterruptable; an RTC can be executed from anywhere in memory, even from a
different page of extended memory in the expansion window.

The CALL and RTC instructions behave like JSR and RTS, except they use more execution cycles.
Therefore, routinely substituting CALL/RTC for JSR/RTS is not recommended. JSR and RTS can be used
to access subroutines that are on the same page in expanded memory. However, a subroutine in expandec
memory that can be called from other pages must be terminated with an RTC. And the RTC unstacks a
PPAGE value. So any access to the subroutine, even from the same page, must use a CALL instruction so
that the correct PPAGE value is in the stack.

11.4.3.2 Extended Address (XAB19:14) and ECS Signal Functionality

If the EMK bit in the MODE register is set (s&2.3.8) the PI1X5:0 values will be output on XAB19:14
respectively (Port K bits 5:0) when the system is addressing within the physical Program Page Window
address space ($8000 - $BFFF) and is in an expanded mode. When addressing anywhere else within the
physical address space (outside of the paging space), the XAB19:14 signals will be assigned a constant
value based upon the physical address space selected. In addition, the active-low emulation chip select
signal,ECS, will likewise function based upon the assigned memory allocation. In the cases of 48K byte
and 64K byte allocated physical Flash/ROM space, the operation BE®Besignal will additionally

depend upon the state of the ROMHM bit (4e3.4) in the MISC registerTable 11-10, Table 11-11,

Table 11-12 andTable 11-13 below summarize the functionality of these signals based upon the
allocated memory configuration. Again, this signal information is only available externally when the EMK

bit is set and the system is in an expanded mode.

Table 11-10 OK Byte Physical Flash/ROM Allocated

Address Space Page Window Access ROMHM |ECS | XAB19:14
$0000 - $3FFF n/a n/a 1 $3D
$4000 - $7FFF n/a n/a 1 $3E
$8000 - $BFFF n/a n/a 0 PIX5:0
$CO000 - $FFFF n/a n/a 0 $3F

Table 11-11 16K Byte Physical Flash/ROM Allocated

Address Space Page Window Access ROMHM |ECS|XAB19:14
$0000 - $3FFF n/a n/a 1 $3D
$4000 - $7FFF n/a n/a 1 $3E
$8000 - $BFFF n/a n/a 1 PIX5:0
$CO000 - $FFFF n/a n/a 0 $3F

Table 11-12 48K Byte Physical Flash/ROM Allocated
Address Space Page Window Access ROMHM |ECS|XAB19:14

$0000 - $3FFF n/a n/a 1 $3D
0 0
$4000 - $7FFF n/a 1 1 $3E

@ MOTOROLA 193

Core User Guide — S12CPU15UG V1.2

Table 11-12 48K Byte Physical Flash/ROM Allocated
Address Space Page Window Access ROMHM |ECS|XAB19:14

external 1

$8000 - $BFFF - n/a PIX5:0
internal 0

$C000 - $FFFF n/a n/a 0 $3F

Table 11-13 64K Byte Physical Flash/ROM Allocated
Address Space Page Window Access ROMHM |ECS|XAB19:14

0 0
$0000 - $3FFF n/a 1 1 $3D
0 0
$4000 - $7FFF n/a 1 1 $3E
external n/a 1
$8000 - $BFFF - PIX5:0
internal n/a 0
$C000 - $FFFF n/a n/a 0 $3F

A graphical example of a memory paging for a system configured as 1M byte on-chip Flash/ROM with
64K allocated physical space is giverFigure 11-12 below for illustration.

194 @ MOTOROLA

$0000

$4000

$8000

$C000

$FF00
$FFFF

Figure 11-12 Memory Paging Example: 1M Byte On-Chip Flash/ROM, 64K Allocation

61

16K FLASH
(Unpaged)*

62

16K FLASH
(Unpaged)*

Core User Guide — S12CPU15UG V1.2

16K FLASH
(Paged)

5960 |61 |62 |63

63

16K FLASH
(Unpaged)

=

| VECTORS

NORMAL
SINGLE CHIP

@ MOTOROLA

* These 16K FLASH/ROM pages accessi-
ble from $0000 to $7FFF if selected by the
ROMHM bit in the MISC register.

195

Core User Guide — S12CPU15UG V1.2
11.5 Motorola Internal Information
The subsection aspects of the MMC that are considered to be for Motorola internal use only.

11.5.1 Test Registers

There are two test registers for the MMC, MTST][1:0]. These registers are used for internal test purposes
to gain visibility into the module select logic.

In all modes, if the FLAGSE bitin MTSTL1 is set, accesses to internal registers or memory will cause the
associated flag to assert. For example, an access into the RAM array will cause the MTO1 bit (Bit lin
MTSTO - RAM Array bit) to set. These registers can be read in any mode. If the FLAGSE bitis set, reading
the register will cause it to be cleared. A write will have no effect in all modes.

11.5.1.1 Mapping Test Register 0 (MTSTO)

Address: Base + $14

Read: MTO7 MTO6 MTO5 MTO4 MTO3 MTO2 MTO1 MTOO

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 11-13 Mapping Test Register Zero (MTSTO)

Read: Anytime
Write: No effect

MTO 7-0 - Mapping Test O
The individual bits are assigned as follows:

MTO7 - Core*

MTO6 - Peripheral
MTOS - EE Array
MTO4 - EE Register
MTOS3 - Flash Array
MTO2 - Flash Register
MTO1 - RAM Array
MTOO - RAM Register

* This flag bit will not get set when you are accessing any of the MTST registers

196 @ MOTOROLA

11.5.1.2 Mapping Test Register 1 (MTST1)

Core User Guide — S12CPU15UG V1.2

Address: Base + $17
Read: MT17 MT16 MT15 MT14 MT13 MT12 MT11 MT10
Write: PNORME | FLAGSE |BKGDPUE
Reset: 0 0 0 1 0 0 0 0
= Unimplemented

Figure 11-14 Mapping Test Register One (MTST1)

Read: Anytime
Write: See individual bit descriptions

MT17 - Unimplemented (reads back zero)

MT16 - Mapping Test Register 1 Bit 6 (PNORME).

Normally, the system will enter peripheral mode and be in a special mode. Setting this bit will put the
system into normal peripheral mode. This is so that testing of register normal mode read/write
conditions can be performed while in peripheral mode.

Normal, Special & Emulation: Write never.

Peripheral: Write anytime.
1 = The system operates in normal peripheral mode.
0 = The system operates in special peripheral mode.

MT15 — Mapping Test Register 1 Bit 5 (FLAGSE).

This bit is used to enable the select signal flag function of the MTST registers. When asserted, the
MTST registers that have an associated block select signal flag bit will act as flag registers, where an
access to the block causes the flag bit to assert. When unasserted, the MTST registers will not act as
flag bits.

Normal & Emulation: Write never.
Special: Write anytime.
1 = The MTST registers act as flag bits for the block select signals.
0 = The MTST registers do not act as flag bits for the block select signals.
MT14 - Mapping Test Register 3 Bit 4 (BKGDPUE)
This bit used to enable/disable the pull-up on the BKGD pin.
Normal & Emulation: Write never

Special: Write anytime
1 = The pull-up on the BKGD pin is enabled.
0 = The pull-up on the BKGD pin is disabled.

MT 13-10 — Mapping Test Register 1 Bits 3:0

@ MOTOROLA 197

Core User Guide — S12CPU15UG V1.2
11.5.2 MMC Bus Control

This subsection discusses aspects of the bus control/multiplexing performed by the MMC.
11.5.2.1 Address Bus

The MMC multiplexes the EBI Alternate Address Bus, BDM Alternate Address Bus, and the CPU
Address Bus to form the main address bus for the Core. The EBI Alternate Address Bus is the address bus
source in peripheral mode. The BDM Alternate Address Bus is the address bus source whenever the BDM
is driving the bus. The CPU Address Bus is the address bus source whenever the CPU has a valid address,
the BDM is not driving the bus and the system is not operating in peripheral mode.

11.5.2.2 Write Data Bus

The CPU Write Data bus, EBI Alternate Write Data bus or BDM Alternate Write Data bus supply data to
the master bus. The CPU Write Data bus is the write data source unless the cycle is a BDM access or the
system is operating in peripheral mode. The BDM Alternate Write Data bus is the write data source only
when the BDM is driving the bus. The EBI Alternate Write Data bus is the write data source in peripheral
mode.

11.5.2.3 Read Data Bus

The MMC provides the control to split 16-bit accesses into two cycle operations, when needed. The CPU
is paused during the second cycle of the two cycle access. For reads, the MMC takes care of swapping and
holding the read data bus so that the CPU will receive the data on the correct location of its read data bus.

An access may also take two cycles when the Interrupt or BDM is driving the address bus, if the system
is in a narrow mode and the 16-bit access is to external memory space. In these cases, AB[0] will be forced
high during the second cycle.

The MMC will also force those accesses that would normally be two cycle operations into a single cycle
operation based upon the Wide Bus Enable signal. This signal will assert when performing a 16-bit access
in narrow mode to those locations that are removed from the memory map, as summariadtsiyl-14

Table 11-14 Wide Bus Enable Signal Generation

Address Register Conditions mmc_widebuse_t2
Names - -
PORTA
$0000 - PORTB initrg[4:0] == mmc_ab_t2[15:11] & ebi_emul_t2 & 1
$0003 DDRA ebi_narrow_t2
DDRB
$0008 - PORTE initrg[4:0] == mmc_ab_t2[15:11] & ebi_emul_t2 & 1
$0009 DDRE ebi_narrow_t2 & ebi_eme_t2
PEAR
$000A - MODE initrg[4:0] == mmc_ab_t2[15:11] & ebi_emul_t2 & 1
$000D PUCR ebi_narrow_t2
RDRIV

198 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

$0032 - PORTK initrg[4:0] == mmc_ab_t2[15:11] & ebi_emul_t2 &
$0033 DDRK ebi_narrow_t2 & ebi_emk_t2
All Others - -

Table 11-15summarizes the different access types, where the data is on the internal or external read data
bus and where the CPU is expecting the data. The source of the CPU’s read data bus for external accesses

is the ebi_extrdb and for internal accesses is the rdb_t2.

IMS refers to the Internal Memory Select signal (1 = Internal, O = External). FMTS refers to the Fast
Memory Transfer Select signal, which asserts anytime an access is made to the RAM except for the last

byte of the array.

Table 11-15 Read Data Bus Swapping

)
o
©
c
w 0 g © | & Read Data Bus
MODE 2 S |s|N| @ CYCLES (Internal or External)
a | T |Z|?|< -> CPU Read Data Bus
()
o
=
rdbh -> core_rdbh
X1y xpoelo L rdbl -> core_rdbl
1. rdbl -> core_rdbh
x|pirpopopt 2 2. rdbh -> core. rdbl
Single Chip 1 1 T x [1] o 1 rdbh -> core_rdbl
X 1 X 1 1 1 rdbl -> core_rdbl
rdbl -> core_rdbh
X ! ! 0 ! ! rdbh -> core_rdbl
1. extrdbh -> core_rdbh
X 0 X 0 0 2 2. extrdbl -> core_rdbl
1. extrdbl -> core_rdbh
X 0 X 0 ! 2 2. extrdbh -> core_rdbl
X 0 X 1 0 1 extrdbh -> core_rdbl
X 0 X 1 1 1 extrdbl -> core_rdbl
Normal
Expanded | X | 1 | x| o] o 1 rdbh -> core_rdbh
rdbl -> core_rdbl
Narrow
1. rdbl -> core_rdbh
X 1 0 0 1 2 2. rdbh -> core_rdbl
X 1 X 1 0 1 rdbh -> core_rdbl
X 1 X 1 1 1 rdbl -> core_rdbl
X 1 1 0 1 1 rdbl -> core_rdbh

rdbh -> core_rdbl

@ MOTOROLA

199

Core User Guide — S12CPU15UG V1.2

200

Table 11-15 Read Data Bus Swapping

Q
o]
©
o nl?2le|s Read Data Bus
MODE o | = S| N | & | CYCLES (Internal or External)
@ =2 Y | < -> CPU Read Data Bus
=
=
1. extrdbh -> core_rdbh
0 0 X 0 0 2 2. extrdbl -> core_rdbl
1. extrdbl -> core_rdbh
X 0 X 0 L 2 2. extrdbh -> core_rdbl
extrdbh -> core_rdbh
L 0 X 0 0 L extrdbl -> core_rdbl
0 X 1 0 1 extrdbh -> core_rdbl
Emulation 0| X |1 1 1 extrdbl -> core_rdbl
Expanded
Narrow rdbh -> core_rdbh
X ! X 0 0 ! rdbl -> core_rdbl
1. rdbl -> core_rdbh
X ! 0 0 ! 2 2. rdbh -> core_rdbl
1 X 1 0 1 rdbh -> core_rdbl
X 1 X 1 1 1 rdbl -> core_rdbl
rdbl -> core_rdbh
X 1 1 0 L L rdbh -> core_rdbl
(ext)rdbh -> core_rdbh
X X X 0 0 ! (ext)rdbl -> core_rdbl
1. (ext)rdbl -> core_rdbh
X X 0 0 ! 2 2. (ext)rdbh -> core_rdbl
Expanded
Wide X X | X |1 0 1 (ext)rdbh -> core_rdbl
X X 1 1 1 (ext)rdbl -> core_rdbl
X X 1 0 1 1 (ext)rdbl -> core_rdbh

(ext)rdbh -> core_rdbl

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 12 Multiplexed External Bus Interface (MEBI)

This section describes the functionality of the Multiplexed External Bus Interface (MEBI) sub-block of
the Core.

12.1 Overview

The MEBI sub-block of the Core serves to provide access and/or visibility to internal Core data
manipulation operations including timing reference information at the external boundary of the Core
and/or system. Depending upon the system operating mode and the state of bits within the control registers
of the MEBI, the internal 16-bit read and write data operations will be represented in 8-bit or 16-bit
accesses externally. Using control information from other blocks within the system, the MEBI will
determine the appropriate type of data access to be generated.

12.1.1 Features

» External bus controller with four 8-bit ports (A,B, E and K)

» Data and data direction registers for ports A, B E and K when used as general purpose I/0O
» Control register to enable/disable alternate functions on Port E and Port K

* Mode control register

» Control register to enable/disable pullups on Ports A, B, E and K

» Control register to enable/disable reduced output drive on Ports A, B, E and K

» Control register to configure external clock behavior

« Control register to configurlRQ pin operation

* Logic to capture and synchronize external interrupt pin inputs

@ MOTOROLA 201

Core User Guide — S12CPU15UG V1.2

12.1.2 Block Diagram

The block diagram of the MEBI sub-block is showrFigure 12-1 below.
16
altab[15:0] «¢ // ?/
16 8 < :: g PAT-PAU/
A15-A08/
/ / 8, X %‘+’D15-D8/
76| & D7-DO
8
/i
/
16
altwdb[15:0] «¢ // External 8
altrdb[15:0] 19 > 8" |m lﬂ_ﬂ PB7-PBO/
/ Data Bus s,/ |5 x A
_ [a)
db[ls:o]#' | Interface b/ .
clock —p 5
reg_select—p ‘E 19 data
t —» S 7/ .
rese o Registers
mdrste :1 I
ab[15:0]
int_mem_sel —f External
W —p
SZ8 —- P Bus Control w
cpu_pipe(1:0]—/-p| o | wl, 6 . PE7-PEZ
ol e (bus sigs)
altsz8 <« o %
altrw < o TeTe
irq_t4 <4— — \¢—— PEL/IRQ
xirq_t4 4—| Sync/capture l¢—— PEO/XIRQ
£
o8
8% «— BKGDL...
extbdm < v 3
m.c
8 Port K x| 8
mmces.../ /i ort <l | B ey PKT-PKO/
mmexa... 7/ Control [V 7 8 % CS...IXA...
a

Figure 12-1 MEBI Block Diagram

In the figure, the signals on the right hand side represent pins that are accessible externally to the Core

and/or system.

12.2 Interface Signals

Much of the interfacing with the MEBI sub-block is done within the Core; however, many of the MEBI
signals pass through the Core boundary and interface with the system port/pad logic for Ports A, B, E and

202

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

K. The Core interface signals associated with the MEBI are showialote 12-1 below. The functional
descriptions of the signals are provided below for completeness.

Table 12-1 MEBI Interface Signal Definitions

Signal Name [Type | Functional Description
External Bus Interface Signals
core_paind[7:0] | Port A input data [7:0]
core_pado[7:0] O | Port A data output [7:0]
core_paobe[7:0] O |Port A output buffer enable [7:0]
core_paibe_t2 O |Port A input buffer enable
core_papue_t2 O |Port A pullup enable
core_padse_t2 O |Port A drive strength enable
core_pbind[7:0] | Port B input data [7:0]
core_phdo[7:0] O | Port B data output [7:0]
core_pbobe[7:0] O | Port B output buffer enable [7:0]
core_pbibe_t2 O | Port B input buffer enable
core_pbpue_t2 O |Port B pullup enable
core_pbdse_t2 O | Port B drive strength enable
core_peind[7:0] ! chtTElgFéUf 26%7;?2] input; PEOQ is XIRQ pin input.
core_pedo[7:0] O | Port E data output [7:0]
core_peobe[7:0] O | Port E output buffer enable [7:0]
core_peibe_t2 O |Port E input buffer enable
core_pepue_t2 O |Port E pullup enable
core_mdrste O | Enable signal for EBI Mode pin pullups at the pad
core_pedse_t2 O | Port E drive strength enable
core_pkind[7:0] | Port K input data [7:0]
core_pkdo[7:0] O | Port K data output [7:0]
core_pkobe[7:0] O | Port K output buffer enable [7:0]
core_pkibe_t2 O |Port K input buffer enable
core_pkpue_t2 O | Port K pullup enable
core_pkdse_t2 O |Port K drive strength enable

12.2.1 MEBI Signal Descriptions

These descriptions apply to the MEBI signals that pass through the Core boundary and interface with the

system External Bus Interface port/pad logic.

12.2.1.1 Port A Input Data to Core (core_paind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad logic for

Port A.

12.2.1.2 Port A Output Data from Core (core_pado[7:0])

This 8-bit wide output from the Core provides the Port A data output to the system port/pad logic for Port

A.

@ MOTOROLA

203

Core User Guide — S12CPU15UG V1.2

12.2.1.3 Port A output buffer enable from Core (core_paobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the system
port/pad logic for Port A.

12.2.1.4 Port A input buffer enable from Core (core_paibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad logic
for Port A.

12.2.1.5 Port A pullup enable from Core (core_papue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad logic for
Port A should be enabled for all Port A pins.

12.2.1.6 Port A drive strength enable from Core (core_padse_t2)

This single bit output from the Core indicates whether all Port A pins will operate with full or reduced
drive strength.

12.2.1.7 Port B Input Data to Core (core_pbind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad logic for
Port B.

12.2.1.8 Port B Output Data from Core (core_pbdo[7:0])

This 8-bit wide output from the Core provides the Port B data output to the system port/pad logic for Port
B.

12.2.1.9 Port B output buffer enable from Core (core_pbobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the system
port/pad logic for Port B.

12.2.1.10 Port B input buffer enable from Core (core_pbibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad logic
for Port B.

12.2.1.11 Port B pullup enable from Core (core_pbpue_t2)

When asserted (logic 1), this single bit output from the Core indicates that the pullup devices within the
system port/pad logic for Port B should be enabled for all Port B pins.

12.2.1.12 Port B drive strength enable from Core (core_pbdse_t2)

This single bit output from the Core indicates whether all Port B pins will operate with full or reduced drive
strength.

204 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

12.2.1.13 Port E Input Data to Core (core_peind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad logic for
Port E. When the system has an extetR&) pin implemented, the input signal from thQ pin pad logic

must be tied to Port E Input Data Bit 1. Likewise, when the system has an exx¢R@lpin implemented,

the input signal from thEIRQ pin pad logic must be tied to Port E Input Data Bit 0. BotHRitg and

XIRQ signals are active low (i.e. their asserted state is logic 0).

12.2.1.14 Port E Output Data from Core (core_pedo[7:0])
This 8-bit wide output from the Core provides the Port E data output to the system port/pad logic for Port E.
12.2.1.15 Port E output buffer enable from Core (core_peobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the system
port/pad logic for Port E.

12.2.1.16 Port E input buffer enable from Core (core_peibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad logic
for Port E.

12.2.1.17 Port E pullup enable from Core (core_pepue_t2)

This single bit output from the Core indicates whether or not the pullup devices within the system port/pad
logic for Port E should be enabled for all Port E pins except the MODA (PE5) and MODB (PES6) pins.

12.2.1.18 Port E MODE pin pullup enable from Core (core_mdrste)

This single bit output from the Core indicates that the pullup devices within the system port/pad logic for
the MODA (PE5) and MODB (PE6) pins within Port E should be enabled.

12.2.1.19 Port E drive strength enable from Core (core_pedse_t2)

This single bit output from the Core indicates whether all Port E pins will operate with full or reduced drive
strength.

12.2.1.20 Port K Input Data to Core (core_pkind[7:0])

This 8-bit wide input to the Core provides the Core with the input data from the system port/pad logic for
Port K.

12.2.1.21 Port K Output Data from Core (core_pkdo[7:0])

This 8-bit wide output from the Core provides the Port K data output to the system port/pad logic for Port
K.

@ MOTOROLA 205

Core User Guide — S12CPU15UG V1.2

12.2.1.22 Port K output buffer enable from Core (core_pkobe[7:0])

This 8-bit wide output from the Core provides the bit-by-bit output buffer enable signal to the system
port/pad logic for Port K.

12.2.1.23 Port K input buffer enable from Core (core_pkibe_t2)

This single bit output from the Core provides the input buffer enable signal to the system port/pad logic
for Port K.

12.2.1.24 Port K pullup enable from Core (core_pkpue_t2)

This single bit output from the Core indicates that the pullup devices within the system port/pad logic for
Port K should be enabled for all Port K pins.

12.2.1.25 Port K drive strength enable from Core (core_pkdse_t2)

This single bit output from the Core indicates whether all Port K pins will operate with full or reduced
drive strength.

206 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2
12.3 Registers

A summary of the registers associated with the MEBI sub-block is showigure 12-2 below. Detailed
descriptions of the registers and bits are given in the subsections that follow.

Address Name Bit 7 6 5 4 3 2 1 Bit O

$0000 PORTA '®2| pgit7 6 5 4 3 2 1 Bit 0
write

$0001 PORTB '°%| pgit7 6 5 4 3 2 1 Bit 0
write

$0002 DDRA | pgit7 6 5 4 3 2 1 Bit 0
write

$0003 DDRB | pgit7 6 5 4 3 2 1 Bit 0
write

$0004 Reserved rez_id 0 0 0 0 0 0 0 0
write

$0005 Reserved rez_id 0 0 0 0 0 0 0 0
write

$0006 Reserved rez_id 0 0 0 0 0 0 0 0
write

$0007 Reserved rez_id 0 0 0 0 0 0 0 0
write

$0008 PORTE '°2| pgit7 6 5 4 3 2 ! Bit 0
write

$0000 DDRE | pgjt7 6 5 4 3 2 0 0
write

$000A PEAR \fri‘; NOACCE 0 PIPOE | NECLK | LSTRE | RDWE 0 0
read 0 0

$000B MODE **"| MODC | MODB | MODA VIS EMK EME

$000C PUCR \fri‘; PUPKE 0 0 PUPEE 0 0 PUPBE | PUPAE

$000D RDRIV ﬁi‘; RDPK 0 0 RDPE 0 0 RDPB RDPA

$000E EBICTL ' 0 0 0 0 0 0 0 ESTR
write

$000F Reserved rez_id 0 0 0 0 0 0 0 0
write
read 0 0 0 0 0 0

$001E IRQCR *"| IRQE | IRQEN

$0032 PORTK '®2| pgit7 6 5 4 3 2 1 Bit 0
write

$0033 DDRK | pgit7 6 5 4 3 2 1 Bit 0
write

= Unimplemented X = Indeterminate

Figure 12-2 MEBI Register Map Summary

W) mororora 207

Core User Guide — S12CPU15UG V1.2

12.3.1 Port A Data Register (PORTA)

Address: Base+$ O

BIT7 6 5 4 3 2 1 BITO
Read:
Bit 7 6 5 4 3 2 1 Bit 0
Write:
Reset: - - - - - - - -
Single Chip: PA7 PA6 PA5 PA4 PA3 PA2 PA1 PAO
Exp Wide, Emul. Nar AB/ AB/ AB/ AB/ AB/ AB/ AB/ AB/
with IVIS & Periph: DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8

AB15& ABl1l4& AB13& ABl12& ABl1& ABl1l0& AB9& ABS8 &
Expanded Narrow: DB15/ DB14/ DB13/ DB12/ DB11/ DB10/ DB9/ DB8/
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DBO

Figure 12-3 Port A Data Register (PORTA)

Read: anytime when register is in the map

Write: anytime when register is in the map

Port A bits 7 through 0 are associated with address lines A15 through A8 respectively and data
lines D15/D7 through D8/DO0 respectively. When this port is not used for external
addresses such as in single-chip mode, these pins can be used as general purpose 1/O.
Data Direction Register A (DDRA) determines the primary direction of each pin. DDRA
also determines the source of data for a read of PORTA.

This register is not in the on-chip memory map in expanded and peripheral modes.
CAUTION:

To ensure that you read the value present on the PORTA pins, always wait at least one cycle after writing
to the DDRA register before reading from the PORTA register.

208 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

12.3.2 Data Direction Register A (DDRA)

Address: Base+$ 2

BIT 7 6 5 4 3 2 1 BITO
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:
Reset: 0 0 0 0 0 0 0 0

Figure 12-4 Data Direction Register A (DDRA)

Read: anytime when register is in the map
Write: anytime when register is in the map

This register controls the data direction for Port A. When Port A is operating as a general purpose 1/O port,
DDRA determines the primary direction for each Port A pin. A “1” causes the associated port pin to be an
output and a “0” causes the associated pin to be a high-impedance input. The value in a DDR bit also
affects the source of data for reads of the corresponding PORTA register. If the DDR bit is zero (input) the
buffered pin input state is read. If the DDR bit is one (output) the associated port data register bit state is
read.

This register is not in the on-chip map in expanded and peripheral modes. It is reset to $00 so the DDR
does not override the three-state control signals.

DDRA7-0 — Data Direction Port A
1 = Configure the corresponding I/O pin as an output
0 = Configure the corresponding I/O pin as an input

@ MOTOROLA 209

Core User Guide — S12CPU15UG V1.2

12.3.3 Port B Data Register (PORTB)

Address: Base+$ 1

BIT 7 6 5 4 3 2 1 BITO

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset:
Single Chip: PB7 PB6 PB5 PB4 PB3 PB2 PB1 PBO

Exp Wide, Emul. Nar

. . AB/DB7 AB/DB6 AB/DB5 AB/DB4 AB/DB3 AB/DB2 AB/DB1 AB/DBO
with IVIS & Periph:

Expanded Narrow: AB7 AB6 AB5 AB4 AB3 AB2 AB1 ABO

Figure 12-5 Port B Data Register (PORTB)

Read: anytime when register is in the map

Write: anytime when register is in the map Port B bits 7 through 0 are associated with address lines A7
through AO respectively and data lines D7 through DO respectively. When this port is not used for external
addresses, such as in single-chip mode, these pins can be used as general purpose 1/0. Data Direction
Register B (DDRB) determines the primary direction of each pin. DDRB also determines the source of
data for a read of PORTB.

This register is not in the on-chip map in expanded and peripheral modes

CAUTION:

To ensure that you read the value present on the PORTB pins, always wait at least one cycle
after writing to the DDRB register before reading from the PORTB register.

12.3.4 Data Direction Register B (DDRB)

Address: Base+$ 3

BIT7 6 5 4 3 2 1 BITO
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:
Reset: 0 0 0 0 0 0 0 0

Figure 12-6 Data Direction Register B (DDRB)

Read: anytime when register is in the map
Write: anytime when register is in the map

210 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

This register controls the data direction for Port B. When Port B is operating as a general purpose I/O port,
DDRB determines the primary direction for each Port B pin. A “1” causes the associated port pin to be an
output and a “0” causes the associated pin to be a high-impedance input. The value in a DDR bit also
affects the source of data for reads of the corresponding PORTB register. If the DDR bit is zero (input) the
buffered pin input state is read. If the DDR bit is one (output) the associated port data register bit state is
read.

This register is not in the on-chip map in expanded and peripheral modes. It is reset to $00 so the DDR
does not override the three-state control signals.

DDRB7-0 — Data Direction Port B
1 = Configure the corresponding I/O pin as an output
0 = Configure the corresponding I/O pin as an input

12.3.5 Port E Data Register (PORTE)

Address: Base+$ 8

BIT 7 6 5 4 3 2 1 BIT 0
Read: Bit 1 Bit 0
Bit 7 6 5 4 3 2
Write:
Reset:
MODB or STRE
IPIPEL >TRB _ -
Alt. Pin Function: NOACC MODAOr ey orTAG: RW RO XIRQ
or IPIPEO -
CLKTO

= Unimplemented

Figure 12-7 Port E Data Register (PORTE)

Read: anytime when register is in the map
Write: anytime when register is in the map

Port E is associated with external bus control signals and interrupt inputs. These include mode select
(MODB/IPIPE1, MODA/IPIPEDO), E clock, siz& STRB/TAGLO), read / write (RW), IRQ, andXIRQ.

When not used for one of these specific functions, Port E pins 7-2 can be used as general purpose I/0 and
pins 1-0 can be used as general purpose input. The Port E Assignment Register (PEAR) selects the function
of each pin and DDRE determines whether each pin is an input or output when it is configured to be
general purpose 1/0. DDRE also determines the source of data for a read of PORTE.

Some of these pins have software selectable pullups (PE7, HEKRB, RW, IRQ andXIRQ). A single
control bit enables the pullups for all of these pins when they are configured as inputs

This register is not in the on-chip map in peripheral mode or in expanded modes when the EME bit is set

@ MOTOROLA 211

Core User Guide — S12CPU15UG V1.2

CAUTION:
It is unwise to write PORTE and DDRE as a word access. If you are changing Port E pins from
being inputs to outputs, the data may have extra transitions during the write. It is best to initialize
PORTE before enabling as outputs.

CAUTION:
To ensure that you read the value present on the PORTE pins, always wait at least one cycle
after writing to the DDRE register before reading from the PORTE register

12.3.6 Data Direction Register E (DDRE)

Address: Base+$ 9

BIT 7 6 5 4 3 2 1 BITO
Read: 0 0
Bit 7 6 5 4 3 Bit 2
Write:
Reset: 0 0 0 0 0 0 0 0
= Unimplemented

Figure 12-8 Data Direction Register E (DDRE)

Read: anytime when register is in the map
Write: anytime when register is in the map

Data Direction Register E is associated with Port E. For bits in Port E that are configured as general
purpose I/O lines, DDRE determines the primary direction of each of these pins. A “1” causes the
associated bit to be an output and a “0” causes the associated bit to be an input. Port E bit 1 (associated
with IRQ) and bit 0 (associated witkIRQ) cannot be configured as outputs. Port E, bits 1 and 0, can be
read regardless of whether the alternate interrupt function is enabled. The value in a DDR bit also affects
the source of data for reads of the corresponding PORTE register. If the DDR bit is zero (input) the
buffered pin input state is read. If the DDR bit is one (output) the associated port data register bit state is
read.

This register is not in the on-chip map in peripheral mode. It is also not in the map in expanded modes
while the EME control bit is set.

DDRE7-2 — Data Direction Port E
1 = Configure the corresponding I/O pin as an output
0 = Configure the corresponding I/O pin as an input

CAUTION:

It is unwise to write PORTE and DDRE as a word access. If you are changing Port E pins from
inputs to outputs, the data may have extra transitions during the write. It is best to initialize
PORTE before enabling as outputs.

212 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

12.3.7 Port E Assignment Register (PEAR)

Address: Base+$ A

BIT 7 6 5 4 3 2 1 BIT O
Read: 0 0 0
NOQCC PIPOE | NECLK | LSTRE RDWE
Write:
Special
Reset: 0 0 0 0 0 0 0 0 Single
Chip
. Special
Reset: 0 0 1 0 1 1 0 0
Test
Reset: 0 0 0 0 0 0 0 0 Peripheral
Reset: 1 0 1 0 1 1 0 o Emulation
Exp Nar
) Emulation
Reset: 1 0 1 0 1 1 0 0 Exp Wide
Normal
Reset: 0 0 0 1 0 0 0 0 Single
Chip
Normal
Reset: 0 0 0 0 0 0 0 0
Exp Nar
Reset: 0 0 0 0 0 0 0 0 Normal
: Exp Wide

= Unimplemented

Figure 12-9 Port E Assignment Register (PEAR)

Read: anytime (provided this register is in the map).

Write: each bit has specific write conditions. Please refer to the descriptions of each bit on the following
pages.Port E serves as general purpose I/O or as system and bus control signals. The PEAR register is usec
to choose between the general purpose I/O function and the alternate control functions. When an alternate
control function is selected, the associated DDRE bits are overridden.

The reset condition of this register depends on the mode of operation because bus control signals are
needed immediately after resetin some modes. In normal single chip mode, no external bus control signals
are needed so all of Port E is configured for general purpose 1/0. In normal expanded modes, only the E
clock is configured for its alternate bus control function and the other bits of Port E are configured for
general purpose I/0O. As the reset vector is located in external memory, the E clock is required for this
access. RN is only needed by the system when there are external writable resources. If the normal
expanded system needs any other bus control signals, PEAR would need to be written before any access
that needed the additional signals. In special test and emulation modes, IPIPEL, IPLFHRHE and

R/W are configured out of reset as bus control signals

W) mororora 213

Core User Guide — S12CPU15UG V1.2

This register is not in the on-chip map in emulation and peripheral modes.

NOACCE - CPU No Access Output Enable
Normal: write once
Emulation: write never

Special: write anytime
1 = The associated pin (Port E bit 7) is output and indicates whether the cycle is a CPU free cycle.
0 = The associated pin (Port E bit 7) is general purpose 1/O.

This bit has no effect in single chip or peripheral modes.

PIPOE - Pipe Status Signal Output Enable
Normal: write once
Emulation: write never

Special: write anytime.
1 = The associated pins (Port E bits 6:5) are outputs and indicate the state of the instruction queue
0 = The associated pins (Port E bits 6:5) are general purpose 1/O.

This bit has no effect in single chip or peripheral modes.

NECLK - No External E Clock
Normal and Special: write anytime

Emulation: write never
1 = The associated pin (Port E bit-4) is a general purpose /O pin.
0 = The associated pin (Port E bit-4) is the external E clock pin. External E clock is free-running if
ESTR=0

External E clock is available as an output in all modes.

LSTRE - Low Strobel(STRB) Enable
Normal: write once
Emulation: write never

Special: write anytime.

1 = The associated pin (Port E bit-3) is configured as 8¥RB bus control output. If BDM
tagging is enabled, AGLO is multiplexed in on the rising edge of ECLK ah®TRB is driven
out on the falling edge of ECLK.

0 = The associated pin (Port E bit-3) is a general purpose 1/O pin.

This bit has no effect in single chip, peripheral or normal expanded narrow modes.

NOTE: LSTRBisused during external writes. After reset in normal expanded 8B
is disabled to provide an extra I/O pinUSTRB is needed, it should be enabled
before any external writes. External reads do not normally n&&tRB because all
16 data bits can be driven even if the system only needs 8 bits of data.

RDWE - Read / Write Enable

Normal: write once

214 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Emulation: write never

Special: write anytime
1 = The associated pin (Port E bit-2) is configured as tWé i
0 = The associated pin (Port E bit-2) is a general purpose 1/O pin.

This bit has no effect in single chip or peripheral modes.
NOTE: RM is used for external writes. After reset in normal expanded modgisR/

disabled to provide an extra I/O pin. If\R/is needed it should be enabled before
any external writes.

12.3.8 MODE Register (MODE)

Address: Base+$_ B

BIT 7 6 5 4 3 2 1 BIT O
Read: 0 0
MODC MODB MODA VIS EMK EME
Write:
Reset: 0 0 0 0 0 0 0 0 Special
Single chip
Reset: 0 0 1 0 1 0 1 1 Emulation
Exp Nar
Reset: 0 1 0 0 1 0 0 0 Special
Test
Reset: 0 1 1 0 1 0 1 1 Emulation
' Exp Wide
Normal
Reset: 1 0 0 0 0 0 0 0 Single
Chip
Reset: 1 0 1 0 0 0 0 0 Normal
Exp Nar
Reset: 1 1 0 0 0 0 0 0 Peripheral
. Normal
Reset: 1 1 1 0 0 0 0 0 Exp Wide

= Unimplemented

Figure 12-10 MODE Register (MODE)

Read: anytime (provided this register is in the map).
Write: each bit has specific write conditions. Please refer to the descriptions of each bit on the
following pages.

The MODE register is used to establish the operating mode and other miscellaneous functions (i.e. internal
visibility and emulation of Port E and K).

@ MOTOROLA 215

Core User Guide — S12CPU15UG V1.2

In peripheral modes, this register is not accessible but it is reset as shown to configure system features.
Changes to bits in the MODE register are delayed one cycle after the write.

This register is not in the on-chip map in emulation and peripheral modes.

MODC, MODB, MODA - Mode Select bits
These bits indicate the current operating mode.
If MODA=1, then MODC, MODB, MODA are write never.

If MODC=MODA=0, then MODC, MODB, MODA are write anytime except that you cannot change
to or from peripheral mode

If MODC=1, MODB=0 and MODA=0, then MODC is write never, and MODB, MODA are write
once, except that you cannot change to peripheral, special test, special single chip, or emulation modes.

Table 12-2 MODC, MODB, MODA Write Capability *

MODC | MODB | MODA Mode MODx Write Capability
0 0 0 Special Single Chip MODC, B, A write anytime but not to 1102
0 0 1 Emulation Narrow no write
0 1 0 Special Test MODC, B, A write anytime but not to 1102
0 1 1 Emulation Wide no write
1 0 0 Normal Single Chip MODC write never, Ntlngfo A write once but not
1 0 1 Normal Expanded Narrow no write
1 1 0 Special Peripheral no write
1 1 1 Normal Expanded Wide no write
NOTES:

1. No writes to the MOD bits are allowed while operating in a SECURE mode. For more details refer to the security
specification document.

2. If you are in a special single chip or special test mode and you write to this register, changing to normal single chip

mode, then one allowed write to this register remains. If you write to normal expanded or emulation mode, then no
writes remain.

Table 12-3 Mode Select and State of Mode Bits

é&%tD Input Input
& bit & bit & bit Mode Description
MODC MODB MODA
0 0 0 Special Single Chip, BDM allowed and ACTIVE. BDM is “allowed” in all other
modes but a serial command is required to make BDM “active”.
0 0 1 Emulation Expanded Narrow, BDM allowed
216

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table 12-3 Mode Select and State of Mode Bits

é&%é Input Input
& bit & bit & bit Mode Description
MODC MODB MODA
0 1 0 Special Test (Expanded Wide), BDM allowed
0 1 1 Emulation Expanded Wide, BDM allowed
1 0 0 Normal Single Chip, BDM allowed
1 0 1 Normal Expanded Narrow, BDM allowed
1 1 0 Peripheral; BDM allowed but bus operations would cause bus conflicts (must
not be used)
1 1 1 Normal Expanded Wide, BDM allowed

IVIS - Internal Visibility (for both read and write accesses)
This bit determines whether internal accesses generate a bus cycle that is visible on the external bus.
Normal: write once
Emulation: write never

Special: write anytime
1 = Internal bus operations are visible on external bus.
0 = No visibility of internal bus operations on external bus.

Reference Sectioh2.4.9for mode availability of this bit.

EMK - Emulate Port K
Normal: write once
Emulation: write never

Special: write anytime
1 = If in any expanded mode, PORTK and DDRK are removed from the memory map.
0 = PORTK and DDRK are in the memory map so Port K can be used for general purpose 1/0.

In single-chip modes, PORTK and DDRK are always in the map regardless of the state of this bit.
In peripheral modes, PORTK and DDRK are never in the map regardless of the state of this bit.

EME - Emulate Port E
Normal and Emulation: write never
Special: write anytime
1 =If in any expanded mode or special peripheral mode, PORTE and DDRE are removed from the
memory map. Removing the registers from the map allows the user to emulate the function of
these registers externally.
0 = PORTE and DDRE are in the memory map so Port E can be used for general purpose I/0.

In single-chip modes, PORTE and DDRE are always in the map regardless of the state of this bit.

@ MOTOROLA 217

Core User Guide — S12CPU15UG V1.2

12.3.9 Pullup Control Register (PUCR)

Address: Base+$ C

BIT 7 6 5 4 3 2 1 BIT O
Read: 0 0 0 0
PUPKE PUPEE PUPBE | PUPAE
Write:
Reset:! 1 0 0 1 0 0 0 0
= Unimplemented
Figure 12-11 Pullup Control Register (PUCR)
NOTES:

1. The reset state of this register may be controlled by an instantiation parameter as described in the
HCS12 V1.5 Core Integration Guide. The default value of this parameter is shown. Please refer to the spe-
cific device User’s Guide to determine the actual reset state of this register.

Read: anytime (provided this register is in the map).
Write: anytime (provided this register is in the map).

This register is used to select pullup resistors for the pins associated with the core ports. Pullups are
assigned on a per-port basis and apply to any pin in the corresponding port that is currently configured as
an input.

This register is not in the on-chip map in emulation and peripheral modes.

NOTE:These bits have no effect when the associated pin(s) are outputs. (The pullups are inactive.)

PUPKE - Pullup Port K Enable
1 = Enable pullup devices for Port K input pins.
0 = Port K pullups are disabled.

PUPEE - Pullup Port E Enable
1 = Enable pullup devices for Port E input pins bits 7, 4-0.
0 = Port E pullups on bit 7, 4-0 are disabled.

PUPBE - Pullup Port B Enable
1 = Enable pullup devices for all Port B input pins.
0 = Port B pullups are disabled.

PUPAE - Pullup Port A Enable
1 = Enable pullup devices for all Port A input pins.
0 = Port A pullups are disabled.

218 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

12.3.10 Reduced Drive Register (RDRIV)

Address: Base+$ D

BIT 7 6 5 4 3 2 1 BITO
Read: 0 0 0 0
RDPK RDPE RDPB RDPA
Write:
Reset: 0 0 0 0 0 0 0 0
= Unimplemented

Figure 12-12 Reduced Drive Register (RDRIV)

Read: anytime (provided this register is in the map)
Write: anytime (provided this register is in the map)

This register is used to select reduced drive for the pins associated with the core ports. This gives reduced
power consumption and reduced RFI with a slight increase in transition time (depending on loading). This
feature would be used on ports which have a light loading. The reduced drive function is independent of
which function is being used on a particular port.

This register is not in the on-chip map in emulation and peripheral modes.

RDPK - Reduced Drive of Port K
1 = All Port K output pins have reduced drive enabled.
0 = All Port K output pins have full drive enabled.

RDPE - Reduced Drive of Port E
1 = All Port E output pins have reduced drive enabled.
0 = All Port E output pins have full drive enabled.

RDPB - Reduced Drive of Port B
1 = All Port B output pins have reduced drive enabled.
0 = All Port B output pins have full drive enabled.

RDPA - Reduced Drive of Ports A
1 = All Port A output pins have reduced drive enabled.
0 = All Port A output pins have full drive enabled.

@ MOTOROLA 219

Core User Guide — S12CPU15UG V1.2

12.3.11 External Bus Interface Control Register (EBICTL)

Address: Base+$ E

BIT7 6 5 4 3 2 1 BITO
Read: 0 0 0 0 0 0 0
ESTR
Write:
Reset: 0 0 0 0 0 0 0 0 Pen;)lher-
Reset: 0 0 0 0 0 0 0 All other
modes

= Unimplemented

Figure 12-13 External Bus Interface Control Register (EBICTL)

Read: anytime (provided this register is in the map)
Write: refer to individual bit descriptions below

The EBICTL register is used to control miscellaneous functions (i.e. stretching of external E clock).

This register is not in the on-chip map in peripheral mode.

ESTR - E clock Stretches

This control bit determines whether the E clock behaves as a simple free-running clock or as a bus
control signal that is active only for external bus cycles.

Normal and Emulation: write once

Special: write anytime
1 = E stretches high during stretch cycles and low during non-visible internal accesses.
0 = E never stretches (always free running).

This bit has no effect in single chip modes.
12.3.12 IRQ Control Register (IRQCR)

Address Base +$_ 1E

Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0 0 0 0 0
IRQE IRQEN
Write:
Reset: 0 1 0 0 0 0 0 0

Figure 12-14 IRQ Control Register (IRQCR)

Read: see individual bit descriptions below
Write: see individual bit descriptions below

220 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

IRQE - IRQ select edge sensitive only
Special: read or write anytime
Normal: read anytime, write once

Emulation: read anytime, write never
1 = IRQ configured to respond only to falling edges. Falling edges on the IRQ pin will be detected
anytime IRQE = 1 and will be cleared only upon a reset or the servicing of the IRQ interrupt
(i.e. vector = $FFF2).
0 = IRQ configured for low level recognition

IRQEN - External IRQ enable

Normal, emulation, and special modes: read or write anytime
1 = External IRQ pin is connected to interrupt logic.
0 = External IRQ pin is disconnected from interrupt logic

NOTE: In this state the edge detect latch is disabled.

@ MOTOROLA 221

Core User Guide — S12CPU15UG V1.2

12.3.13 Reserved Registers .

Address: Base+$ 4thru$ 7
BIT 7 6 5 4 3 2 1 BITO
Read: 0 0 0 0 0 0 0 0
Write:
Reset: 0 0 0 0 0 0 0 0

Address: Base+$ F

Read: 0 0 0 0 0 0 0 0
Write:
Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 12-15 Reserved Registers

These register locations are not used (reserved). All unused registers and bits in
this block return logic zeros when read. Writes to these registers have no effect.

These registers are not in the on-chip map in peripheral mode.

12.3.14 Port K Data Register (PORTK) .

Address: Base + $32
Bit 7 6 5 4 3 2 1 Bit 0
Read:
Bit 7 6 5 4 3 2 1 Bit 0
Write:
Alt. pin
. ECS XCS XAB19 XAB18 XAB17 XAB16 XAB15 XAB14
function
Reset: - - - - - - - -

= Unimplemented

Figure 12-16 Port K Data Register (PORTK)

Read: anytime
Write: anytime

This port is associated with the internal memory expansion emulation pins. When the port is not enabled
to emulate the internal memory expansion, the port pins are used as general-purpose I/0. When Port K is
operating as a general purpose 1/0O port, DDRK determines the primary direction for each Port K pin. A
“1” causes the associated port pin to be an output and a “0” causes the associated pin to be a

222 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

high-impedance input. The value in a DDR bit also affects the source of data for reads of the corresponding
PORTK register. If the DDR bit is zero (input) the buffered pin input is read. If the DDR bit is one (output)
the output of the port data register is read.This register is not in the map in peripheral or expanded modes
while the EMK control bit in MODE register is set.

When inputs, these pins can be selected to be high impedance or pulled up, based upon the state of the
PUPKE bit in the PUCR register.

Bit 7- Port K bit 7.

This bitis used as an emulation chip select signal for the emulation of the internal memory expansion,
or as general purpose I/0, depending upon the state of the EMK bit in the MODE register. While this
bit is used as a chip select, the external bit will return to its de-asserted state (vdd) for approximately
1/4 cycle just after the negative edge of ECLK, unless the external access is stretched and ECLK is
free-running (ESTR bitin EBICTL =0). See the HCS12v1.5 MMC spec for additional details on when
this signal will be active.

Bit 6 — Port K bit 6.

This bit is used as an external chip select signal for most external accesses that are not selec&d by
(see the MMC spec for more details), depending upon the state the of the EMK bit in the MODE
register. While this bit is used as a chip select, the external pin will return to its de-asserted state (vdd)
for approximately 1/4 cycle just after the negative edge of ECLK, unless the external access is
stretched and ECLK is free-running (ESTR bit in EBICTL = 0).

Bit 5 - Bit 0 — Port K bits 5 - 0.

These six bits are used to determine which Flash/ROM or external memory array page is being
accessed. They can be viewed as expanded addresses XAB19 - XAB14 of the 20-bit address used to
access up tolM byte internal Flash/ROM or external memory array. Alternatively, these bits can be
used for general purpose 1/0 depending upon the state of the EMK bit in the MODE register.

12.3.15 Port K Data Direction Register (DDRK)

Address: Base + $33

Bit 7 6 5 4 3 2 1 Bit0
Read:
Bit 7 Bit 6 5 4 3 2 1 Bit0
Write:
Reset: 0 0 0 0 0 0 0 0
= Unimplemented

Figure 12-17 Port K Data Direction Register (DDRK)

Read: anytime.
Write: anytime.

@ MOTOROLA 223

Core User Guide — S12CPU15UG V1.2

This register determines the primary direction for each port K pin configured as general-purpose I/O. This
register is not in the map in peripheral or expanded modes while the EMK control bit in MODE register
is set.

DDRK 7-0 - The Data Direction Port K.
1 = Associated pin is an output
0 = Associated pin is a high-impedance input

CAUTION:

It is unwise to write PORTK and DDRK as a word access. If you are changing Port K pins from
inputs to outputs, the data may have extra transitions during the write. It is best to initialize
PORTK before enabling as outputs.

CAUTION:
To ensure that you read the correct value from the PORTK pins, always wait at least one cycle
after writing to the DDRK register before reading from the PORTK register.

12.4 Operation

There are four main sub-blocks within the MEBI: external bus control, external data bus interface, control
and registers.

12.4.1 External Bus Control

The external bus control generates the miscellaneous control functions (pipe signals,lIEBTIRE and
R/W) that will be sent external on Port E, bits 6-2. It also generates the external addresses.

12.4.2 External Data Bus Interface

The external data bus interface block manages data transfers from/to the external pins to/from the internal
read and write data buses. This block selectively couples 8-bit or 16-bit data to the internal data bus to
implement a variety of data transfers including 8-bit, 16-bit, 16-bit swapped and 8-bit external to 16-bit
internal accesses. Modes, addresses, chip selects, etc. affect the type of accesses performed during eacl
bus cycle.

12.4.3 Control

The control block generates the register read/write control signals and miscellaneous port control signals.

12.4.4 Reqgisters

The register block includes the fourteen 8-bit registers and five reserved register locations associated with
the MEBI sub-block.

224 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2
12.4.5 External System Pin Functional Descriptions

In typical SoC implementations, the MEBI sub-block of the Core interfaces directly with external system
pins.Table 12-4 below outlines the pin names and functions and gives a brief description of their

operation.

Table 12-4 External System Pins Associated With MEBI

Pin Name Pin Functions Description
PA7 - PAO General purpose I/O pins, see PORTA and DDRA registers.
High-order address lines multiplexed during ECLK low. Outputs except in special
Al5 - A8 . -
peripheral mode where they are inputs from an external tester system.
PAT7/A15/D15/D7 High-order bidirectional data lines multiplexed during ECLK high in expanded
thru D15 - D8 wide modes, peripheral mode & visible internal accesses (IVIS=1) in emulation
PAO/A8/D8/DO expanded narrow mode. Direction of data transfer is generally indicated by R/W.
Alternate high-order and low-order bytes of the bidirectional data lines
D15/D7 thru . . L
D8/DOo multiplexed during ECLK high in expanded narrow modes and narrow accesses
in wide modes. Direction of data transfer is generally indicated by R/W.
PB7 - PBO General purpose I/O pins, see PORTB and DDRB registers.
A7 - AO Low-order address lines multiplexed during ECLK low. Outputs except in special
PB7/A7/D7 peripheral mode where they are inputs from an external tester system.
thru
PB0O/AO/DO Low-order bidirectional data lines multiplexed during ECLK high in expanded
wide modes, peripheral mode & visible internal accesses (with IVIS=1) in
D7 - DO : o :
emulation expanded narrow mode. Direction of data transfer is generally
indicated by R/W.
PE7 General purpose I/O pin, see PORTE and DDRE registers.
PE7/
NOACC CPU No Access output. Indicates whether the current cycle is a free cycle. Only
NOACC . A
available in expanded modes.
At the rising edge of RESET, the state of this pin is registered into the MODB bit
MODB
to set the mode.
PEG/IPIPEL/ PE6 General purpose I/O pin, see PORTE and DDRE registers.
MODB/CLKTO IPIPE1 Instruction pipe status bit 1, enabled by PIPOE bit in PEAR.
CLKTO System Clock Test Output. Only available in special modes. PIPOE=1 overrides
this function. The enable for this function is in the clock module.
At the rising edge on RESET, the state of this pin is registered into the MODA bit
MODA
to set the mode.
PES/IPIPEOQ/
MODA PES5 General purpose I/O pin, see PORTE and DDRE registers.
IPIPEO Instruction pipe status bit O, enabled by PIPOE bit in PEAR.
PE4 General purpose 1/O pin, see PORTE and DDRE registers.
Bus timing reference clock, can operate as a free-running clock at the system
PE4/ECLK ECLK clock rate or to produce one low-high clock per visible access, with the high
period stretched for slow accesses. ECLK is controlled by the NECLK bit in
PEAR, the IVIS bit in MODE and the ESTR bit in EBICTL.

@ MOTOROLA

225

Core User Guide — S12CPU15UG V1.2

Table 12-4 External System Pins Associated With MEBI

Pin Name Pin Functions Description
PE3 General purpose I/O pin, see PORTE and DDRE registers.
LSTRB Low strobe bar, 0 indicates valid data on D7-DO.
PE3/LSTRB/ In peripheral mode, this pin is an input indicating the size of the data transfer
Sz8 . -
TAGLO (0=16-bit; 1=8-bit).
In expanded wide mode or emulation narrow modes, when instruction tagging is
TAGLO on and low strobe is enabled, a 0 at the falling edge of E tags the low half of the
instruction word being read into the instruction queue.
PE2 General purpose I/O pin, see PORTE and DDRE registers.
PE2/IRIW RIW Read/write, indicates the direction of internal data transfers. This is an output
except in peripheral mode where it is an input.
- PE1 General purpose input-only pin, can be read even if IRQ enabled.
PE1/IRQ —
IRQ Maskable interrupt request, can be level sensitive or edge sensitive.
PEO General purpose input-only pin.
PEO/XIRQ
XIRQ Non-maskable interrupt input.
PK7 General purpose I/O pin, see PORTK and DDRK registers.
PK7/ECS
ECS emulation chip select
PK6 General purpose I/O pin, see PORTK and DDRK registers.
PK6/XCS
XCS external data chip select
PK5/X19 thru PK5 - PKO General purpose I/O pins, see PORTK and DDRK registers.
PKO/X14 X19 - X14 Memory expansion addresses
At the rising edge on RESET, the state of this pin is registered into the MODC bit
MODC S .
to set the mode. (This pin always has an internal pullup.)
BKGD/MODC/ Pseudo-open-drain communication pin for the single-wire background debug
BKGD . . : S
TAGHI mode. There is an internal pullup resistor on this pin.
When instruction tagging is on, a 0 at the falling edge of E tags the high half of the
TAGHI . : : - . .
instruction word being read into the instruction queue.

12.4.6 Detecting Access Type from External Signals
The external signalsSTRB, RW, and ABO indicate the type of bus access that is taking place. Accesses

to the internal RAM module are the only type of access that would prodft&B=AB0=1, because the
internal RAM is specifically designed to allow misaligned 16-bit accesses in a single cycle. In these cases

226 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

the data for the address that was accessed is on the low half of the data bus and the data for address+1 i
on the high half of the data bus.

Table 12-5 Access Type vs. Bus Control Pins

LSTRB ABO R/IW Type of Access

1 0 1 8-bit read of an even address

0 1 1 8-bit read of an odd address

1 0 0 8-bit write of an even address

0 1 0 8-bit write of an odd address

0 0 1 16-bit read of an even address

1 1 1 16-bit _read of an odd address
(low/high data swapped)

0 0 0 16-bit write to an even address

1 1 0 16-bit yvrite to an odd address
(low/high data swapped)

12.4.7 Stretched Bus Cycles

In order to allow fast internal bus cycles to coexist in a system with slower external memory resources, the
HCS12 supports the concept of stretched bus cycles (module timing reference clocks for timers and baud
rate generators are not affected by this stretching). Control bits in the MISC register in the MMC sub-block
of the Core specify the amount of stretch (0, 1, 2, or 3 periods of the internal bus-rate clock). While
stretching, the CPU state machines are all held in their current state. At this point in the CPU bus cycle,
write data would already be driven onto the data bus so the length of time write data is valid is extended
in the case of a stretched bus cycle Read data would not be captured by the system until the E clock falling
edge. In the case of a stretched bus cycle, read data is not required until the specified setup time before the
falling edge of the stretched E clock. The external address, chip selects, and R/W signals remain valid
during the period of stretching (throughout the stretched E high time)

12.4.8 Modes of Operation

The MEBI sub-block controls the mode of the Core operation through the use of the BKGD, MODB and
MODA external system pins which are captured into the MODC, MODB and MODA controls bits,
respectively, at the rising edge of the systeEBSET pin. The setup and hold times associated with these
pins are given iTable 12-6 below.

Table 12-6 Mode Pin Setup and Hold Timing

Characteristic Timing
Mode programming setup time (time before reset is detected high that mode pins 2 bus clock
must hold their state to guarantee the proper state is entered) cycles

@ MOTOROLA 227

Core User Guide — S12CPU15UG V1.2

Table 12-6 Mode Pin Setup and Hold Timing

Characteristic Timing

Mode programming hold (time after reset is detected high that mode pins must hold

. : n
their state to guarantee the proper state is entered) ons

The four 8-bit Ports (A, B, E and K) associated with the MEBI sub-block can serve as general purpose 1/0
pins or alternatively as the address, data and control signals for a multiplexed expansion bus. Address and
data are multiplexed on Ports A and B. The control pin functions are dependent on the operating mode and
the control registers PEAR and MODE. The initial state of bits in the PEAR and MODE registers are also
established during reset to configure various aspects of the expansion bus. After the system is running,
application software can access the PEAR and MODE registers to modify the expansion bus configuration.

Some aspects of Port E are not mode dependent. Bit 1 of Port E is a general purpose infiRQor the
interrupt inputIRQ can be enabled by bits in the CPU condition code register but it is inhibited at reset so
this pin is initially configured as a simple input with a pullup. Bit-0 of Port E is a general purpose input or
the XIRQ interrupt inputXIRQ also can be enabled by bits in the CPU condition code register but it is
inhibited at reset so this pin is initially configured as a simple input with a pullup. The ESTR bit in the
EBICTL register is set to one by reset in any user mode. This assures that the reset vector can be fetched
even ifitis located in an external slow memory device. The PE6/MODB/IPIPE1 and PES/MODA/IPIPEO
pins act as high-impedance mode select inputs during reset.

The following subsections discuss the default bus setup and describe which aspects of the bus can be
changed after reset on a per mode basis.

12.4.8.1 Special Single Chip Mode

When the system is reset in this mode, the background debug mode is enabled and “active”. The system
does not fetch the reset vector and execute application code as it would in other modes. Instead, the active
background mode is in control of CPU execution and BDM firmware is waiting for additional serial
commands through the BKGD pin. When a serial command instructs the system to return to normal
execution, the system will be configured as described below unless the reset states of internal control
registers have been changed through background commands after the system was reset.

There is no external expansion bus after reset in this mode. Ports A and B are initially simple bidirectional
I/O pins that are configured as high-impedance inputs with internal pullups enabled; however, writing to
the mode select bits in the MODE register (which is allowed in special modes) can change this after reset.
All of the Port E pins (except PE4/ECLK) are initially configured as general purpose high-impedance
inputs with pullups enabled. PE4/ECLK is configured as the E clock output in this mode.

The pins associated with Port E bits 6, 5, 3, and 2 cannot be configured for their alternate functions IPIPE1,
IPIPEO,LSTRB, and R, respectively, while the system is in single chip modes.The associated control
bits PIPOE, LSTRE and RDWE are reset to zero. Writing the opposite value into these bits in this mode
does not change the operation of the associated Port E pins.

Port E, bit 4 can be configured for a free-running E clock output by clearing NECLK=0. Typically, the
only use for an E clock output while the system is in single chip modes would be to get a constant speed
clock for use in the external application system.

228 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

12.4.8.2 Emulation Expanded Narrow Mode

Expanded narrow modes are intended to allow connection of single 8-bit external memory devices for
lower cost systems that do not need the performance of a full 16-bit external data bus. Accesses to internal
resources that have been mapped external (i.e. PORTA, PORTB, DDRA, DDRB, PORTE, DDRE, PEAR,
PUCR, RDRIV) will be accessed with a 16-bit data bus on Ports A and B. Accesses of 16-bit external
words to addresses which are normally mapped external will be broken into two separate 8-bit accesses
using Port A as an 8-bit data bus. Internal operations continue to use full 16-bit data paths. They are only
visible externally as 16-bit information if IVIS=1.

Ports A and B are configured as multiplexed address and data output ports. During external accesses,
address A15, data D15 and D7 are associated with PA7, address AO is associated with PBO and data D8
and DO are associated with PAO. During internal visible accesses and accesses to internal resources that
have been mapped external, address A15 and data D15 is associated with PA7 and address A0 and data
DO is associated with PBO.

The bus control related pins in Port E (PE7/NOACC, PE6/MODB/IPIPE1, PE5/MODA/IPIPEQO,
PE4/ECLK, PE3/[STRB/TAGLO, and PE2/RN) are all configured to serve their bus control output
functions rather than general purpose 1/0O. Notice that writes to the bus control enable bits in the PEAR
register in emulation mode are restricted.

The main difference between emulation modes and normal modes is that some of the bus control and
system control signals cannot be written in emulation modes.

12.4.8.3 Peripheral Mode

This mode is intended for Motorola factory testing of the system. In this mode, the CPU is inactive and an
external (tester) bus master drives address, data and bus control signals in through Ports A, B and E. In
effect, the whole system acts as if it was a peripheral under control of an external CPU. This allows faster
testing of on-chip memory and peripherals than previous testing methods. Since the mode control register
is not accessible in peripheral mode, the only way to change to another mode is to reset the system into a
different operating mode.

12.4.8.4 Emulation Expanded Wide Mode

In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data bus and
Port E provides bus control and status signals. These signals allow external memory and peripheral devices
to be interfaced to the system. These signals can also be used by a logic analyzer to monitor the progress
of application programs.

The bus control related pins in Port E (PE7/NOACC, PE6/MODB/IPIPE1, PES/MODA/IPIPEDO,
PE4/ECLK, PE3ISTRB/TAGLO, and PE2/RN) are all configured to serve their bus control output
functions rather than general purpose I/O. Notice that writes to the bus control enable bits in the PEAR
register in emulation mode are restricted.

The main difference between emulation modes and normal modes is that some of the bus control and
system control signals cannot be written in emulation modes.

@ MOTOROLA 229

Core User Guide — S12CPU15UG V1.2

12.4.8.5 Normal Single Chip Mode

There is no external expansion bus in this mode. All pins of Ports A, B and K are configured as general
purpose I/O pins. Port E bits 1 and 0 are available as general purpose input only pins with internal pullups
and the other remaining pins are bidirectional I/O pins that are initially configured as high-impedance
inputs with internal pullups enabled.

The pins associated with Port E bits 6, 5, 3, and 2 cannot be configured for their alternate functions IPIPE1,
IPIPEO,LSTRB, and RV while the system is in single chip modes. The associated control bits PIPOE,
LSTRE, and RDWE, respectively, are reset to zero. Writing the opposite state into them in this mode does
not change the operation of the associated Port E pins.

In normal single chip mode, the MODE register is writable one time. This allows a user program to change
the bus mode to narrow or wide expanded mode and/or turn on visibility of internal accesses.

Port E, bit 4 can be configured for a free-running E clock output by clearing NECLK=0. Typically, the
only use for an E clock output while the system is in single chip modes would be to get a constant speed
clock for use in the external application system.

12.4.8.6 Normal Expanded Narrow Mode

This mode is used for lower cost production systems that use 8-bit wide external EPROMs or RAMs. Such
systems take extra bus cycles to access 16-bit locations but this may be preferred over the extra cost of
additional external memory devices.

Ports A and B are configured as a 16-bit address bus and Port A is multiplexed with data. Internal visibility
is not available in this mode because the internal cycles would need to be split into two 8-bit cycles.

Since the PEAR register can only be written one time in this mode, use care to set all bits to the desired
states during the single allowed write.

The PE3LSTRB pin is always a general purpose 1/0O pin in normal expanded narrow mode. Although it
is possible to write the LSTRE bit in PEAR to “1” in this mode, the state of LSTRE is overridden and Port
E bit 3 cannot be reconfigured as tI#TRB output.

It is possible to enable the pipe status signals on Port E bits 6 and 5 by setting the PIPOE bit in PEAR, but
it would be unusual to do so in this mod&TRB would also be needed to fully understand system
activity. Development systems where pipe status signals are monitored would typically use special test
mode or occasionally emulation expanded narrow mode.

The PE4/ECLK pin is initially configured as ECLK output with stretch. The E clock output function
depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register and
the ESTR bit in the EBICTL register. In normal expanded narrow mode, the E clock is available for use
in external select decode logic or as a constant speed clock for use in the external application system.

The PE2/RW pin is initially configured as a general purpose input with a pullup but this pin can be
reconfigured as the R/ bus control signal by writing “1” to the RDWE bit in PEAR. If the expanded
narrow system includes external devices that can be written such as RAM, the RDWE bit would need to
be set before any attempt to write to an external location. If there are no writable resources in the external
system, PE2 can be left as a general purpose 1/0 pin.

230 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

12.4.8.7 Special Test Mode

In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data bus and
Port E provides bus control and status signals. In special test mode, the write protection of many control
bits is lifted so that they can be thoroughly tested without needing to go through reset.

12.4.8.8 Normal Expanded Wide Mode

In expanded wide modes, Ports A and B are configured as a 16-bit multiplexed address and data bus and
Port E bit 4 is configured as the E clock output signal. These signals allow external memory and peripheral
devices to be interfaced to the system.

Port E pins other than PE4/ECLK are configured as general purpose I/O pins (initially high-impedance
inputs with internal pullup resistors enabled). Control bits PIPOE, NECLK, LSTRE, and RDWE in the
PEAR register can be used to configure Port E pins to act as bus control outputs instead of general purpose
I/O pins.

It is possible to enable the pipe status signals on Port E bits 6 and 5 by setting the PIPOE bit in PEAR, but
it would be unusual to do so in this mode. Development systems where pipe status signals are monitored
would typically use the emulation variation of this mode.

The Port E bit 2 pin can be reconfigured as thé/Rus control signal by writing “1” to the RDWE bit in
PEAR. If the expanded system includes external devices that can be written, such as RAM, the RDWE bit
would need to be set before any attempt to write to an external location. If there are no writable resources
in the external system, PE2 can be left as a general purpose I/O pin.

The Port E bit 3 pin can be reconfigured aslti8$RB bus control signal by writing “1” to the LSTRE bit
in PEAR. The default condition of this pin is a general purpose input becaug&ireB function is not
needed in all expanded wide applications.

The Port E bit 4 pin is initially configured as ECLK output with stretch. The E clock output function
depends upon the settings of the NECLK bit in the PEAR register, the IVIS bit in the MODE register and
the ESTR bit in the EBICTL register. The E clock is available for use in external select decode logic or as
a constant speed clock for use in the external application system.

12.4.9 Internal Visibility

Internal visibility is available when the system is operating in expanded wide modes, special test mode, or
emulation narrow mode. It is not available in single-chip, peripheral or normal expanded narrow modes.
Internal visibility is enabled by setting the VIS bit in the MODE register.

If an internal access is made while EVR/andLSTRB are configured as bus control outputs and internal
visibility is off (IVIS=0), E will remain low for the cycle, RN will remain high, and address, data and the
LSTRB pins will remain at their previous state.

When internal visibility is enabled (IVIS=1), certain internal cycles will be blocked from going external
to prevent possible corruption of external devices. Specifically, during cycles when the BDM is selected,
R/MW will remain high, data will maintain its previous state, and addres<. &TdRB pins will be updated

@ MOTOROLA 231

Core User Guide — S12CPU15UG V1.2

with the internal value. During CPU no access cycles when the BDM is not drivilig vl remain high,
and address, data and tH&TRB pins will remain at their previous state.

12.4.10 Secure Mode
When the system is operating in a secure mode, internal visibility is not available (i.e. IVIS=1 has no
effect). Also, the IPIPE signals will not be visible, regardless of operating mode. IPIPE1-IPIPEO will

display zeroes if they are enabled. In addition, the MOD bits in the MODE control register cannot be
written.

12.5 Low-Power Options

The MEBI does not contain any user-controlled options for reducing power consumption. The operation
of the MEBI in low-power modes is discussed in the following subsections.

12.5.1 Run Mode

The MEBI does not contain any options for reducing power in run mode; however, the external addresses
are conditioned with expanded mode to reduce power in single chip modes.

12.5.2 Wait Mode
The MEBI does not contain any options for reducing power in wait mode.

12.5.3 Stop Mode

The MEBI will cease to function during execution of a CPU STOP instruction.

12.6 Motorola Internal Information

This subsection details information about the MEBI sub-block that is for Motorola use only and should
not be published in any form outside of Motorola.

12.6.1 Peripheral Mode Operation
The only way to enter peripheral mode is via reset with the pins configured as shdwabla12-7. The

only way to exit peripheral mode is to change the mode pin configuration and pull reset. It is not possible
to enter/exit peripheral mode by writing the MODX bits in the MODE register.

Table 12-7 Peripheral Mode Pin Configuration

MODC (BKGD) MODB (PE6) MODA (PE5)

1 1 0

232 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Peripheral mode is a special mode immediately out of reset. It may be changed to a normal mode by
writing the PNORME bit in the MTST1 register of the MMC sub-block to ‘1’.

In peripheral mode, the direction of the address and data buses is reversed compared to other modes of
operation. Address, R/ and SZ8 all come from the external test system and drive the bus interface pins

of Ports A, B and E of the system. The data bus is configured to pass data directly through Ports A and B
to the internal data bus. Accesses are all initiated by the external test system.

The burden of deciding which port to access for 8-bit data or swapped data is the responsibility of the
external test system. The MEBI does not modify peripheral mode accesses in any way. Misaligned 16-bit
accesses are not allowed to blocks that require two cycles to complete such as system peripherals.
Misaligned 16-bit accesses are allowed to blocks that can handle fast transfers such as a RAM memory
block.

12.6.2 Special Test Clock

When theperi_test_clk_enablsignal at the Core interface is asserted in special modepgtheest_clk
signal will be driven out on Port E, bit 6 when PIPOE=0.

W) mororora 233

Core User Guide — S12CPU15UG V1.2

234 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 13 Breakpoint (BKP)

This section describes the functionality of the Breakpoint (BKP) sub-block of the Core.

13.1 Overview

The Breakpoint sub-block of the Core provides for hardware breakpoints that are used to debug software
on the CPU by comparing actual address and data values to predetermined data in setup registers. A
successful comparison will place the CPU in Background Debug Mode or initiate a software interrupt
(SWI).

The Breakpoint sub-block contains two modes of operation:

* Dual Address Mode, where a match on either of two addresses will cause the system to enter
Background Debug Mode or initiate a Software Interrupt (SWI).

* Full Breakpoint Mode, where a match on address and data will cause the system to enter
Background Debug Mode or initiate a Software Interrupt (SWI).

There are two types of breakpoints, forced and tagged. Forced breakpoints occur at the next instruction
boundary if a match occurs and tagged breakpoints allow for breaking just before a specific instruction
executes. Tagged breakpoints will only occur on addresses. Tagging on data is not allowed; however, if
this occurs nothing will happen within the BKP.

The BKP allows breaking within a 256 byte address range and/or within expanded memory. It allows
matching of the data as well as the address and to match 8-bit or 16-bit data. Forced breakpoints can match
on aread or a write cycle.

13.1.1 Features

* Full or Dual Breakpoint Mode
— Compare on address and data (Full)
— Compare on either of two addresses (Dual)
 BDM or SWI Breakpoint
— Enter BDM on breakpoint (BDM)
— Execute SWI on breakpoint (SWI)
» Tagged or Forced Breakpoint
— Break just before a specific instruction will begin execution (TAG)
— Break on the first instruction boundary after a match occurs (Force)
» Single, Range or Page address compares
— Compare on address (Single)
— Compare on address 256 byte (Range)

@ MOTOROLA 235

Core User Guide — S12CPU15UG V1.2

— Compare on any 16K Page (Page)
e Compare address on read or write on forced breakpoints

» High and/or low byte data compares
13.1.2 Block Diagram

A block diagram of the Breakpoint sub-block is showFigure 13-1 below. The Breakpoint contains

three main sub-blocks: the Register Block, the Compare Block and the Control Block. The Register Block
consists of the eight registers that make up the Breakpoint register space. The Compare Block performs
all required address and data signal comparisons. The Control Block generates the signals for the CPU for
the tag high, tag low, force SWI and force BDM functions. In addition, it generates the register read and
write signals and the comparator block enable signals.

NOTE:There is a two cycle latency for address compares for forces, a two cycle latency for write data
compares, and a three cycle latency for read data compares.

236 @ MOTOROLA

Clocks and control signals

Core User Guide — S12CPU15UG V1.2

BKP control signals

: CONTROL BLOCK —
' —————
Breakpoint Modes
. . and generation P
> of SWI, force BDM & tags
>
E = @ @
EXPANSION = =] =
I} S s D
ADDRESS < © = =
ADDRESS
WRITE DATA
READ DATA v
REGISTER BLOCK
BKPCTO
BKPCT1 v
COMPARE BLOCK
I expansion addresses
BKPOX Comparator .
BKP Read Data Bus
I . - address high
Write Data Bus BKPOH Comparator
b ‘ address low
BKPOL Comparator
BKP1X » Comparator l expansion addresses
data high
. - 1 Data/Address <_g
Comparator4< High Mux address high
data low
- P Data/Address <—
BKP1L Comparaton‘_‘ Low Mux address low
_> Comparator read data high
T Comparator read data low

@ MOTOROLA

Figure 13-1 Breakpoint Block Diagram

237

Core User Guide — S12CPU15UG V1.2
13.2 Interface Signals

All interfacing with the Breakpoint sub-block is done within the Core.

13.3 Registers

A summary of the registers associated with the Breakpoint sub-block is shéwguiie 13-2 below.
Detailed descriptions of the registers and bits are given in the subsections that follow.

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0028 BKPCTO \ﬁz BKEN | BKFULL | BKBDM | BKTAG 0 0 0 0

$0029 BKPCT1 \m‘; BKOMBH | BKOMBL | BKIMBH | BKIMBL | BKORWE | BKORW | BKIRWE | BKIRW
read 0 0

$002A BKPOX -0 BKOV5 | BKOV4 | BKOV3 | BKOV2 | BKOV1 | BKOVO
read . .

$002B BKPOH 29| Bijt15 14 13 12 11 10 9 Bit 8
write

s002c BKPoL 29| git7 6 5 4 3 2 1 Bit 0
write
read 0 0

$002D BKPLX o0 BK1V5 | BK1v4 | BK1V3 | BK1V2 | BK1V1 | BKI1VO
read . .

$002E BKPIH 7| Bit1s 14 13 12 11 10 9 Bit 8

$002F BKPIL | git7 6 5 4 3 2 1 Bit 0
write

|:| = Unimplemented X = Indeterminate

Figure 13-2 Breakpoint Register Summary

13.3.1 Breakpoint Control Register 0 (BKPCTO)

Read: anytime
Write: anytime

238 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Address $0028

Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0 0 0
BKEN BKFULL | BKBDM | BKTAG
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Figure 13-3 Breakpoint Control Register 0 (BKPCTO)

This register is used to set the breakpoint modes.

BKEN - Breakpoint Enable

This bit enables the module
0 = Breakpoint module off
1 = Breakpoint module on

BKFULL - Full Breakpoint Mode Enable
This bit controls whether the breakpoint module is in Dual Mode or Full Mode

0 = Dual Address Mode enabled
1 = Full Breakpoint Mode enabled

BKBDM - Breakpoint Background Debug Mode Enable

This bit determines if the breakpoint causes the system to enter Background Debug Mode(BDM) or
initiate a Software Interrupt (SWI)

0 = Go to Software Interrupt on a compare

1 = Go to BDM on a compare

BKTAG — Breakpoint on Tag

This bit controls whether the breakpoint will cause a break on the next instruction boundary (force) or
on a match that will be an executable opcode (tagged). Non-executed opcodes cannot cause a taggec
breakpoint

0 = On match, break at the next instruction boundary (force)

1 = On match, break if the match is an instruction that will be executed (tagged)

13.3.2 Breakpoint Control Register 1 (BKPCT1)

Read: anytime
Write: anytime

@ MOTOROLA 239

Core User Guide — S12CPU15UG V1.2

Address $0029

Bit 7 6 5 4 3 2 1 Bit 0
Read:
BKOMBH | BKOMBL | BK1IMBH | BK1IMBL BKORW BKORW BKIRW BK1RW
Write: E E
rite:
Reset: 0 0 0 0 0 0 0 0

Figure 13-4 Breakpoint Control Register 1 (BKPCT1)

This register is used to configure the functionality of the Breakpoint sub-block within the Core.

BKOMBH:BKOMBL - Breakpoint Mask High Byte and Low Byte for First Address

In Dual or Full Mode, these bits may be used to mask (disable) the comparison of the high and low
bytes of the first address breakpoint. The functionality is as giv€alle 13-1 below

Table 13-1 Breakpoint Mask Bits for First Address

BKOMBH:BKOMBL Address Compare BKPOX BKPOH BKPOL
x:0 Full Address Compare Yes! Yes Yes
0:1 256 byte Address Range Yes® Yes No
1:1 16K byte Address Range Yes(® No No
NOTES:

1. If page is selected.

The x:0 case is for a Full Address Compare. When a program page is selected, the full address compare
will be based on bits for a 20-bit compare. The registers used for the compare are
{BKPOX][5:0],BKPOHI5:0],BKPOL[7:0]}. When a program page is not selected, the full address
compare will be based on bits for a 16-bit compare. The registers used for the compare are
{BKPOH][7:0],BKPOL[7:0]}.

The 1:0 case is not sensible because it would ignore the high order address and compare the low order
and expansion addresses. Logic forces this case to compare all address lines (effectively ignoring the
BKOMBH control bit).

The 1:1 case is useful for triggering a breakpoint on any access to a particular expansion page. This
only makes sense if a program page is being accessed so that the breakpoint trigger will occur only if
BKPOX compares.

BK1MBH:BK1MBL - Breakpoint Mask High Byte and Low Byte of Data (Second Address)

240 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

In Dual Mode, these bits may be used to mask (disable) the comparison of the high and/or low bytes
of the second address breakpoint. The functionality is as giveabie 13-2 below.

Table 13-2 Breakpoint Mask Bits for Second Address (Dual Mode)

BK1MBH:BK1MBL Address Compare BKP1X BKP1H BKP1L
x:0 Full Address Compare Yes! Yes Yes
0:1 256 byte Address Range Yes(®) Yes No
1:1 16K byte Address Range Yes@ No No
NOTES:

1. If page is selected.

The x:0 case is for a Full Address Compare. When a program page is selected, the full address compare
will be based on bits for a 20-bit compare. The registers used for the compare are
{BKP1X[5:0],BKP1H[5:0],BKP1L[7:0]}. When a program page is not selected, the full address
compare will be based on bits for a 16-bit compare. The registers used for the compare are
{BKP1H[7:0],BKP1L[7:0]}.

The 1:0 case is not sensible because it would ignore the high order address and compare the low order
and expansion addresses. Logic forces this case to compare all address lines (effectively ignoring the
BK1MBH control bit).

The 1:1 case is useful for triggering a breakpoint on any access to a particular expansion page. This
only makes sense if a program page is being accessed so that the breakpoint trigger will occur only if
BKP1X compares.

In Full Mode, these bits may be used to mask (disable) the comparison of the high and/or low bytes of
the data breakpoint. The functionality is as givemable 13-3 below.

Table 13-3 Breakpoint Mask Bits for Data Breakpoints (Full Mode)

BK1MBH:BK1MBL Data Compare BKP1X BKP1H BKP1L
. High and Low Byte 1

0:0 Compare No Yes Yes

0:1 High Byte No Yes No

1:0 Low Byte No(No Yes

1:1 No Compare No(No No

NOTES:

1. Expansion addresses for breakpoint 1 are not available in this mode.

BKORWE - RW Compare Enable

@ MOTOROLA 241

Core User Guide — S12CPU15UG V1.2

Enables the comparison of theWRkignal for first address breakpoint. This bit is not useful in tagged
breakpoints.

0 = RW is not used in the comparisons

1 = RW is used in comparisons

BKORW - RW Compare Value

When BKORWE-=1, this bit determines the type of bus cycle to match on first address breakpoint.
When BKORWE=0, this bit has no effect.

0 = Write cycle will be matched

1 = Read cycle will be matched

BK1RWE - RW Compare Enable

In Dual Mode, this bit enables the comparison of thé&/Rignal to further specify what causes a match
for the second address breakpoint. This bit is not useful on tagged breakpoints or in Full Mode and is
therefore a don'’t care.

0 = RW is not used in comparisons

1 = RW is used in comparisons

BK1RW — RMW Compare Value

When BK1RWE=1, this bit determines the type of bus cycle to match on the second address
breakpoint. When BK1RWE=0, this bit has no effect.

0 = Write cycle will be matched

1 = Read cycle will be matched

13.3.3 Breakpoint First Address Expansion Register (BKPOX)

Read: anytime
Write: anytime

Address $002A

Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0
BKOV5 BKOV4 BKOV3 BKOV2 BKOV1 BKOVO
Write:
Re-

0 0 0 0 0 0 0 0
set:

= Reserved or unimplemented

Figure 13-5 Breakpoint First Address Expansion Register (BKP0OX)

This register contains the data to be matched against expansion address lines for the first address
breakpoint when a page is selected.

BKOV[5:0] - Value of first breakpoint address to be matched in memory expansion space.

242 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2
13.3.4 Breakpoint First Address High Byte Register (BKPOH)

Read: anytime
Write: anytime

Address $002B

Bit 7 6 5 4 3 2 1 Bit 0
Read
: Bit 15 14 13 12 11 10 9 Bit 8
Write:
Re- 0 0 0 0 0 0 0 0

set:
Figure 13-6 Breakpoint First Address High Byte Register (BKPOH)
This register is used to set the breakpoint when compared against the high byte of the address.

13.3.5 Breakpoint First Address Low Byte Register (BKPOL)

Read: anytime
Write: anytime

Address $002C

Bit 7 6 5 4 3 2 1 Bit 0
Read
: Bit 7 6 5 4 3 2 1 Bit 0
Write:
Re- 0 0 0 0 0 0 0 0

set:
Figure 13-7 Breakpoint First Address Low Byte Register (BKPOL)
This register is used to set the breakpoint when compared against the low byte of the address.

13.3.6 Breakpoint Second Address Expansion Register (BKP1X)

Read: anytime
Write: anytime

@ MOTOROLA 243

Core User Guide — S12CPU15UG V1.2

Address $002D

Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0
BK1V5 | BK1V4 | BKIV3 | BK1V2 | BK1V1 | BK1VO
Write:
Re- 0 0 0 0 0 0 0 0

set:

= Reserved or unimplemented

Figure 13-8 Breakpoint Second Address Expansion Register (BKP1X)

In Dual Mode, this register contains the data to be matched against expansion address lines for the second
address breakpoint when a page is selected. In Full Mode, this register is not used.

BK1V[5:0] - Value of first breakpoint address to be matched in memory expansion space.
13.3.7 Breakpoint Data (Second Address) High Byte Register (BKP1H)

Read: anytime
Write: anytime

Address $002E

Bit 7 6 5 4 3 2 1 Bit 0
Read
: Bit 15 14 13 12 11 10 9 Bit 8
Write:
Re- 0 0 0 0 0 0 0 0

set:

Figure 13-9 Breakpoint Data High Byte Register (BKP1H)

In Dual Mode, this register is used to compare against the high order address lines. In Full Mode, this
register is used to compare against the high order data lines.

13.3.8 Breakpoint Data (Second Address) Low Byte Register (BKP1L)

Read: anytime
Write: anytime

244 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Ad-

dress $002F

Bit 7 6 5 4 3 2 1 Bit 0
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:
Reset: 0 0 0 0 0 0 0 0

Figure 13-10 Breakpoint Data Low Byte Register (BKP1L)

In Dual Mode, this register is used to compare against the low order address lines. In Full Mode, this
register is used to compare against the low order data lines.

13.4 Operation

The Breakpoint sub-block supports two modes of operation: Dual Address Mode and Full Breakpoint
Mode. Within each of these modes, forced or tagged breakpoint types can be used. Forced breakpoints
occur at the next instruction boundary if a match occurs and tagged breakpoints allow for breaking just
before a specific instruction executes. The action taken upon a successful match can be to either place the
CPU in Background Debug Mode or to initiate a software interrupt.

13.4.1 Modes of Operation

The Breakpoint can operate in Dual Address Mode or Full Breakpoint Mode. Each of these modes is
discussed in the subsections below.

13.4.1.1 Dual Address Mode

When Dual Address Mode is enabled, two address breakpoints can be set. Each breakpoint can cause the
system to enter Background Debug Mode or to initiate a software interrupt based upon the state of the
BKBDM bit in the BKPCTO Register being logic one or logic zero, respectively. BDM requests have a
higher priority than SWI requests. No data breakpoints are allowed in this mode.

The BKTAG bit in the BKPCTO register selects whether the breakpoint mode is force or tag. The
BKXMBH:L bits in the BKPCTL1 register select whether or not the breakpoint is matched exactly or is a
range breakpoint. They also select whether the address is matched on the high byte, low byte, both bytes,
and/or memory expansion. The BKXRW and BKXRWE bits in the BKPCT1 register select whether the
type of bus cycle to match is a read, write, or both when performing forced breakpoints.

13.4.1.2 Full Breakpoint Mode

Full Breakpoint Mode requires a match on address and data for a breakpoint to occur. Upon a successful
match, the system will enter Background Debug Mode or initiate a software interrupt based upon the state
of the BKBDM bit in the BKPCTO Register being logic one or logic zero, respectively. BDM requests
have a higher priority than SWI requestsA\Rhatches are also allowed in this mode.

@ MOTOROLA 245

Core User Guide — S12CPU15UG V1.2

The BKTAG bit in the BKPCTO register selects whether the breakpoint mode is forced or tagged. If the
BKTAG bitis set in BKPCTO, then only address is matched, and data is ignored. The BKOMBH:L bits in
the BKPCTL1 register select whether or not the breakpoint is matched exactly, is a range breakpoint, or is
in page space. The BK1IMBH:L bits in the BKPCT1 register select whether the data is matched on the high
byte, low byte, or both bytes. The BKORW and BKORWE bits in the BKPCT1 register select whether the
type of bus cycle to match is a read or a write when performing forced breakpoints. BK1RW and
BK1RWE bits in the BKPCT1 register are not used in Full Breakpoint Mode.

13.4.2 Breakpoint Priority

Breakpoint operation is first determined by the state of BDM. If BDM is already active, meaning the CPU
is executing out of BDM firmware, Breakpoints are not allowed. In addition, while in BDM trace mode,
tagging into BDM is not allowed. If BDM is not active, the Breakpoint will give priority to BDM requests
over SWI requests. This condition applies to both forced and tagged breakpoints.

In all cases, BDM related breakpoints will have priority over those generated by the Breakpoint sub-block.
This priority includes breakpoints enabled by T#SLO andTAGHI external pins of the system that
interface with the BDM directly and whose signal information passes through and is used by the
Breakpoint sub-block.

NOTE: BDM should not be entered from a breakpoint unless the ENABLE bit is set in the
BDM. Even if the ENABLE bit in the BDM is negated, the CPU actually executes
the BDM firmware code. It checks the ENABLE and returns if enable is not set. If
the BDM is not serviced by the monitor then the breakpoint would be re-asserted
when the BDM returns to normal CPU flow.

There is no hardware to enforce restriction of breakpoint operation if the BDM is
not enabled.

13.5 Motorola Internal Information

The Breakpoint sub-block does not contain any information that is considered to be for Motorola use only.

246 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 14 Background Debug Mode (BDM)

This section describes the functionality of the Background Debug Mode (BDM) sub-block of the Core.

14.1 Overview

The Background Debug Mode (BDM) sub-block is a single-wire, background debug system implemented
in on-chip hardware for minimal CPU intervention. All interfacing with the BDM is done via the BKGD

pin.
14.1.1 Features

* Single-wire communication with host development system

» Active out of reset in special single-chip mode

» Nine hardware commands using free cycles, if available, for minimal CPU intervention
* Hardware commands not requiring active BDM

» 15 firmware commands execute from the standard BDM firmware lookup table

* Instruction tagging capability

» Software control of BDM operation during wait mode

» Software selectable clocks

« BDM disabled when secure feature is enabled

@ MOTOROLA 247

Core User Guide — S12CPU15UG V1.2
14.1.2 Block Diagram

The block diagram of the BDM is shownhigure 14-1 below.

shorem <————>[16-81T SHIFT REGISTER]
BKGD
:‘> ADDRESS

ENTAG [« BUS INTERFACE

ervrres B INSTRUCTION - DECODE : : e : [OATA
TRACE | AND EXECUTION CONTROL LOGIC

<¢—— CLOCKS

SDV standard Bpm firmware

ENBDM |<e LOOKUP TABLE | CLKSW |

Figure 14-1 BDM Block Diagram

14.2 Interface Signals

A single-wire interface pin is used to communicate with the BDM system. Two additional pins are used
for instruction tagging. These pins are part of the Multiplexed External Bus Interface (MEBI) sub-block
and all interfacing between the MEBI and BDM is done within the Core interface boundary. The
functional descriptions of the pins are provided below for completeness.

» BKGD — Background interface pin
* TAGHI — High byte instruction tagging pin
* TAGLO — Low byte instruction tagging pin

BKGD andTAGHI share the same pimRAGLO andLSTRB share the same pin.
14.2.1 Background Interface Pin (BKGD)

Debugging control logic communicates with external devices serially via the single-wire background
interface pin (BKGD). During reset, this pin is a mode select input which selects between normal and
special modes of operation. After reset, this pin becomes the dedicated serial interface pin for the
background debug mode.

14.2.2 High Byte Instruction Tagging Pin (TAGHI)
This pin is used to tag the high byte of an instruction. When instruction tagging is on, a logic 0 at the falling

edge of the external clock (ECLK) tags the high half of the instruction word being read into the instruction
queue.

248 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

14.2.3 Low Byte Instruction Tagging Pin (TAGLO)

This pin is used to tag the low byte of an instruction. When instruction tagging is on and low strobe is
enabled, a logic 0 at the falling edge of the external clock (ECLK) tags the low half of the instruction word
being read into the instruction queue.

14.3 Registers

A summary of the registers associated with the BDM is showigire 14-2 below. Registers are
accessed by host-driven communications to the BDM hardware using READ_BD and WRITE_BD
commands. Detailed descriptions of the registers and associated bits are given in the subsections that
follow.

Register : .
Address Name Bit 7 6 5 4 3 2 1 Bit 0
$FFO0 Reserved Re_ad: X X X X X X 0 0
Write:
$FFO1 BDMSTS \Ijveri: ENBDM |BDMACT| ENTAG | sSDv | TRACE | cLksw FUNSEC | O
$FF02 Reserved Re_ad: X X X X X X X X
Write:
$FFO03 Reserved Regd: X X X X X X X X
Write:
$FF04 Reserved Re_ad: X X X X X X X X
Write:
$FFO5 Reserved Regd: X X X X X X X X
Write:
Read:
$FF0O6 BDMCCR Write: CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCRO
$FF07 BDMINR \Ijverig REG15 | REG14 | REG13 | REG12 | REG11 0 0 0

|:| = Unimplemented X = Indeterminate

Figure 14-2 BDM Register Map Summary

@ MOTOROLA 249

Core User Guide — S12CPU15UG V1.2
14.3.1 BDM Status Register

Address: $FFO01

Bit 7 6 5 4 3 2 ! Bit 0
Read: UNSEC 0
ENBDM |BDMACT | ENTAG | SDV | TRACE |CLKSW
Write:
Reset:
Special single-chip mode: 0 1 0 0 0 0 0 0
Special peripheral mode: 0 1 0 0 0 0 0 0
All other modes: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 14-3 BDM Status Register (BDMSTS)

Read: All modes through BDM operation
Write: All modes but subject to the following:

— BDMACT can only be set by BDM hardware upon entry into BDM. It can only be cleared by
the standard BDM firmware lookup table upon exit from BDM active mode.

— CLKSW can only be written via BDM hardware or standard BDM firmware write commands.

— All other bits, while writable via BDM hardware or standard BDM firmware write commands,
should only be altered by the BDM hardware or standard firmware lookup table as part of BDM
command execution.

— ENBDM should only be set via a BDM hardware command if the BDM firmware commands
are needed. (This does not apply in Special Single Chip Mode).

ENBDM - Enable BDM

This bit controls whether the BDM is enabled or disabled. When enabled, BDM can be made active to
allow firmware commands to be executed. When disabled, BDM cannot be made active but BDM
hardware commands are still allowed.

1 = BDM enabled
0 = BDM disabled

NOTE: ENBDMi s set by the firmware immediately out of reset in special single-chip mode.
In secure mode, this bit will not be set by the firmware until after the EEPROM and
FLASH erase verify tests are complete.

BDMACT - BDM active status

250 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

This bit becomes set upon entering BDM. The standard BDM firmware lookup table is then enabled
and put into the memory map. BDMACT is cleared by a carefully timed store instruction in the
standard BDM firmware as part of the exit sequence to return to user code and remove the BDM
memory from the map.

1 = BDM active

0 = BDM not active

ENTAG - Tagging enable

This bit indicates whether instruction tagging in enabled or disabled. It is set when the TAGGO
command is executed and cleared when BDM is entered. The serial system is disabled and the tag
function enabled 16 cycles after this bit is written. BDM cannot process serial commands while
tagging is active.

1 = Tagging enabled

0 = Tagging not enabled, or BDM active

SDV - Shift data valid

This bit is set and cleared by the BDM hardware. It is set after data has been transmitted as part of a
firmware read command or after data has been received as part of a firmware write command. It is
cleared when the next BDM command has been received or BDM is exited. SDV is used by the
standard BDM firmware to control program flow execution.

1 = Data phase of command is complete

0 = Data phase of command not complete

TRACE - TRACE1 BDM firmware command is being executed

This bit gets set when a BDM TRACEL1 firmware command is first recognized. It will stay set as long
as continuous back-to-back TRACE1 commands are executed. This bit will get cleared when the next
command that is not a TRACE1 command is recognized.

1 = TRACE1 command is being executed

0 = TRACE1 command is not being executed

CLKSW - Clock switch

The CLKSW bit controls which clock the BDM operates with. It is only writable from a hardware
BDM command. A 150 cycle delay at the clock speed that is active during the data portion of the
command will occur before the new clock source is guaranteed to be active. The start of the next BDM
command uses the new clock for timing subsequent BDM communications.

1 = BDM system operates with bus rate

0 = BDM system operates with alternate clock

WARNING:
The BDM will not operate with CLKSW = 0 if the frequency of the alternate clock
source, peri_phase_oscdX, is greater than one half of the bus frequency. Please
refer to the users guide for the clock generation module to determine if this
condition can occur.

UNSEC - Unsecure

@ MOTOROLA 251

Core User Guide — S12CPU15UG V1.2

This bit is only writable in special single chip mode from the BDM secure firmware and always gets
reset to zero. Itis in a zero state as secure mode is entered so that the secure BDM firmware lookup
table is enabled and put into the memory map along with the standard BDM firmware lookup table.

The secure BDM firmware lookup table verifies that the on-chip EEPROM and Flash EEPROM are
erased. This being the case, the UNSEC bit is set and the BDM program jumps to the start of the
standard BDM firmware lookup table and the secure BDM firmware lookup table is turned off. If the
erase test fails, the UNSEC bit will not be asserted.

1 = the system is in a unsecured mode

0 = the system is in a secured mode

WARNING:
When UNSEC is set, security is off and the user can change the state of the secure
bits in the on-chip Flash EEPROM. Note that if the user does not change the state
of the bits to "unsecured" mode, the system will be secured again when it is next
taken out of reset.

14.3.2 BDM CCR Holding Register

Address: $FF06

Bit 7 6 5 4 3 2 1 Bit O
Read:
CCR7 | CCR6 | CCR5 | CCR4 | CCR3 | CCR2 | CCR1 | CCRO
Write:
Reset: 0 0 0 0 0 0 0 0

Figure 14-4 BDM CCR Holding Register (BDMCCR)

Read: All modes
Write: All modes

NOTE: When BDM is made active, the CPU stores the value of the CCR register in the
BDMCCR register. However, out of special single-chip reset, the BDMCCR is set
to $D8 and not $DO0 which is the reset value of the CCR register.

When entering background debug mode, the BDM CCR holding register is used to save the contents of
the condition code register of the user’s program. Itis also used for temporary storage in the standard BDM
firmware mode. The BDM CCR holding register can be written to modify the CCR value.

252 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2
14.3.3 BDM Internal Register Position Register

Address: $FF07

Bit 7 6 5 4 3 2 1 Bit 0
Read:| REG15 | REG14 | REG13 | REG12 | REG11 0 0 0
Write:
Reset: 0 0 0 0 0 0 0 0
= Unimplemented

Figure 14-5 BDM Internal Register Position (BDMINR)

Read: All modes
Write: Never

REG15-REG11 - Internal register map position

These five bits show the state of the upper five bits of the base address for the system’s relocatable
register block. BDMINR is a shadow of the INITRG register which maps the register block to any 2K
byte space within the first 32K bytes of the 64K byte address space.

14.4 Operation

The BDM receives and executes commands from a host via a single wire serial interface. There are two
types of BDM commands, namely, hardware commands and firmware commands.

Hardware commands are used to read and write target system memory locations and to enter active
background debug mode (sk£.4.3. Target system memory includes all memory that is accessible by the
CPU.

Firmware commands are used to read and write CPU resources and to exit from active background debug
mode (sed 4.4.4. The CPU resources referred to are the accumulator (D), X index register (X), Y index
register (Y), stack pointer (SP), and program counter (PC).

Hardware commands can be executed at any time and in any mode excluding a few exceptions as
highlighted in14.5below. Firmware commands can only be executed when the system is in active
background debug mode (BDM).

14.4.1 Security

If the user resets into special single chip mode with the system secured, a secured mode BDM firmware
lookup table is brought into the map overlapping a portion of the standard BDM firmware lookup table.
The secure BDM firmware verifies that the on-chip EEPROM and Flash EEPROM are erased. This being
the case, the UNSEC bit will get set. The BDM program jumps to the start of the standard BDM firmware
and the secured mode BDM firmware is turned off. If the EEPROM and FLASH do not verify as erased,
the BDM firmware sets the ENBDM bit, without asserting UNSEC, and the firmware enters a loop. This

@ MOTOROLA 253

Core User Guide — S12CPU15UG V1.2

causes the BDM hardware commands to become enabled, but does not enable the software commands.
This allows the BDM hardware to be used to erase the EEPROM and FLASH.

14.4.2 Enabling and Activating BDM

The system must be in active BDM to execute standard BDM firmware commands. BDM can be activated
only after being enabled. BDM is enabled by setting the ENBDM bit in the BDM status (BDMSTS)
register. The ENBDM bit is set by writing to the BDM status (BDMSTS) register, via the single-wire
interface, using a hardware command such as WRITE_BD_BYTE.

After being enabled, BDM is activated by one of the foIIovhng

» Hardware BACKGROUND command
* BDM external instruction tagging mechanism
* CPU BGND instruction

« Breakpoint sub-block’s force or tag mecharfism

When BDM is activated, the CPU finishes executing the current instruction and then begins executing the
firmware in the standard BDM firmware lookup table. When BDM is activated by the breakpoint
sub-block, the type of breakpoint used determines if BDM becomes active before or after execution of the
next instruction.

NOTE: |If an attempt is made to activate BDM before being enabled, the CPU resumes
normal instruction execution after a brief delay. If BDM is not enabled, any
hardware BACKGROUND commands issued are ignored by the BDM and the CPU
is not delayed.

In active BDM, the BDM registers and standard BDM firmware lookup table are mapped to addresses
$FFO00 to $FFFF. BDM registers are mapped to addresses $FF00 to $FF07. The BDM uses these registers
which are readable anytime by the BDM. These registers are not, however, readable by user programs.

14.4.3 BDM Hardware Commands

Hardware commands are used to read and write target system memory locations and to enter active
background debug mode. Target system memory includes all memory that is accessible by the CPU such
as on-chip RAM, EEPROM, Flash EEPROM, I/O and control registers, and all external memory.

Hardware commands are executed with minimal or no CPU intervention and do not require the system to
be in active BDM for execution, although, they can still be executed in this mode. When executing a
hardware command, the BDM sub-block waits for a free CPU bus cycle so that the background access does
not disturb the running application program. If a free cycle is not found within 128 clock cycles, the CPU

is momentarily frozen so that the BDM can steal a cycle. When the BDM finds a free cycle, the operation
does not intrude on normal CPU operation provided that it can be completed in a single cycle. However,

NOTES:
1. BDM is enabled and active immediately out of special single-chip reset (see 14.5.2).
2. This method is only available on systems that have a a Breakpoint sub-block.

254 @ MOTOROLA

if an operation requires multiple cycles, the CPU is frozen until the operation is complete, even though the

BDM found a free cycle.

Core User Guide — S12CPU15UG V1.2

The BDM hardware commands are listed able 14-1.
Table 14-1 Hardware Commands

Opcode —
Command (hex) Data Description
BACKGROUN 90 None Enter background mode if firmware is enabled.
16-bit address |Read from memory with standard BDM firmware lookup table in map.
READ_BD_BYTE E4 16-bit data out | Odd address data on low byte; even address data on high byte
READ BD WORD EC 16-b_|t address |Read from.memory with standard BDM firmware lookup table in map.
- - 16-bit data out | Must be aligned access.
READ BYTE E0 16-bit address |Read from memory with standard BDM firmware lookup table out of
- 16-bit data out | map. Odd address data on low byte; even address data on high byte
_bi Read from memory with standard BDM firmware lookup table out of
READ WORD E8 16 b_|t address _ y p
- 16-bit data out | map. Must be aligned access.
16-bit address | Write to memory with standard BDM firmware lookup table in map.
WRITE_BD_BYTE ca 16-bit data in [Odd address data on low byte; even address data on high byte
WRITE BD WORD cc 16-b|§ addre_ss Write to mgmory with standard BDM firmware lookup table in map.
- - 16-bitdatain | Must be aligned access
WRITE BYTE co 16-bit address | Write to memory with standard BDM firmware lookup table out of
- 16-bit data in | map. Odd address data on low byte; even address data on high byte
WRITE WORD cs 16-b|§ addre§s Write to memory with standard BDM firmware lookup table out of
- 16-bit data in | map. Must be aligned access.

The READ_BD and WRITE_BD commands allow access to the BDM register locations. These locations
are not normally in the system memory map but share addresses with the application in memory. To
distinguish between physical memory locations that share the same address, BDM memory resources are
enabled just for the READ_BD and WRITE_BD access cycle. This allows the BDM to access BDM
locations unobtrusively, even if the addresses conflict with the application memory map.

14.4.4 Standard BDM Firmware Commands

Firmware commands are used to access and manipulate CPU resources. The system must be in active
BDM to execute standard BDM firmware commands (s&d.9. Normal instruction execution is

suspended while the CPU executes the firmware located in the standard BDM firmware lookup table. The
hardware command BACKGROUND is the usual way to activate BDM.

As the system enters active BDM, the standard BDM firmware lookup table and BDM registers become
visible in the on-chip memory map at $FF00-$FFFF, and the CPU begins executing the standard BDM

@ MOTOROLA 255

Core User Guide — S12CPU15UG V1.2

firmware. The standard BDM firmware watches for serial commands and executes them as they are

received. The firmware commands are showhahle 14-2

Table 14-2 Firmware Commands

Command O(p;]ce(;(;e Data Description
READ_NEXT 62 16-bit data out Increment X by 2 (X = X + 2), then read word X points to.
READ_PC 63 16-bit data out Read program counter.
READ_D 64 16-bit data out Read D accumulator.
READ_X 65 16-bit data out Read X index register.
READ_Y 66 16-bit data out Read Y index register.
READ_SP 67 16-bit data out Read stack pointer.
WRITE_NEXT 42 16-bit data in Lr;c;zment X by 2 (X=X+2), then write word to location pointed to
WRITE_PC 43 16-bit data in Write program counter.
WRITE_D 44 16-bit data in Write D accumulator.
WRITE_X 45 16-bit data in Write X index register.
WRITE_Y 46 16-bit data in Write Y index register.
WRITE_SP 47 16-bit data in Write stack pointer.
GO 08 none Go to user program.
TRACE1 10 none Execute one user instruction then return to active BDM.
TAGGO 18 none Enable tagging and go to user program.

14.4.5 BDM Command Structure

Hardware and firmware BDM commands start with an 8-bit opcode followed by a 16-bit address and/or a
16-bit data word depending on the command. All the read commands return 16 bits of data despite the byte
or word implication in the command name.

NOTE: 8-bitreads return 16-bits of data, of which, only one byte will contain valid data. If
reading an even address, the valid data will appear in the MSB. If reading an odd
address, the valid data will appear in the LSB.

NOTE: 16-bit misaligned reads and writes are not allowed. If attempted, the BDM wiill
ignore the least significant bit of the address and will assume an even address from
the remaining bits.

256

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

For hardware data read commands, the external host must wait 150 target clock aftetesending the
address before attempting to obtain the read data. This is to be certain that valid data is available in the
BDM shift register, ready to be shifted out. For hardware write commands, the external host must wait 150
target clock cycles after sending the data to be written before attempting to send a new command. This is
to avoid disturbing the BDM shift register before the write has been completed. The 150 target clock cycle
delay in both cases includes the maximum 128 cycle delay that can be incurred as the BDM waits for a
free cycle before stealing a cycle.

For firmware read commands, the external host must wait 32 target clock cycles after sending the
command opcode before attempting to obtain the read data. This allows enough time for the requested data
to be made available in the BDM shift register, ready to be shifted out. For firmware write commands, the
external host must wait 32 target clock cycles after sending the data to be written before attempting to send
a new command. This is to avoid disturbing the BDM shift register before the write has been completed.

The external host should wait 64 target clock cycles after a TRACE1 or GO command before starting any
new serial command. This is to allow the CPU to exit gracefully from the standard BDM firmware lookup
table and resume execution of the user code. Disturbing the BDM shift register prematurely may adversely
affect the exit from the standard BDM firmware lookup table.

Figure 14-6represents the BDM command structure. The command blocks illustrate a series of eight bit
times starting with a falling edge. The bar across the top of the blocks indicates that the BKGD line idles
in the high state. The time for an 8-bit command xs1® target clock cycles.

8 BITS 16 BITS 150-TC 16 BITS
AT ~16 TC/BIT AT ~16 TC/BIT DELAY AT ~16 TC/BIT
HARDWARE NEXT
READ COMMAND ADDRESS DATA COMMAND !
150-TC
DELAY
HARDWARE . NEXT
WRITE COMMAND ADDRESS DATA * COMMAND |
32-TC
DELAY
FIRMWARE NEXT
READ COMMAND DATA COMMAND |
32-TC
DELAY
FIRMWARE . NEXT
WRITE COMMAND DATA ' COMMAND .
64-TC
DELAY
GO, . NEXT
TRACE COMMAND ' COMMAND . TC = TARGET CLOCK CYCLES

Figure 14-6 BDM Command Structure

NOTES:

1. Target clock cycles are cycles measured using the target system’s serial clock rate. See 14.4.6 and 14.3.1 for information on
how serial clock rate is selected.

@ MOTOROLA 257

Core User Guide — S12CPU15UG V1.2
14.4.6 BDM Serial Interface

The BDM communicates with external devices serially via the BKGD pin. During reset, this pin is a mode
select input which selects between normal and special modes of operation. After reset, this pin becomes
the dedicated serial interface pin for the BDM.

The BDM serial interface is timed using the clock selected by the CLKSW bit in the status register (see
14.3.1. This clock will be referred to as the target clock in the following explanation.

The BDM serial interface uses a clocking scheme in which the external host generates a falling edge on
the BKGD pin to indicate the start of each bit time. This falling edge is sent for every bit whether data is
transmitted or received. Data is transferred most significant bit (MSB) first at 16 target clock cycles per
bit. The interface times out if 512 clock cycles occur between falling edges from the host.

The BKGD pin is a pseudo open-drain pin and has an weak on-chip active pull-up that is enabled at all
times. It is assumed that there is an external pullup and that drivers connected to BKGD do not typically
drive the high level. Since R-C rise time could be unacceptably long, the target system and host provide
brief driven-high (speedup) pulses to drive BKGD to a logic 1. The source of this speedup pulse is the host
for transmit cases and the target for receive cases.

The timing for host-to-target is shown kigure 14-7and that of target-to-host Frigure 14-8andFigure
14-9below. All four cases begin when the host drives the BKGD pin low to generate a falling edge. Since
the host and target are operating from separate clocks, it can take the target system up to one full clock
cycle to recognize this edge. The target measures delays from this perceived start of the bit time while the
host measures delays from the point it actually drove BKGD low to start the bit up to one target clock cycle
earlier. Synchronization between the host and target is established in this manner at the start of every bit
time.

Figure 14-7shows an external host transmitting a logic 1 and transmitting a logic O to the BKGD pin of

a target system. The host is asynchronous to the target, so there is up to a one clock-cycle delay from the
host-generated falling edge to where the target recognizes this edge as the beginning of the bit time. Ten
target clock cycles later, the target senses the bit level on the BKGD pin. Internal glitch detect logic
requires the pin be driven high no later that eight target clock cycles after the falling edge for a logic 1
transmission.

Since the host drives the high speedup pulses in these two cases, the rising edges look like digitally driven
signals.

258 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

CLOCK ! | ,
HOST_‘— "r o
TRANSMIT 1 '
1 1 1 I I I I I I I I I I T 1
HOoST | T
TRANSMIT O '
I I I I I I I I I I I I I T 1
PERCEIVED TARGET SENSES BIT T
START OF BIT TIME
10 CYCLES EARLIEST
START OF
~ NEXT BIT

SYNCHRONIZATION
UNCERTAINTY

Figure 14-7 BDM Host-to-Target Serial Bit Timing

The receive cases are more complicaféglre 14-8shows the host receiving a logic 1 from the target
system. Since the host is asynchronous to the target, there is up to one clock-cycle delay from the
host-generated falling edge on BKGD to the perceived start of the bit time in the target. The host holds the
BKGD pin low long enough for the target to recognize it (at least two target clock cycles). The host must
release the low drive before the target drives a brief high speedup pulse seven target clock cycles after the
perceived start of the bit time. The host should sample the bit level about 10 target clock cycles after it
started the bit time.

CLOCK | [R R |

HOST ~
DRIVETO - - - oo - -4 remepamm i m oo - - - - HIGH-IMPEDANCE - - - = = = = = = = = =vm = = a = o - - -
BKGD PIN _ S A

TARGET SYSTEM
SPEEDUP

PULSE ... HIGH-IMPEDANCE- - - - - - - - - - - - - 1 | R R A HIGH-IMPEDANCE - - - - -|- - - - - -

PERCEIVED I I I I I I I I I I I I I I
START OF BIT TIME f

BKGDPIN | A\/1

| | | | | | | | | | | | | | |
N 10 CYCLES > T
| 10 CYCLES >
EARLIEST
+ START OF
HOST SAMPLES NEXT BIT
BKGD PIN

Figure 14-8 BDM Target-to-Host Serial Bit Timing (Logic 1)

@ MOTOROLA 259

Core User Guide — S12CPU15UG V1.2

Figure 14-9shows the host receiving a logic 0 from the target. Since the host is asynchronous to the target,
there is up to a one clock-cycle delay from the host-generated falling edge on BKGD to the start of the bit
time as perceived by the target. The host initiates the bit time but the target finishes it. Since the target
wants the host to receive a logic 0, it drives the BKGD pin low for 13 target clock cycles then briefly drives

it high to speed up the rising edge. The host samples the bit level about 10 target clock cycles after starting
the bit time.

CLOCK
NS1CT=S vz I I I I I O o 6y

HOST ~
DRIVETO - ~- - - e HIGH-IMPEDANCE- - - - - - = = = - - - - - R EEEEE

BKGDPIN _ ...

1 1 I I I I I I I I I I 10 I
SPEEDUP PULSE

TARGET SYS. ~ \
DRIVEAND - - - - - - I e e
SPEEDUP PULSE _ \

PERCEIVED
START OF BIT TIME

BKGDPIN \ /

| I I I I I I I I I I I I 17 I
l: 10 CYCLES » T
|= 10 CYCLES >
EARLIEST
f T START OF
HOST SAMPLES NEXT BIT

BKGD PIN

Figure 14-9 BDM Target-to-Host Serial Bit Timing (Logic 0)

14.4.7 Instruction Tracing

When a TRACE1 command is issued to the BDM in active BDM, the CPU exits the standard BDM
firmware and executes a single instruction in the user code. Once this has occurred, the CPU is forced to
return to the standard BDM firmware and the BDM is active and ready to receive a new command. If the
TRACE1 command is issued again, the next user instruction will be executed. This facilitates stepping or
tracing through the user code one instruction at a time.

If an interrupt is pending when a TRACE1 command is issued, the interrupt stacking operation occurs but
no user instruction is executed. Once back in standard BDM firmware execution, the program counter
points to the first instruction in the interrupt service routine.

14.4.8 Instruction Tagging
The instruction queue and cycle-by-cycle CPU activity are reconstructible in real time or from trace
history that is captured by a logic analyzer. However, the reconstructed queue cannot be used to stop the

CPU at a specific instruction, because execution already has begun by the time an operation is visible
outside the system. A separate instruction tagging mechanism is provided for this purpose.

260 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

The tag follows program information as it advances through the instruction queue. When a tagged
instruction reaches the head of the queue, the CPU enters active BDM rather than executing the instruction.

NOTE: Tagging is disabled when BDM becomes active and BDM serial commands are not
processed while tagging is active.

Executing the BDM TAGGO command configures two system pins for taggingl AG&O signal
shares a pin with theSTRB signal, and th€ AGHI signal shares a pin with the BKGD signal.

Table 14-3shows the functions of the two tagging pins. The pins operate independently, that is, the state
of one pin does not affect the function of the other. The presence of logic level 0 on either pin at the fall
of the external clock (ECLK) performs the indicated function. High tagging is allowed in all modes. Low
tagging is allowed only when low strobe is enabled (LSTRB is allowed only in wide expanded modes and
emulation expanded narrow mode).

Table 14-3 Tag Pin Function

TAGHI TAGLO Tag
1 1 No tag
1 0 Low byte
0 1 High byte
0 0 Both bytes

14.5 Modes of Operation

BDM is available in all operating modes but must be enabled before firmware commands are executed.

Some system peripherals may have a control bit which allows suspending the peripheral function during
background debug mode.

In special single-chip mode, background operation is enabled and active out of reset. This allows
programming a system with blank memory.

BDM is also active out of special peripheral mode reset and can be turned off by clearing the BDMACT
bit in the BDM status (BDMSTS) register. This allows testing of the BDM memory space as well as the
user's memory space.

NOTE: The BDM serial system should not be used in special peripheral mode since the
CPU, which in other modes interfaces with the BDM to relinquish control of the bus
during a free cycle or a steal operation, is not operating in this mode.

14.5.1 Normal Operation

BDM operates the same in all normal modes.

@ MOTOROLA 261

Core User Guide — S12CPU15UG V1.2
14.5.2 Special Operation

14.5.2.1 Special single-chip mode

BDM is enabled and active immediately out of reset. This allows programming a system with blank
memory.

14.5.2.2 Special peripheral mode

BDM is enabled and active immediately out of reset. BDM can be disabled by clearing the BDMACT bit
in the BDM status (BDMSTS) register. The BDM serial system should not be used in special peripheral
mode.

14.5.3 Emulation Modes
In emulation modes, the BDM operates as in all normal modes.
14.6 Low-Power Options

14.6.1 Run Mode

The BDM does not include disable controls that would conserve power during run mode.
14.6.2 Wait Mode

The BDM cannot be used in wait mode if the system disables the clocks to the BDM.
14.6.3 Stop Mode

The BDM is completely shutdown in stop mode.

14.7 Interrupt Operation

The BDM does not generate interrupt requests.

14.8 Motorola Internal Information

This subsection details information about the BDM sub-block that is for Motorola use only and should not
be published in any form outside of Motorola.

262 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

14.8.1 Regqisters

This section gives detailed descriptions of all internally accessible registers and bits that are either not
available or not disclosed to users external to Motorola. These registers were highlighted as being reserved
BDM registers previously in this section of the guide.

The BDM instruction (BDMIST) register is written by the BDM hardware as a result of a BDM command
sent to the system via the BKGD pin. The individual bits decode into categories of BDM instruction. The
two descriptions of the BDMIST below show the instruction decode when categorized as hardware or
firmware instructions.

All of the BDM registers are readable and writable in special peripheral mode on the parallel bus until the
BDMACT bit in the BDMSTS register is cleared at which time the BDM resources are no longer
accessible via the peripheral bus and require a reset to be restored.

A full summary of the registers associated with the BDM is shovaigiare 14-10 below.

Address Name Bit 7 6 5 4 3 2 1 Bit O

$FFO0 BDMIST \'mg H/F DATA | RW |BKGND| wW/B | BDU 0 0

$FFO1 BDMSTS \:\‘fr?t‘: ENBDM |BDMACT| ENTAG | SDV | TRACE | cLksw |[UNSEC 0
read

$FF02 BDMSHTH ' | S15 S14 s13 S12 s11 S10 S9 S8
read

$FFO3 BDMSHTL '“° | S7 S6 S5 sS4 S3 S2 s1 S0
read

$FF04 BDMADDH * | A15 Al4 Al13 A12 A1l A10 A9 A8
read

$FF05 BDMADDL '~ | A7 A6 A5 A4 A3 A2 Al AO

$FFO6 BDMCCR \m‘; CCR7 | CCR6 | CCR5 | CCR4 | ccrR3 | ccr2 | ccr1 | ccro

$FFO7 BDMINR \:\?r?tz REG15 | REG14 | REGI3 | REG12 | REGIL 0 0 0

= Unimplemented X = Indeterminate

Figure 14-10 BDM Register Map

@ MOTOROLA 263

Core User Guide — S12CPU15UG V1.2
14.8.2 BDM Instruction Register (Hardware)

Address: $FFO00

Bit 7 6 5 4 3 2 1 Bit 0
Read: 0 0
HIF DATA R/W BKGND W/B BD/U
Write:
Reset: 0 0 0 0 0 0 0 0

Figure 14-11 BDM Instruction Register (BDMIST)

Read: All modes

Write: All modes; BDM hardware writes this register when a BDM command is received.
Hardware clears the register if 512 BDM clock cycles occur between falling edges from
the host. Firmware clears this register when exiting from BDM active mode.

H/F - Hardware/firmware flag

When the BDM is active, standard BDM firmware checks for this bit to be set by the BDM hardware
as part of a BDM instruction load.

1 = Hardware command

0 = Firmware command

DATA - Data flag

Shows that data accompanies the command.
1 = Data follows the command

0 = No data
R/W - Read/write flag

1 = Read

0 = Write

BKGND - Enter active background mode
1 = Hardware background command
0 = Not a hardware background command

W/B - Word/byte transfer flag
1 = Word transfer
0 = Byte transfer

BD/U - BDM map/user map flag

Indicates whether BDM access is to BDM registers and standard BDM firmware lookup table mapped
to addresses $FFO00 to $FFFF or the user resources in this range. Used only by hardware read/write
commands.

1 = standard BDM firmware lookup table and registers in map

0 = User resources in map.

264 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2
14.8.3 BDM Instruction Register (Firmware)

Address: $FFO00

Bit 7 6 5 4 3 2 1 Bit 0
Read:

HIF DATA R/W TTAGO RNEXT
Write:
Reset: 0 0 0 0 0 0 0 0

Figure 14-12 BDM Instruction Register (BDMIST)

Read: All modes

Write: All modes; BDM hardware writes this register when a BDM command is received.
Hardware clears the register if 512 BDM clock cycles occur between falling edges from
the host. Firmware clears this register when exiting from BDM active mode.

H/F - Hardware/firmware flag

When the BDM is active, standard BDM firmware checks for this bit to be set by the BDM hardware
as part of a BDM instruction load.

1 = Hardware command

0 = Firmware command

DATA - Data flag

This bit indicates that data accompanies the command.
1 = Data follows the command

0 = No data
R/W - Read/write flag

1 = Read

0 = Write

TTAGO - Trace, tag, go bits.
The decoding of TTAGO is shown irable 14-4 below.

Table 14-4 TTAGO Decoding

TTAGO value Instruction
00 —
01 GO
10 TRACE1
11 TAGGO

RNEXT - Register/next bits

@ MOTOROLA 265

Core User Guide — S12CPU15UG V1.2

Indicates which register is being affected by a command. In the case of a READ_NEXT or
WRITE_NEXT command, index register X is pre-incremented by 2 and the word pointed to by X is
then read or written. The decoding of RNEXT is showmable 14-5 below.

Table 14-5 RNEXT Decoding

RNEXT value Instruction

000 —

001 —

010 READ/WRITE NEXT
011 PC

100 D

101 X

110 Y

111 SP

14.8.4 BDM Status Register

The BDM status (BDMSTS) register is described4n3.1. In addition, it is readable and writable in
special peripheral mode on the parallel bus.

BDMACT - BDM active status

BDMACT is set by the BDM and is cleared in the exit sequence of the standard BDM firmware.
BDMACT can be written to in special peripheral mode via the peripheral bus. It cannot be written to
via BDM hardware commands in any mode, thatis, it cannot be written to if the H/F bitin the BDMIST
register is set.

Clearing BDMACT causes the standard BDM firmware lookup table and registers to be removed from
the memory map and BDM to become inactive.

Setting BDMACT in special peripheral mode via the peripheral bus causes BDM to become active but
does not put the standard BDM firmware lookup table and registers into the memory map; therefore,
BDMACT should not be set in this manner but should instead be set by resetting the system.

266 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2
14.8.5 BDM Shift Register

Address: $FF02

Bit 15 14 13 12 11 10 9 Bit 8
Read:

S15 S14 S13 S12 S11 S10 S9 S8
Write:
Reset:

Figure 14-13 BDM Shift Register (BDMSHTH)

Address: $FF03

Bit 7 6 5 4 3 2 1 Bit 0
Read:

S7 S6 S5 S4 S3 S2 S1 SO
Write:
Reset:

Figure 14-14 BDM Shift Register (BDMSHTL)

Read: All modes
Write: All modes

The 16-bit BDM shift register contains data being received or transmitted via the serial interface. It is also
used by the standard BDM firmware for temporary storage.

@ MOTOROLA 267

Core User Guide — S12CPU15UG V1.2
14.8.6 BDM Address Register

Address: $FF04

Bit 15 14 13 12 11 10 9 Bit 8
Read:

Al15 Al4 Al3 Al2 All A10 A9 A8
Write:
Reset:

Figure 14-15 BDM Address Register (BDMADDH)

Address: $FF05

Bit 7 6 5 4 3 2 1 Bit 0
Read:

A7 A6 A5 A4 A3 A2 Al A0
Write:
Reset:

Figure 14-16 BDM Address Register (BDMADDL)

Read: All modes

Write: Can only be written by BDM hardware
In secure mode, if the BDM hardware commands have been enabled by the secure
firmware, the upper 5 bits of the address register will always be forced to the value from
the BDMINR register. This restricts access of the hardware commands to the register
space only.

The 16-bit address register is loaded with the address to be accessed by BDM hardware commands.
14.8.7 Special Peripheral Mode

In Special Peripheral Mode the BDM is enabled and active immediately out of reset. BDM can be disabled
by clearing the BDMACT bit in the BDM status (BDMSTS) register (4de8.4. This allows testing the

BDM memory space as well as the user’s program memory space. The BDM serial system should not be
used in special peripheral mode since the CPU, which in other modes relinquishes control of the bus during
a free cycle or a steal operation, is not operating in this mode.

14.8.8 Standard BDM Firmware Listing

; Copyright (C) 1997 by Motorola Inc.

; 6501 William Cannon Drive West
Advanced MCU HC11 Group
Austin, TX 78735-8598

; All rights reserved. No part of this software may be sold or distributed

268 @ MOTOROLA

1

Core User Guide — S12CPU15UG V1.2

in any form or by any means without the prior written permission of
Motorola, Inc.

MOTOROLA CONFIDENTIAL PROPRIETARY INFORMATION

VERSION HISTORY

Started from UDR HC12 BDM ROM code

Design Strategy:

-standard BDM firmware for M68HC12

-There are MANY traps that someone modifying this code MUST be aware of.

Those areas that have traps that we have fallen into and requiring

special care have been marked with CAUTION. Here is a list of

items to BEWARE of. Review this list after ANY ROM code changes.

CAUTION 1. There is an inherent cpudead cycle that we rely on in the
INST_LOOP loop when that Idaa instruction falls on an even
address. For this reason, an ALIGN directive MUST be used
at that location. See AR#156.

CAUTION 2. The first event that occurs in code that may interfere
with user code is the saving of all internal registers. When
this BDM code is entered, all the internal registers such as
CCR, PC, X, etc. MUST be saved so that they may be restored to
the user's value upon an exit from this code.

CAUTION 3. DO NOT insert code that affects the user CCR value before
it gets saved. The code that saves the user CCR should be one
of the very first items that occur at the beginning of this
code. See AR#166.

CAUTION 4. The PC value MUST be checked to see if it was a BDM (op=00)
instruction that got us into BDM. If so, PC gets adjusted by 1.
This works only if the user enters BDM from locations $0000
thru $FEFF because locations $FF00-$FFFF are blocked out for the
BDM. So, the BDM ROM is in the map and not the user's code.

CAUTION 5. Any unused space should be set to $00 to ensure ROM
is plugged and verified properly. Be careful to NOT OVERLAP
vector space when filling unused space!!! Using the ZMB
directive helps because the assembler version we used just hangs
up when code OVERLAPs BUT some other assembler version may
not catch this.

CAUTION 6. The ROM code size is limited in available space. Make
sure that when instructions are added, the vector space is not
overwritten.

CAUTION 7. The reset vector was INST_DONE. Added code
so that after a reset, the ccr value at reset is saved because
the exit sequence was changing the CCR to the value that was
saved before the reset occurred. The user should really
initialize the CCR, but we do it here to avoid confusion.

CAUTION 8. The ENBDM bit MUST be set out of reset, otherwise it won't
pass the "brset STATUS $80 INST_LOOP" test and the user gets
kicked out of background unintentionally.

CAUTION 9. The Dev. Tools PRU relies on the BDM entry point "START"
being at location $FF24. They also rely on the exit point
being at location $FF77 (the exit jump). Any changes to the
start and exit points MUST be reviewed with them.

CAUTION 10. Be careful that the BDMACT bit in the STATUS register is

@ MOTOROLA 269

Core User Guide — S12CPU15UG V1.2

not unintentionally changed from a 1 to a 0 during 16-bit
manipulation of the INSTRUCTION register. This will cause a

race condition because BDMACT=0 will disable the standard BDM firmware

ROM while the CPU is executing this firmware.

-This is a list of instructions which use the temp2 (t2) and temp3 (t3)
instructions. List as of 7-27-94. Gotten from Tom Poterek's BDMcode.

wai

wav

fff6

ff00
ff00

270

* EQUATES
BDMVEC equsfffé ;First BDM ROM vector.
org$ffo0 ;Start of BDM map (registers)
INSTR rmbl ;Instruction (command) register

*s/w ! HIS!DATA! RIW!TTAG: GO ! R2 ! R1 ! RO !
*hdw ! H/S!DATA! R/W !BKGND : W/B IBD/USR! NEXT! - !
* Reg codes: R2:R1:R0

*0:0:0 - lllegal, command $00 is null command

*0:0:1 - not used

*0:1:0 - Next Word 2,+X pre inc X by 2 and r/w next word (,X)
* later r/w next will work from ADDRESS reg value not X
*0:1:1-PC

*1:0.0-D

*1:0:1-X

*1:1:0-Y

*1:1:1-SP

* TTAG:GO coding:

*0:0 - No execution command

*0:1 - Go to user program

*1:0 - Trace one user instruction and return to BDM

@ MOTOROLA

ffo1

ff02

ffo4

ff06

ff20

ff20 1c ff 01 80

ff24 b7 b4

ff26 b7 20
ff28 7a ff 06
ff2b b7 d3
ff2d 8e ff 00

f30 24 04
ff32 e7 00

ff34 26 01
ff36 08

ff37 b7 d3

ff39 le ff 01 80 06
ff3e 87

ff3f 20 1c

ff41 79 ff 00

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

*1:1 - Tag Go command (reconfigure BKGD pin for tagging in)

STATUS rmb1l ;Status/Control register
* 1enBDM!IBDACTV! TAG ! VALID: TRACE! - ! -1 -1
* Exit conditions vs value written to STATUS on exit
* BDM not allowed - $00

* Trace 1 - $88

* Go - $80

* Tag Go - $A0
SHIFTER rmb2 ;For serial data in/out
ADDRESS rmb2 :Address for some commands

* ADDRESS will be read-only on first parts but later it will
* be riw so r/w next word doesn't need to use X

CCRSAVE rmbl ;Save user CCR value while in BDM
* CCRSAVE also used briefly to hold exit value for status
* during exit sequence to return to user code

orgff20 ;BDM ROM start
AFTER_RST ek CAUTION 7. *****CAUTION 8.
bset STATUS $80;Set the ENBDM bit to pass the brset
;test below.
;CCR immediately after rst is
;SXHINZVC=11x1XXXX.
;CCR after this bset is
;SXHINZVC=11x1100x. Thisis o.k.
;because the SXI bits are not
;affected.
START
;e CAUTION 2, *****CAUTION 9.
exgt3 d ;Save D without affecting CCR.
;This "exg t3 d" instruction MUST
;occur before the following
"tfr ccr &" instruction.
e *CAUTION 3.
tfrcer a
staaCCRSAVE;Save user CCR value
exgx t2 ;pc into x. *****CAUTION 4.
cpx#$FF00 ;Check to see if user PC overlaps BDM
;ROM.
bhsROM_INC;If so, increment regardless.
tst0,x ;Test next opcode. This instruction
;affects CCR so it MUST occur AFTER
;saving the user's CCR.
bneRES_X_T2;if not $00, restore
ROM_INC inx ;else inc, then restore. This
;instruction affects CCR so it MUST
;occur AFTER saving the user's CCR.
RES_X T2
exgx t2 ;restore pc to temp 2
brsetSTATUS $80 INST_LOOP ;Check if BDM allowed
clra :Exit if BDM not allowed
braEXIT_SEQ
* Above is 1 of 4 ways to exit BDM to user code.
INST_DONE

cIrINSTR ;clear INSTR then wait for new inst

271

Core User Guide — S12CPU15UG V1.2

ff44

ff44 b6 ff 00
ff47 2f fb

ff49 85 18
ff4b 27 2e
ff4d 81 10
ff4f 27 06
ff51 2b 08

ff53 86 a0
f55 20 06

ff57 86 88
ff59 20 02

ff5b 86 80

ff5d 79 ff 00

ff60 f6 ff 06

ff63 7a ff 06

ff66 b7 d3

ff68 7e ff 02

fféb b7 d3

fféd b7 12

ff6f b7 b4

ff71 18 Oc ff 06 ff 01

ff77 05 fb ff 87

272

;CAUTION 10.

* Top of main loop to wait for a software instruction
s CAUTION 1.
;Make sure the following loop
;starting with Idaa is ALWAYS on an
;even boundary.
;See AR# 156 for more details.

ALIGN 1

INST_LOOP
IdaalNSTR ;Wait for non-zero non-hdw command
bleINST_LOOP;$00 is null command
;MSB of A set (neg) is hdw command
bita#$18 ;TAGGO,TRACE, or GO commands?
beqNOT_EXE;Branch if not execution command
cmpa#$10 ;TRACE ---1:.0--- ? tp 4/7/95
beqTRACE
bmiGO ;If not GO it's TAG GO
* Fall through from TAG_GO is 4th of 4 ways to exit to user code.
ldaa#$A0 ;enBDM + TAG bits in STATUS
braEXIT_SEQ;Controlled exit (3 of 4)
TRACE
Idaa#$88 ;enBDM + TRACE bits in STATUS
braEXIT_SEQ;Controlled exit (2 of 4)
GO
Idaa#$80 ;enBDM bit only in STATUS

* Upon entry to EXIT_SEQ, A contains a value to be written
* to the STATUS register. Seq restores user info and
* resumes user program where it left to enter active BD mode
EXIT_SEQ ;CAUTION 10.
cIrINSTR ;clear instruction tp 4/6/95
IdabCCRSAVE;re-entry value for CCR
staaCCRSAVE;will use movb to store to STATUS
exgx t2 ;Swap X to Temp2 and User PC to X
StxSHIFTER;For later indirect jump
exgx t2 :Restore user X
tirb ccr ;Restore user CCR
exgt3 d ;Restore user D reg
movbCCRSAVE STATUS;[OrPwPQ] write w/o chg to ccr

* Critical timing: cycle signature of above move is OrPwPO
* Exit timing referenced to the byte-write in cycle 4
* Cycle signatures of remaining instructions in exit seq
* are shown in the comments. ROM switch from BD ROM to
* user map should occur at f cycle before PPP in exit jump
* |If TRACE, issue liufbdm at T4 of the second last P cycle
* of the exit jump
* OrPwWPOfIfPPP
* ! Pl
Jjmp(SHIFTER-(*+4)),pc] ;[fIfPPP] Exit to user PC
* In this exit jump, the | cycle is a word read of the user PC
* from the SHIFTER register (BD map). The PPP cycles are word
* fetches of user program info to fill instruction queue from
* user's map. The ROM switch must occur between | and PPP

* See also ***CAUTION 9. concerning this exit jump.

@ MOTOROLA

ff7b b7 01
ff7d 84 07
ff7f 80 02
ff81 2b be
ff83 ¢5 20
ff85 26 37

f87 f7 ff 00

ff8a 27 b8

ff8c 1f ff 01 10 f6
ff91 c6 07

ffo3 12

ff94 05 fd

f96 fc ff 02
f99 6¢ 21

ff9b 20 a4

ffod fc ff 02
ffaO b7 c3
ffa2 20 9d

ffa4 fc ff 02
ffa7 b7 b4

ffa9 20 96

ffab fe ff 02
ffae 20 91
ffbO a7
ffbl a7

ffb2 fd ff 02
ffb5 20 8a
ffb7 a7
ffb8 a7

ffb9 ff ff 02
ffbc 20 83

ffbe 48
ffbf 48
ffcO 05 fc

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

NOT_EXE
tfrab ;Duplicate command in B
anda#$07 ;Strip all but 3-bit reg code
suba#2 ;codes 0 & 1 illegal or unused
bmiINST_DONE;branch if A now negative
bitb#$20 ;Check R/W bit
bne;COMP_GOTO;Go decode read command (was beq
;tp 3/30)
WAIT_DATA

tstINSTR ;Check for new command
beqINST_LOOP;Need escape if old command aborted
brcIrSTATUS $10 WAIT_DATA ;Wait for data ready
Idab#7
mul ;B = 7*(reg_code - 1)
jmpb,pc ;Calculated GOTO
* Each write command corresponding to reg code 2-7 takes
* exactly 7 bytes. For command 2 (write next word) the jump will
* GOTO 0,pc or the location immediately after the jump
* For command 7 (write SP) the jump will go to (5*7),pc
* Each command ends with a branch to the main command loop
W_NXT_WRD
IddSHIFTER;Get data to write
std2,+x ;pre-inc x by 2 and store word
INST_DONE1
braINST_DONE;Intermediate branch to loop top

WRITE_PC
IddSHIFTER;Get data to write
exgd t2 ;User PC in Temp2 reg
braINST_DONE;Branch to loop top

WRITE_D
IddSHIFTER;Get data to write
exgt3 d ;User D in Temp3 reg (was exg d t2
itp 3/28)
braINST_DONE;Branch to loop top

WRITE_X
[dXxSHIFTER;Update X register
braINST_DONE;Branch to loop top
nop ;Pad to make command take 7 bytes
nop

WRITE_Y
IdySHIFTER;Update Y register
braINST_DONE;Branch to loop top
nop ;Pad to make command take 7 bytes
nop

WRITE_SP
IdsSHIFTER;Update SP register
braINST_DONE;Branch to loop top
* No need to pad last command since we don't index past it.

COMP_GOTO
asla X2
asla ;A = (reg_code - 2)*4
jmpa,pc ;Calculated GOTO

273

Core User Guide — S12CPU15UG V1.2

ffc2 ec 21
ffc4 20 12

ffc6 20 21
ffc8 a7
ffc9 a7

ffca b7 34
ffcc 20 Oa

ffce b7 54
ffd0 20 06

ffd2 b7 64
ffd4 20 02

ffdé b7 74

ffd8 7c ff 02

ffdb f7 ff 00
ffde 18 27 ff 62

ffe2 1f ff 01 10 f4
ffe7 20 b2

ffe9 b7 c3
ffeb 7c ff 02
ffee b7 c3
fff0 20 e9

fff2 1b 89
fff4 20 a5

fff6

fff6
fff6 ff 24
fff8 ff f2

274

* Each read command corresponding to reg code 2-7 takes

* exactly 4 bytes. For command 2 (read next word) the jump will
* GOTO 0,pc or the location immediately after the jump

* For command 7 (read SP) the jump will go to (5*4),pc

* Each command ends with a branch to the main command loop

R_NXT_WRD
Idd2,+x ;pre-inc X by 2 and read word
braR_COMMON;D->SHIFTER and bra loop top
READ_PC
braREAD_PC1;This command needs 4 bytes
nop ;Pad to make command take 4 bytes
nop
READ_D
tfrt3 d ;User D was in Temp3
braR_COMMON;D->SHIFTER and bra loop top
READ_X
tfrx d ;Requested data to D
braR_COMMON;D->SHIFTER and bra loop top
READ_Y
tfry d ;Requested data to D
braR_COMMON;D->SHIFTER and bra loop top
READ_SP
tfrsp d ;Requested data to D
R_COMMON
stdSHIFTER;Requested data to SHIFTER
WAIT
tst INSTR ;Check for new command tp 3/30
Ibeq INST_LOOP;Need escape if old command aborted
itp 3/30
brcIrSTATUS $10 WAIT ;Wait for data ready tp 3/30
braINST_DONEZ1;Back to loop top
READ_PC1
exgd t2 ;User PC to D, junk to Temp2
std SHIFTER;User PC to SHIFTER
exgdt2 ;User PCto Temp2,junkto D
bra WAIT ;D->SHIFTER and bra loop top
FIXSP

leas 9,sp;Restore sp
braINST_DONE1;And try to resume
;FxxxCAUTION 5.
zmbBDMVEC-*;All unused space must be set to
;zero.

K*kkkk

* All other normal vectors are blocked out when in BDM. The bdmact
* signal goes into INT module and blocks all | and X interrupts.
*xxCAUTION 6.

orgBDMVEC ;BDM vectors start
fdbSTART ;SWI vector (normal entry point)
fdbFIXSP ;lllegal opcode vector

SWIV
ILLOPV

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

fffa ff 24 COPV fdbSTART ;COP watchdog error vector

fffc ff 24 CMONV fdbSTART ;Clock monitor error vector

fffe ff 20 RESETV fdbAFTER_RST;Reset vector (Sgl chip special)
; kel 1o To Rsicioiaieleboiohs Rk ok *

14.8.9 Secured Mode BDM Firmware Listing

;. Copyright (C) 1999 by Motorola Inc.

; MTC S-CORE Design Group

; 7600-C Capitol of Texas Highway

; Austin, TX 78731

; All rights reserved

; No part of this software may be sold or distributed

; inany form or by any means without the prior written
; permission of Motorola, Inc.

; MOTOROLA CONFIDENTIAL PROPRIETARY INFORMATION

Fkkkkkkkkkk Fkkkkkkkkkk

; File: secure_firm.s

; Target: HCS12 Version 1.5

; Author: John_Langan-RMAG10@email.sps.mot.com
: Creation date: June 28, 1999

; Comments: This code is contained in the secure ROM

; of the BDM.

; VERSION HISTORY

; Ver 000 John Langan orig July 02, 1999
; update bug found by Lloyd, EERPOM size
; spec changes Aug. 27, 1999

; Ver 001George Grimmer 26 July 2000
; Enable BDM hardware commands when NVM erase verify fails,
; BDM commands will remain disabled if Flash security bits = 01

; Design Strategy:

; This code determines if the FLASH and EEPROM are erased
; If they are both erased, the program releases security,
; else it hangs (branches to self).

1

* Equates here

* * * * *

001c MEMSIZO equ $001C
0030 PPAGE equ $0030
0012 INITEE equ $0012
ffol BDMSTS equ $FF01
ff20 BDMSTAR equ $FF20
fff6 VECTORS equ $FFF6

@ MOTOROLA 275

Core User Guide — S12CPU15UG V1.2

; Code starts here.

f80 org $FF80
ff80 START equ *

; Verify the FLASH is erased (all ones)

Initialization
ff80 ce 00 00 ldx #$0000 ; needed for indexing
f83 86 3f ldaa #$3F
ff85 5a 30 staa PPAGE ; start with last page
ff87 cc bf fe ldd #$BFFE ; last word in page

; We check every 128th word then change Page

ff8a ed e6 FLOOP Idy D,X : read word from FLASH
ff8¢c 02 iny ; erased will become $0000

ff8d 26 36 bne FAIL : not blank -> done

ff8f 83 00 80 subd #$0080 ; point to next word

ff92 2b f6 bmi FLOOP ; until we go under $8000

; On each succesive Page, we start at a different point
; such that if we only had one array we would check the
; entire array

ffo4 c3 3f fe addd #$3FFE ; point toward end of next page
ffo7 73 00 30 dec PPAGE ; change to next lower page
ff9a 2a ee bpl FLOOP ; until we go under $00

; Completed FLASH verify if we make it here
; Verify the EEPROM is erased (all ones)

: Move EEPROM to $7800

; This will be $7000 if the size is 4K

; This will be $6000 if the size is 8K

ffoc 86 79 Idaa #%$79 :bit 0 is EEON
ff9e ba 12 staa INITEE

; First, determine the size of the EEPROM

ffa0 d6 1c Idab MEMSIZO ; size is encoded in bits 5 & 4
ffa2 ¢4 30 andb #3$30 ; just the bits we need

ffad 27 15 beq ECLEAR ;no EEPROM, we're done!
ffa6 86 78 ldaa #$78 ; set up for 2K size

ffa8 c0 10 SLOOP subb #$10 ; 2K if clear after 1st subtract,
ffaa 27 03 beq EECHK ; 2ndsub.is 4K, 3rdis 8K

ffac 48 Isla ; adjust for next size

ffad 20 f9 bra SLOOP

; Finally the erase verify loop

; Every ninth word is verified

; Accumulator D has already been set to the array size
note that X still = 0 from earlier routines

276

@ MOTOROLA

ffaf 84 78 EECHK anda #$78 ;index D + X = last word

ffbl ed e6 ELOOP Idy D,X : read word from EEPROM

ffb3 02 iny ; erased will become $0000

ffb4 26 Of bne FAIL ; not blank -> done

ffb6 ¢3 00 12 addd #3$0012 ; point to next word

ffb9 2a f6 bpl ELOOP ; until we get to or under $4000
; When we arrive here, all is clear

ffbb 86 42 ECLEAR Ildaa #$42 ; bit #1 is UNSEC

ffbd ce ff 01 ldx #BDMSTS

ffcO 6a 00 staa 0,X ;use instrthat ends with write cycle

ffc2 06 ff 20 jmp BDMSTAR

: Failures arrive here, forever.....

ffc5 18 0b 3f 0030 FAIL movb #$3f,PPAGE

ffca f6 bf Of Idab $BFOF

ffcd ca fc orab #$FC

ffcf ce ff 01 ldx #BDMSTS

ffd2 86 80 ldaa #$80

ffd4 aa 00 oraa 0,x

ffd6é 53 decb

ffd7 27 03 beq BDMLOCK

ffd9 6a 00 staa 0,x

ffdb a7 align 1
BDMLOCK

ffdc a7 nop

ffdd 20 fd bra BDMLOCK

; Clear out space between here and the vectors

ffdf 00 00 00 00 00 00 zmb VECTORS-*
00 00 00 00 00 00
00 00 00 00 00 00
00 00 00 00 00

; VECTORS HERE

fff6 org VECTORS
fff6 ff 24 fdb BDMSTAR+4 ; SWI
fff8 ff c5 fdb FAIL : TRAP
fffa ff 80 fdb START ; COP
fffc ff 80 fdb START ; CLK Monitor
fffe ff 80 fdb START : RESET
* end leieioks ileieioks

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

277

Core User Guide — S12CPU15UG V1.2

278 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Section 15 Secured Mode of Operation

This section provides a brief description of the secured mode of operation of the Core. Detailed
information relating to integration issues is provided inH@S12 V1.5 Core Integration Guide

15.1 Overview

The implementation of the secured mode of operation for the Core provides for protecting the contents of
internal (on-chip) memory arrays. While in secured mode the system can execute in single-chip mode or
from an external memory block but the contents of the internal memory will not be accessible and all
normal BDM functions will be blocked from execution. A mechanism is provided to release the system
from the secured mode at which time normal operation will resume allowing the system to be reconfigured
for unsecured mode.

15.1.1 Features

The secured mode of operation provides:
* Protection of internal (on-chip) Flash EEPROM contents
» Protection of internal (on-chip) EEPROM contents
* Operation in single-chip mode while secured
* Operation from external memory with internal Flash and EEPROM disabled while secured

@ MOTOROLA 279

Core User Guide — S12CPU15UG V1.2

15.1.2 Block Diagram

A block diagram of the Core security implementation is givefigure 15-1 .

BDM

BKGD < .|

Pin

HCS12 V1.5 Core

i secreq) .
Security Register
M M C core_secure_t2
= = e
Module Flash
Mapping EEPROM
Control
Bus Signals
- ——————— |
B D M Secure
BDM Signal .
Background Sona 25| EEPROM
Debug
Mode -—o
M E BI < Bus Signals > RAM
Multiplexed External Bus Interface

Figure 15-1 Security Implementation Block Diagram

System Memories

This figure includes one example system implementation of the Core security feature. In this
implementation, the Flash EEPROM block contains a security register that is programmed to the proper
secured/un-secured state which generates a security request to the Ctsel 8rea complete

description of the operation of the secured mode.

15.2 Interface Signals

The Core interface signals associated with the secured mode of operation are shable ib5-1 below.
The functional descriptions of the signals are provided below for completeness.

Table 15-1 Security Interface Signal Definitions

Signal Name

Type

Functional Description

core_secure_t2

O

Core secure mode signal

secreq

Security mode request from applicable memory

15.2.0.1 Core Secure Mode indicator (core_secure_t2)

This single bit Core output indicates that the Core is operating in secured mode.

280

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

15.2.0.2 Core Security Request (secreq)

This single bit input indicates to the Core that the system memory is in a secured state and that the Core
should operate in secured mode.

15.3 Registers

There are no registers in the Core associated with the secured mode of operation. Typically, a non-volatile
memory block in the system will contain a register for programming the state of system security. Please
refer to the chip-level and/or memory block documentation for implementation details.

15.4 Operation

When the system is configured for secured mode of operation, it will normally operate in either normal
single-chip mode or in an expanded mode executing from external memory. The conditions imposed by
secured mode for each of these operating modes is discussed in the subsections that follow as well as a
description of the method to unsecure the system.

15.4.1 Normal Single-Chip Mode

Normal single-chip mode will be the most common operation of a system configured for secured mode.
The system functionality will appear just as an unsecured system with the exception imposed that the BDM
operation will not be allowed and will be blocked. This will prevent any access to the internal non-volatile
memory block contents.

15.4.2 Expanded Mode

To operate in secured mode and execute from external memory space, the system should be correctly
configured for secured mode and then reset into expanded mode. The internal (on-chip) Flash EEPROM
and EEPROM blocks (if applicable) will be disabled and unavailable. All BDM operation will be blocked.

In addition, while in secured mode all internal visibility (IVIS) and CPU pipe (IPIPE) information will be
blocked from output.

15.4.3 Unsecuring The System

To unsecure a system that is configured for secured mode, the internal (on-chip) Flash EEPROM and
EEPROM must be fully erased. This can be performed using one of the following methods:

1. Reset the microcontroller into SPECIAL TEST mode, execute a program which writes the Mass
Erase command sequence into the Flash and EEPROM Command registers.

2. Reset the microcontroller into SPECIAL SINGLE CHIP mode, delay while the erase test is
performed by the BDM secure ROM. Send BDM commands to write the Mass Erase command
sequence into the Flash and EEPROM Command registers.

3. Reset the microcontroller into SPECIAL PERIPHERAL mode, using SPM commands write the
Mass Erase command sequence into the Flash and EEPROM Command registers.

@ MOTOROLA 281

Core User Guide — S12CPU15UG V1.2

In all modes the mass erase command sequence must have the following steps:

a. Write FCLKDIV register to set the Flash clock for proper timing.

b. Write $00 to FCNFG register to select Flash block 0.

c. Write $10 to FTSTMOD register to set WRALL bit.
(with WRALL set, all of the following writes to banked Flash registers will affect all Flash
blocks.)

d. Disable Flash protection by writing the FPROT register.

e. Write any data to Flash memory space $C000-$FFFF

f. Write Mass Erase command($41) to FCMD register.

g. Clear CBIEF (bit 7) it FSTAT register.

h. Write ECLKDIV register to set the EEPROM clock for proper timing.

i. Disable protection in EEPROM by writing the EPROT register.

J. Write any data to EEPROM memory space.

k. Write Mass Erase command($41) to ECMD register.

I. Clear CBIEF (bit 7) it ESTAT register.

m. Wait until all CCIF flags are set to 1 again.

After all the CCIF flags are set to 1 again, the Flash and EEPROM have been erased. Reset the
microcontroller into SPECIAL SINGLE CHIP mode. The BDM secure ROM will verify that the

nonvolatile memories are erased, and then it will assert the UNSEC bit in the BDM Status register. This
will cause the core_secure_t2 signal to de-assert, and the microcontroller will be unsecure. All BDM
commands will be enabled and the Flash security byte may be programmed to the unsecure state by any
of the following methods:

1. Send BDM commands to write to the MODE register and change to SPECIAL TEST mode, send a
BDM WRITE_PC, followed by a BDM GO command to jump to a program at an external address.
This external program can then program the Flash security byte to the unsecure state.

2. .Send BDM commands to directly program the Flash security byte.

In all modes programming the security byte must have the following steps:
a. Write FCLKDIV register to set the Flash clock for proper timing.

b. Write $00 to FCNFG register to select Flash block O.

c. Disable Flash protection by writing the FPROT register.

d. Write $FFFE to address $FFOE

e. Write Program command($20) to FCMD register.

f. Clear CBIEF (bit 7) it FSTAT register.

g. Wait until Flash CCIF flag is set to 1 again.

After this Flash programming sequence is complete, the microcontroller can be reset into any mode, the
Flash has been unsecured.

In normal modes, either SINGLE CHIP or EXPANDED, the microcontroller may only be unsecured by
using the backdoor key access feature. This requires knowledge of the contents of the backdoor keys,
which must be written to the Flash memory space at the appropriate addresses, in the correct order. In
addition, in SINGLE CHIP mode the user code stored in the Flash must have a method of receiving the
backdoor key from an external stimulus. This external stimulus would typically be through one of the
on-chip serial ports. After the backdoor sequence has been correctly matched, the microcontroller will be

282 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

unsecured, and all Flash commands will be enabled and the Flash security byte can be programmed to the
unsecure state, if desired.

Please note that if the system goes through a reset condition prior to successful configuration of unsecured
mode the system will reset back into secured mode operation.

15.5 Motorola Internal Information

This subsection details information about the Core secured mode of operation that is for Motorola use only
and should not be published in any form outside of Motorola.

15.5.1 BDM Secured Mode Firmware

When the Core is operating in secured mode and the system is reset into special single-chip mode, alternate
BDM firmware is invoked in place of the standard BDM firmware. A listing of this secured mode firmware
is given in14.8.9 of this guide.

@ MOTOROLA 283

Core User Guide — S12CPU15UG V1.2

284 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Appendix A Instruction Set and Commands

A.1 General

This glossary contains entries for all assembler mnemonics in alphabetical order. Each entry describes the
operation of the instruction, its effect on the condition code register, and its syntax.

A.2 Glossary Notation

A.2.1 Condition Code State Notation

Table A-1 Condition Code State Notation

Not changed by operation
Cleared by operation

Set by operation

Set or cleared by operation

May be cleared or remain set, but not set by operation
May be set or remain cleared, but not cleared by operation
May be changed by operation but final state not defined
Used for a special purpose

—|~V|Oglol>|r|lo]l

@ MOTOROLA 285

Core User Guide — S12CPU15UG V1.2

A.2.2 Register and Memory Notation

286

Table A-2 Register and Memory Notation

Aora

Accumulator A

An

Bit n of accumulator A

Borb

Accumulator B

Bit n of accumulator B

Accumulator D

Bit n of accumulator D

Index register X

High byte of index register X

Low byte of index register X

Bit n of index register X

Index register Y

High byte of index register Y

Low byte of index register Y

Bit n of index register Y

SP or sp

Stack pointer

SPn

Bit n of stack pointer

PC or pc

Program counter

PCy

High byte of program counter

PC.

Low byte of program counter

CCRorc

Condition code register

M

Address of 8-bit memory location

Mn

Bit n of byte at memory location M

Rn

Bit n of the result of an arithmetic or logical operation

In

Bit n of the intermediate result of an arithmetic or logical operation

RTNy

High byte of return address

RTN,

Low byte of return address

0

Contents of

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

A.2.3 Address Mode Notation

Table A-3 Address Mode Notation

INH | Inherent; no operands in instruction stream

IMM | Immediate; operand immediate value in instruction stream
DIR | Direct; operand is lower byte of address from $0000 to $00FF
EXT | Operand is a 16-bit address

REL | Two’s complement relative offset; for branch instructions

IDX | Indexed (no extension bytes); includes:
5-bit constant offset from X, Y, SP or PC
Pre/post increment/decrement by 1-8
Accumulator A, B, or D offset

IDX1 | 9-bit signed offset from X, Y, SP, or PC; 1 extension byte
IDX2 | 16-hit signed offset from X, Y, SP, or PC; 2 extension bytes
[IDX2] | Indexed-indirect; 16-bit offset from X, Y, SP, or PC
[D, IDX] | Indexed-indirect; accumulator D offset from X, Y, SP, or PC

A.2.4 Operator Notation

Table A-4 Operator Notation

+ |Add
— | Subtract
« |AND
| |OR
0 |Exclusive OR
x [Multiply
+ | Divide
Concatenate
0 | Transfer
= | Exchange

A.2.5 Machine Code Notation

In theMachine Code (Hex)column on the glossary pages, digits 0-9 and upper case letters A—F represent
hexadecimal values. Pairs of lower-case letters represent 8-bit values as shaile k-5 .

@ MOTOROLA 287

Core User Guide — S12CPU15UG V1.2

Table A-5 Machine Code Notation

dd | 8-bit direct address from $0000 to $00FF; high byte is $00
ee | High byte of a 16-bit constant offset for indexed addressing

eb | Exchangel/transfer postbyte

Low eight bits of a 9-bit signed constant offset in indexed addressing, or low byte of a 16-bit
constant offset in indexed addressing

hh | High byte of a 16-bit extended address
i | 8-bitimmediate data value

jj | High byte of a 16-bit immediate data value

kk | Low byte of a 16-bit immediate data value

Ib | Loop primitive (DBNE) postbyte
Il | Low byte of a 16-hit extended address

8-bit immediate mask value for bit manipulation instructions; bits that are set indicate bits to be

mm affected

pg | Program page or bank number used in CALL instruction

qq | High byte of a 16-bit relative offset for long branches
tn | Trap number from $30 to $39 or from $40 to $FF

Signed relative offset $80 (-128) to $7F (+127) relative to the byte following the relative offset byte,
or low byte of a 16-bit relative offset for long branches

r

xb |Indexed addressing postbyte

A.2.6 Source Form Notation

The Source Formcolumn on the glossary pages gives essential information about assembler source
forms. For complete information about writing source files for a particular assembler, refer to the
documentation provided by the assembler vendor.

Everything in theSource Formcolumn,except expressions in italic characteissliteral information

which must appear in the assembly source file exactly as shown. The initial 3- to 5-letter mnemonic is
always a literal expression. All commas, pound signs (#), parentheses, squaredirpoké}, plus signs

(+), minus signs (=), and the register designation (A, B, D), are literal characters.

The groups of italic characters shownTable A-6 represent variable information to be supplied by the
programmer. These groups can include any alphanumeric character or the underscore character, but cannot
include a space or comma. For example, the groypppcandoprx0_xysppare both valid, but the two
groupsoprx0 xyspp@re not valid because there is a space between them.

288 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table A-6 Source Form Notation

abc Register designator for A, B, or CCR
abcdxysp Register designator for A, B, CCR, D, X, Y, or SP
abd Register designator for A, B, or D
abdxysp Register designator for A, B, D, X, Y, or SP
daxysp Register designator for D, X, Y, or SP
msk8 8-bit mask value _
Some assemblers require the # symbol before the mask value.
opr8i 8-bit immediate value
oprl6i 16-bit immediate value
opr8a 8-bit address value used with direct address mode
oprl6a 16-bit address value

oprx0_xysp |Indexed addressing postbyte code:

oprx3,—xysp — Predecrement X, Y, or SP by 1-8

oprx3,+xysp — Preincrement X, Y, or SP by 1-8

oprx3,xysp— — Postdecrement X, Y, or SP by 1-8

oprx3,xysp+ — Postincrement X, Y, or SP by 1-8

oprx5,xysppc — 5-bit constant offset from X, Y, SP, or PC
abd,xysppc — Accumulator A, B, or D offset from X, Y, SP, or PC

oprx3 Any positive integer from 1 to 8 for pre/post increment/decrement
oprx5 Any integer from —16 to +15
oprx9 Any integer from —256 to +255
oprx16 Any integer from —32,768 to +65,535

8-bit value for PPAGE register
page Some assemblers require the # symbol before this value.
rel8 Label of branch destination within —256 to +255 locations
rel9 Label of branch destination within —512 to +511 locations
rel16 Any label within the 64-Kbyte memory space
trapnum Any 8-bit integer from $30 to $39 or from $40 to $FF
Xysp Register designator for X or Y or SP
Xysppc Register designator for X or Y or SP or PC

A.2.7 CPU Cycles Notation

The CPU Cyclescolumn on the glossary pages shows how many bytes of information the CPU accesses
while executing an instruction. With this information and knowledge of the type and speed of memory in
the system, you can determine the execution time for any instruction in any system. Simply count the code
letters to determine the execution time of an instruction in a best-case system. An example of a best-case
system is a single-chip 16-bit system with no 16-bit off-boundary data accesses to any locations other than
on-chip RAM.

A single-letter code in represents a single CPU access cycle. An upper-case letter indicates a 16-bit access.

@ MOTOROLA 289

Core User Guide — S12CPU15UG V1.2

290

Table A-7 CPU Cycle Notation

Free cycle. During an f cycle, the CPU does not use the bus. An f cycle is always one cycle of the
system bus clock. An f cycle can be used by a queue controller or the background debug system to
perform a single-cycle access without disturbing the CPU.

Read PPAGE register. A g cycle is used only in CALL instructions and is not visible on the external
bus. Since PPAGE is an internal 8-bit register, a g cycle is never stretched.

Read indirect pointer. Indexed-indirect instructions use the 16-bit indirect pointer from memory to
address the instruction operand. An | cycle is a 16-bit read that can be aligned or misaligned. An |
cycle is extended to two bus cycles if the MCU is operating with an 8-bit external data bus and the
corresponding data is stored in external memory. There can be additional stretching when the
address space is assigned to a chip-select circuit programmed for slow memory. An | cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access.

Read indirect PPAGE value. Ani cycle is used only in indexed-indirect CALL instructions. The 8-bit
PPAGE value for the CALL destination is fetched from an indirect memory location. Ani cycle is
stretched only when controlled by a chip-select circuit that is programmed for slow memory.

Write PPAGE register. An n cycle is used only in CALL and RTC instructions to write the destination
value of the PPAGE register and is not visible on the external bus. Since the PPAGE register is an
internal 8-bit register, an n cycle is never stretched.

Optional cycle. An Ocycle adjusts instruction alignment in the instruction queue. An Ocycle can be a
free cycle (f) or a program word access cycle (P). When the first byte of an instruction with an odd
number of bytes is misaligned, the Ocycle becomes a P cycle to maintain queue order. If the first
byte is aligned, the Ocycle is an f cycle.

The $18 prebyte for a page-two opcode is treated as a special one-byte instruction. If the prebyte is
misaligned, the Ocycle at the beginning of the instruction becomes a P cycle to maintain queue
order. If the prebyte is aligned, the Ocycle is an f cycle. If the instruction has an odd number of
bytes, it has a second Ocycle at the end. If the first Ocycle is a P cycle (prebyte misaligned), the
second Ocycle is an f cycle. If the first Ocycle is an f cycle (prebyte aligned), the second Ocycle is
a P cycle.

An Ocycle that becomes a P cycle can be extended to two bus cycles if the MCU is operating with an
8-bit external data bus and the program is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An Ocycle that becomes an f cycle is never stretched.

Program word access. Program information is fetched as aligned 16-bit words. A P cycle is extended
to two bus cycles if the MCU is operating with an 8-bit external data bus and the program is stored
externally. There can be additional stretching when the address space is assigned to a chip-select
circuit programmed for slow memory.

8-bit data read. An r cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

16-bit data read. An R cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
An Rcycle is also stretched if it corresponds to a misaligned access to a memory that is not
designed for single-cycle misaligned access.

Stack 8-bit data. An s cycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

Stack 16-bit data. An S cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching if the
address space is assigned to a chip-select circuit programmed for slow memory. An S cycle is also
stretched if it corresponds to a misaligned access to a memory that is not designed for single-cycle
misaligned access. The internal RAM is designed to allow single cycle misaligned word access.

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Table A-7 CPU Cycle Notation (Continued)

w

8-bit data write. A wcycle is stretched only when controlled by a chip-select circuit programmed for
slow memory.

16-bit data write. A Wcycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is stored in external memory. There can be additional
stretching when the address space is assigned to a chip-select circuit programmed for slow memory.
A Wecycle is also stretched if it corresponds to a misaligned access to a memory that is not designed
for single-cycle misaligned access.

Unstack 8-bit data. A Wcycle is stretched only when controlled by a chip-select circuit programmed
for slow memory.

Unstack 16-bit data. A U cycle is extended to two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external memory. There can be additional stretching
when the address space is assigned to a chip-select circuit programmed for slow memory. A Ucycle
is also stretched if it corresponds to a misaligned access to a memory that is not designed for
single-cycle misaligned access. The internal RAM is designed to allow single-cycle misaligned word
access.

16-bit vector fetch. Vectors are always aligned 16-bit words. A V cycle is extended to two bus cycles
if the MCU is operating with an 8-bit external data bus and the program is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory.

8-bit conditional read. At cycle is either a data read cycle or a free cycle, depending on the data and
flow of the REVW instruction. At cycle is stretched only when controlled by a chip-select circuit
programmed for slow memory.

16-bit conditional read. A T cycle is either a data read cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. A T cycle is extended to two bus cycles if the MCU is
operating with an 8-bit external data bus and the corresponding data is stored in external memory.
There can be additional stretching when the address space is assigned to a chip-select circuit
programmed for slow memory. A T cycle is also stretched if it corresponds to a misaligned access to
a memory that is not designed for single-cycle misaligned access.

8-bit conditional write. An x cycle is either a data write cycle or a free cycle, depending on the data
and flow of the REV or REVW instruction. An x cycle is stretched only when controlled by a
chip-select circuit programmed for slow memory.

Special Notation for Branch Taken/Not Taken

PPP/P

A short branch requires three cycles if taken, one cycle if not taken. Since the instruction consists of
a single word containing both an opcode and an 8-bit offset, the not-taken case is simple — the
gueue advances, another program word fetch is made, and execution continues with the next
instruction. The taken case requires that the queue be refilled so that execution can continue at a
new address. First, the effective address of the destination is determined, then the CPU performs
three program word fetches from that address.

OPPP/OPQ

A long branch requires four cycles if taken, three cycles if not taken. An Ocycle is required because
all long branches are page two opcodes and thus include the $18 prebyte. The prebyte is treated as
a one-byte instruction. If the prebyte is misaligned, the Ocycle is a P cycle; if the prebyte is aligned,
the Ocycle is an f cycle. As a result, both the taken and not-taken cases use one Ocycle for the

prebyte. In the not-taken case, the queue must advance so that execution can continue with the next
instruction, and another Ocycle is required to maintain the queue. The taken case requires that the
queue be refilled so that execution can continue at a new address. First, the effective address of the
destination is determined, then the CPU performs three program word fetches from that address.

@ MOTOROLA

291

Core User Guide — S12CPU15UG V1.2

A.3 Glossary

ABA

Operation

CCR
Effects

Code and
CPU
Cycles

292

Add Bto A ABA

(A) + (B)O A

Adds the value in B to the value in A and places the result in A. The value in B does not
change. This instruction affects the H bit so it is suitable for use in BCD arithmetic
operations (see DAA instruction for additional information).

S X H I N Z V C
[-[-Ja[-Talalala]

H: A3+ B3| B3« R3| R3+ A3; set if there is a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 « B7 « R7 | A7 « B7 « R7; set if the operation produces a two's complement overflow; cleared otherwise
C: A7+ B7 | B7 « R7 | R7 « A7; set if there is a carry from the MSB of the result; cleared otherwise

Address Machine
Source Form Mode Code (Hex) CPU Cycles
ABA INH 18 06 00

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

A B X (sam'zd;sl?_ltEOAi((B,X) A B X
Operation (X)+(B)O X

Adds the 8-bit unsigned value in B to the value in X considering the possible carry out of
the low byte of X and places the result in X. The value in B does not change.

ABX assembles as LEAX B, X. The LEAX instruction allows A, B, D, or a constant to be

added to X.
CCR
Effects S X H | N Z V C
Code and
CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)

ABX IDX 1A E5 pf

@ MOTOROLA 293

Core User Guide — S12CPU15UG V1.2

A B Y (sam'zd;sl?_ltEOA\\((B,Y) A B Y
Operation (Y)+(B)O Y

Adds the 8-bit unsigned value in B to the value in Y considering the possible carry out of
the low byte of Y and places the result in Y. The value in B does not change.

ABY assembles as LEAY B,Y. The LEAY instruction allows A, B, D, or a constant to be

added to Y.
CCR
Effects S X H | N Z V C
Code and
CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)

ABY IDX 19 ED Pf

294 @ MOTOROLA

ADCA

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

ADCA

Add with Carry to A

A+M+COA
or
(A)+imm+CO A

Adds either the value in M and the C bit or an immediate value and the C bit to the value
in A. Puts the result in A. This instruction affects the H bit, so it is suitable for use in BCD
arithmetic operations (see DAA instruction for additional information).

S X H I N zZ V C
| -[-Ja[-Talalala]

H: A3+ M3 | M3« R3|R3+ A3; set if there is a carry from bit 3; cleared otherwise
N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise
Vi

: A7 « M7 « R7 | A7 « M7 + R7; set if the operation produces a two's complement overflow; cleared
otherwise

C: A7+ M7 | M7 « R7 | R7 « A7; set if there is a carry from the MSB of the result; cleared otherwise

Source Form A(lilﬂdggzs Clé)/lc?ec?lljlgx) CPU Cycles
ADCA #0pr8i IMM 89 i P
ADCA opr8a DIR 99 dd rbf
ADCA oprl6a EXT B9 hh I rPO
ADCA oprx0_xysppc IDX A9 xb rPf
ADCA oprx9,xysppc IDX1 A9 xb ff rPO
ADCA oprx16,xysppc IDX2 A9 xb ee ff frPP
ADCA [D,xysppc] [DIDX] |A9 xb fifrPf
ADCA [oprx16,xysppc] [IDX2] A9 xb ee ff fIPrPf

295

Core User Guide — S12CPU15UG V1.2

ADCB

Operation

CCR
Effects

Code and
CPU
Cycles

296

Add with Carry to B

ADCB

B)+(M)+CO B
or
(B) + imm+ CO B

Adds either the value in M and the C bit or an immediate value and the C bit to the value
in B. Puts the result in B. This instruction affects the H bit, so it is suitable for use in BCD
arithmetic operations (see DAA instruction for additional information).

S X H I N zZ V C
| -[-Ja[-Talalala]

H: B3+ M3 | M3« R3 | R3 « B3; setif there is a carry from bit 3; cleared otherwise
N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise
Vi

: B7 « M7 « R7 | B7 « M7 + R7; set if the operation produces a two’s complement overflow; cleared
otherwise

C: B7 + M7 | M7 « R7 | R7 « B7; set if there is a carry from the MSB of the result; cleared otherwise

Source Form A(lilﬂdggzs Macfmgx():ode CPU Cycles
ADCB #0pr8i IMM Coii P
ADCB opr8a DIR D9 dd rbf
ADCB opr16a EXT FO hh i rPO
ADCB oprx0_xysppc IDX E9 xb rPf
ADCB oprx9,xysppc IDX1 E9 xb ff rPO
ADCB oprx16,xysppc IDX2 E9 xb ee ff frPP
ADCB [D,xysppc] [D,1IDX] E9 xb fifrPf
ADCB [oprx16,xysppc] [IDX2] E9 xb ee ff fIPrPf

@ MOTOROLA

ADDA

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

ADDA

Add to A

A+MOA
or
(A)+imm0O A

Adds either the value in M or an immediate value to the value in A and places the result in
A. This instruction affects the H bit, so it is suitable for use in BCD arithmetic operations
(see DAA instruction for additional information).

S X H I N zZ V C
| -[-Ja[-Talalala]

H: A3+ M3 | M3« R3|R3+ A3; set if there is a carry from bit 3; cleared otherwise
N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise
Vi

: A7 « M7 « R7 | A7 « M7 + R7; set if the operation produces a two's complement overflow; cleared
otherwise

C: A7+ M7 | M7 « R7 | R7 « A7; set if there is a carry from the MSB of the result; cleared otherwise

Source Form A(lilﬂdggzs Macfmgx():ode CPU Cycles
ADDA #0pr8i IMM 8B i P
ADDA opr8a DIR 9B dd rpf
ADDA oprlé6a EXT BB hh I rPO
ADDA oprx0_xysppc IDX AB xb rpf
ADDA o0prx9,xysppc IDX1 AB xb ff rPO
ADDA oprx16,xysppc IDX2 AB xb ee ff frPP
ADDA [D,xysppc] [DIDX] |AB xb fifrPf
ADDA [oprx16,xysppc] [IDX2] AB xb ee ff fIPrPf

297

Core User Guide — S12CPU15UG V1.2

ADDB

Operation

CCR
Effects

Code and
CPU
Cycles

298

Add to B

ADDB

B)+M)O B
or
(B) + imm0O B

Adds either the value in M or an immediate value to the value in B and places the result in
B. This instruction affects the H bit, so it is suitable for use in BCD arithmetic operations
(see DAA instruction for additional information).

S X H I N zZ V C
| -[-Ja[-Talalala]

H: B3+ M3 | M3« R3 | R3 « B3; setif there is a carry from bit 3; cleared otherwise
N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise
Vi

: B7 « M7 « R7 | B7 « M7 + R7; set if the operation produces a two’s complement overflow; cleared
otherwise

C: B7 + M7 | M7 « R7 | R7 « B7; set if there is a carry from the MSB of the result; cleared otherwise

Source Form A(lilﬂdggzs Clé)/l;‘ec?lljlgx) CPU Cycles
ADDB #0pr8i IMM CBil P
ADDB opr8a DIR DB dd rbf
ADDB opr16a EXT FB hhll rPO
ADDB oprx0_xysppc IDX EB xb rpf
ADDB oprx9,xysppc IDX1 EB xb ff rPO
ADDB oprx16,xysppc IDX2 EB xb ee ff frPP
ADDB [D,xysppc] [D,1IDX] EB xb fifrPf
ADDB [oprx16,xysppc] [IDX2] EB xb ee ff fIPrPf

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

ADDD AddtoD ADDD

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

A:B)+(M):M+1)00 AB
or
(A):(B) + mmQO A:B

Adds either the value in M concatenated with the value in M + 1 or an immediate value to
the value in D. Puts the result in D. A is the high byte of D; B is the low byte.

S X H I N Z V C
-[-1-[-[afala]a]

2

: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise

V: D15+« M15« R15 | D15 « M15 « R15; set if the operation produces a two's complement overflow; cleared
otherwise

C: D15+ M15 | M15 « R15 | R15 « D15; set if there is a carry from the MSB of the result; cleared otherwise

Source Form Aﬁﬂdgs:s C'é)/lc?gr(ng) CPU Cycles

ADDD #0pr16i IMM C3jj kk PO

ADDD opr8a DIR D3 dd RPf

ADDD oprl6a EXT F3 hhll RPO

ADDD oprx0_xysppc IDX E3 xb RPf

ADDD oprx9,xysppc IDX1 E3 xb ff RPO

ADDD oprx16,xysppc IDX2 E3 xb ee ff fRPP

ADDD [D,xysppc] [DIDX] |E3 xb fIfRPf

ADDD [oprx16,xysppc] [IDX2] E3 xb ee ff fIPRPf

299

Core User Guide — S12CPU15UG V1.2

ANDA AND with A ANDA

Operation (A)e (M)0O A
or
(A)e immO A

Performs a logical AND of either the value in M or an immediate value with the value in
A. Puts the result in A.

CCR
Effects S X H I N Z V C
T[Tl
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
Code and
CPU Address Machine
Source Form CPU Cycles
M H
Cycles ode Code (Hex)
ANDA #0pr8i IMM 84 i P
ANDA opr8a DIR 94 dd rPf
ANDA oprl6a EXT B4 hh I rPO
ANDA oprx0_xysppc IDX A4 xb rPf
ANDA oprx9,xysppc IDX1 A4 xb ff rPO
ANDA 0prx16,xysppc IDX2 A4 xb ee ff frPP
ANDA [D,xysppc] [DIDX] A4 xb fifrPf
ANDA [0prx16,xysppc] [IDX2] A4 xb ee ff fIPrPf

300 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

ANDB AND it B ANDB

Operation (B)* (M) B
or
(B)e imm0O B

Performs a logical AND of either the value in M or an immediate value with the value in
B. Puts the result in B.

CCR

Effects S X H I N Z V C
-l-[-1-[afafof-]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Code and

CPU Address Machine

Source Form CPU Cycles
M H

Cycles ode Code (Hex)
ANDB #0pr8i IMM C4 i P
ANDB opr8a DIR D4 dd rPf
ANDB opri6a EXT FA4 hhll rPO
ANDB oprx0_xysppc IDX E4 xb rPf
ANDB oprx9,xysppc IDX1 E4 xb ff rPO
ANDB oprx16,xysppc IDX2 E4 xb ee ff frPP
ANDB [D,xysppc] [D,IDX] E4 xb fifrPf
ANDB [0oprx16,xysppc] [IDX2] E4 xb ee ff fIPrPf

@ MOTOROLA 301

Core User Guide — S12CPU15UG V1.2

ANDCC AND with CCR ANDCC

Operation

CCR
Effects

Code and
CPU
Cycles

302

(CCR)* imm[CCR

Performs a logical AND of an immediate value and the value in the CCR. Puts the resultin
the CCR.

If the | mask bit is cleared, there is a one-cycle delay before the system allows interrupt
requests. This prevents interrupts from occurring between instructions in the sequences
CLI, WAI and CLI, SEI (CLlI is equivalent to ANDCC #$EF).

S X H I N zZ V C
(ofojofojofajfojo]

All CCR bits: Clear if 0 before operation or if corresponding bit in mask is 0

Address Machine
Source Form Mode Code (Hex) CPU Cycles
ANDCC #opr8i IMM 10ii P

@ MOTOROLA

ASL

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Arithmetic Shift Left M A S L
(same as LSL)

C (+— b7 |b6|b5|b4|b3|b2|bl|b0<«—0
M

Shifts all bits of M one bit position to the left. Bit O is loaded with a 0. The C bit is loaded
from the most significant bit of M.

S X H I N zZ V C
[-[-[-[-Talafa]a]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: NO C; set if:
Nis setand Cis cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise

C: M7; set if the MSB of M was set before the shift; cleared otherwise

Source Form A(lii/ldorggs Cz/l(?g(ng) CPU Cycles
ASL opri6a EXT 78 hh i rPwO
ASL oprx0_xysppc IDX 68 xb rPw
ASL oprx9,xysppc IDX1 68 xb ff rPwO
ASL oprx16,xysppc IDX2 68 xb ee ff frPwP
ASL [D,xysppc] [D,IDX] 68 xb fifrPw
ASL [oprx16,xysppc] [IDX2] 68 xb ee ff fIPrPw

303

Core User Guide — S12CPU15UG V1.2

ASLA Athmetio S Left A ASLA

Operation c

A

b7 | b6 | b5 | b4 | b3 | b2 | bl | bO «— 0
A

Shifts all bits of A one bit position to the left. Bit O is loaded with a 0. The C bit is loaded
from the most significant bit of A.

CCR
Effects S X H | N Z VvV C
-l Talalals]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: NO C; setif:
Nissetand C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise
C: A7; set if the MSB of A was set before the shift; cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
Mode Code (Hex
Cycles (Hex)
ASLA INH 48 (@]
304

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

ASLB Aribmeto Shit Lef B ASLB

Operation C |«—{b7|b6|bs|ba|b3|b2]|b1]bole—0
B
Shifts all bits of B one bit position to the left. Bit O is loaded with a 0. The C bit is loaded
from the most significant bit of B.
CCR
Effects S X H | N Z VvV C
-l Talalals]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N O C; set if:
N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise
C: B7; set if the MSB of B was set before the shift; cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
ASLB INH 58 (@]

@ MOTOROLA 305

Core User Guide — S12CPU15UG V1.2

ASLD

Operation

CCR
Effects

Code and
CPU
Cycles

306

Arithmetic Shift Left D
(same as LSLD)

ASLD

(@)
A

b7 | b6

b5

b4

b3 | b2 | bl

b0

b7 | b6 | b5

b4

b3 | b2 |bl| b0 «—0

S X H I N

4

A

\%

C

- l-l-[-[afafafa]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise

V: N O C; set if:

N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise

C: D15; set if the MSB of D was set before the shift; cleared otherwise

B

Shifts all bits of D one bit position to the left. Bit O is loaded with a 0. The C bit is loaded
from the most significant bit of D.

Address Machine
Source Form Mode Code (Hex) CPU Cycles
ASLD INH 59 O

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

AS R Arithmetic Shift Right M AS R

Operation E\
b7 | b6 | b5 | b4 | b3 | b2 | bl |bO

M

Shifts all bits of M one place to the right. Bit 7 is held constant. Bit O is loaded into the C
bit. This operation effectively divides a two’s complement value by two without changing
its sign. The carry bit can be used to round the result.

Y
O

CCR
Effects S X H I N Z V C
-l -fefafafa]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N O C; setif:
N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise
C: MO; set if the LSB of M was set before the shift; cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
Mode Code (He
Cycles (Hex)
ASR opri6a EXT 77 hh i rPwO
ASR 0prx0_xysppc IDX 67 xb rPw
ASR oprx9,xysppc IDX1 67 xb ff rPwO
ASR o0prx16,xysppc IDX2 67 xb ee ff frPwP
ASR [D,xysppc] [D,IDX] 67 xb flfrPw
ASR [oprx16,xysppc] [IDX2] 67 xb ee ff fIPrPw

@ MOTOROLA 307

Core User Guide — S12CPU15UG V1.2

AS R A Arithmetic Shift Right A AS R A

Operation E\
b7 | b6 | b5 | b4 | b3 | b2 | bl |bO

A

Shifts all bits of A one place to the right. Bit 7 is held constant. Bit O is loaded into the C
bit. This operation effectively divides a two’s complement value by two without changing
its sign. The carry bit can be used to round the result.

Y
O

CCR
Effects S X H I N Z V C
-l -fefafafa]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N O C; setif:
N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise
C: AO; set if the LSB of A was set before the shift; cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
Mode Code (Hex
Cycles (Hex)
ASRA INH 47 (@]
308

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

AS R B Arithmetic Shift Right B AS R B

Operation E\
b7 | b6 | b5 | b4 | b3 | b2 | bl |bO

B

Shifts all bits of B one place to the right. Bit 7 is held constant. Bit O is loaded into the C
bit. This operation effectively divides a two’s complement value by two without changing
its sign. The carry bit can be used to round the result.

Y
O

CCR
Effects S X H I N Z V C
-l -fefafafa]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: N O C; setif:
N is set and C is cleared after the shift, or
N is cleared and C is set after the shift; cleared otherwise
C: BO; set if the LSB of B was set before the shift; cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
Mode Code (Hex
Cycles (Hex)
ASRB INH 57 (@]

@ MOTOROLA 309

Core User Guide — S12CPU15UG V1.2

B(< Branch if C Clear B(<
(same as BHS)
Operation If C =0, then (PC) + $0002 + rel PC

Tests the C hit and branches if C = 0.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

CCR
Effects S X H I N zZ V C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
24 rr RPP (branch)
BCC rel8 REL P (no branch)
Branch Complementary Branch
: . Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
R)= (M) (R) < (M)
or or
BCC/BHS 24 (B) = (A) BCS/BLO 25 (B) < (A) Unsigned
C=0 CcC=1
(R) = (M) (R) < (M)
or or
BGE 2C (B) = (A) BLT 2D (B) < (A) Signed
NOV=0 NOV=1

310 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

BCLR Clear8i(s)n M BCLR

Operation (M) ¢ (mask byte)1 M

Performs a logical AND of the value in M and the complement of a mask byte contained
in the instruction. Puts the result in M. Bits in M that correspond to 1s in the mask byte are
cleared. No other bits in M change.

CCR

Effects S X H I N Z VvV C
-l-[-1-[afafof-]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Code and

CPU Source Form Addresls Machine CPU Cycles

Cycles Mode Code (Hex)
BCLR opr8a, msk8 DIR 4D dd mm rPwO
BCLR opri6a, msk8 EXT 1D hh Il mm rPwP
BCLR oprx0_xysppc, msk8 IDX 0D xb mm rPwO
BCLR oprx9,xysppc, msk8 IDX1 0D xb ff mm rPwP
BCLR oprx16,xysppc, msk8 IDX2 0D xb ee ff mm frPwPO

NOTES:

1. Indirect forms of indexed addressing cannot be used with this instruction.

@ MOTOROLA 311

Core User Guide — S12CPU15UG V1.2

B (S Branch if C Set B< S
(same as BLO)
Operation If C =1, then (PC) + $0002 + rel PC

Tests the C hit and branches if C = 1.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

CCR
Effects S X H I N zZ V C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
251rr RPP (branch)
BCS rel8 REL P (no branch)
Branch Complementary Branch
: . Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
(R) <(M) (R) = (M)
or or
BCS/BLO 25 (B) < (A) BCC/BHS 24 (B) = (A) Unsigned
c=1 C=0
(R)<(M) (R) = (M)
or or
BLT 2D (B) < (A) BGE 2C (B) = (A) Signed
NOV=1 NOV=0

312 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

BEQ BEQ

Operation If Z =1, then (PC) + $0002 + rél PC
Tests the Z bit and branches if Z = 1.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

CCR
Effects S X H I N zZ V C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
27 rr RPP (branch)
BEQ rel8 REL P (no branch)
Branch Complementary Branch
: . Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
(R) = (M) (R) # (M) _
or or Signed,
simple
Z=1 Z=0

@ MOTOROLA 313

Core User Guide — S12CPU15UG V1.2

B G E Branch if Greater Than or Equal to Zero B G E

Operation

CCR
Effects

Code and
CPU
Cycles

314

IfN O V = 0, then (PC) + $0002 + r&l PC

BGE can be used to branch after comparing or subtracting signed two’s complement
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or
SUBD, the branch occurs if the CPU register value is greater than or equal to the value in
M. After CBA or SBA, the branch occurs if the value in B is greater than or equal to the
value in A.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (—128 to 127) from the address following the last byte of
object code in the instruction.

S X H I N zZ V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
2Crr PPP (branch)
BGE rel8 REL P (no branch)
Branch Complementary Branch
: : Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
(R)y=(M) (R) <(M)
or or
BGE 2C (B) = (A) BLT 2D (B) < (A) Signed
NOV=0 NOV=1
R)Y=(M) (R) <(M)
or or
BHS/BCC 24 (B) = (A) BLO/BCS 25 (B) < (A) Unsigned
CcC=0 c=1

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

B G N D Enter Background Debug Mode B G N D

Operation (PC)O TMP2
BDM vector] PC

BGND operates like a software interrupt, except that no registers are stacked. First, the
current PC value is stored in internal CPU register TMP2. Next, the BDM ROM and
background register block become active. The BDM ROM contains a substitute vector,
mapped to the address of the software interrupt vector, which points to routines in the BDM
ROM that control background operation. The substitute vector is fetched, and execution
continues from the address that it points to. Finally, the CPU checks the location that TMP2
points to. If the value stored in that location is $00 (the BGND opcode), TMP2 is
incremented, so that the instruction that follows the BGND instruction is the first
instruction executed when normal program execution resumes.

For all other types of BDM entry, the CPU performs the same sequence of operations as for
a BGND instruction, but the value stored in TMP2 already points to the instruction that
would have executed next had BDM not become active. If active BDM is triggered just as
a BGND instruction is about to execute, the BDM firmware does increment TMP2, but the
change does not affect resumption of normal execution.

While BDM is active, the CPU executes debugging commands received via a special
single-wire serial interface. BDM is terminated by the execution of specific debugging
commands. Upon exit from BDM, the background/boot ROM and registers are disabled,
the instruction queue is refilled starting with the return address pointed to by TMP2, and
normal processing resumes.

BDM is normally disabled to avoid accidental entry. While BDM is disabled, BGND
executes as described, but the firmware causes execution to return to the user program.

CCR
Effects S X H I N Z V C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
BGND INH 00 VIPPP

@ MOTOROLA 315

Core User Guide — S12CPU15UG V1.2

BGT

IfZ | (N O V) =0, then (PC) + $0002 + r&l PC

Operation

CCR
Effects

Code and
CPU
Cycles

316

BGT can be used to branch after comparing or subtracting signed two’s complement
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or
SUBD, the branch occurs if the CPU register value is greater than the value in M. After

Branch if Greater Than Zero

BGT

CBA or SBA, the branch occurs if the value in B is greater than the value in A.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of

object code in the instruction.

S X H I N zZ V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
2E rr PPP (branch)
BGT rel8 REL P (no branch)
Branch Complementary Branch
- : Comment
Mnemonic Ppcode Test Mnemonic Opcode Test
(R)>(M) (R) < (M)
or or
BGT 2E (B) > (A) BLE 2F (B) < (A) Signed
Z|(NOV)=0 ZI(NOV)=1
(R)> (M) (R)= (M)
or or
BHI 22 (B) > (A) BLS 23 (B) < (A) Unsigned
Cl|z=0 clz=1

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

B H I Branch if Higher B H I

Operation If C|Z =0, then (PC) + $0002 + rigl PC

BHI can be used to branch after comparing or subtracting unsigned values. After CMPA,
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occurs
if the CPU register value is greater than the value in M. After CBA or SBA, the branch
occurs if the value in B is greater than the value in A. BHI is not for branching after
instructions that do not affect the C bit, such as increment, decrement, load, store, test,
clear, or complement.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

CCR
Effects S X H I N Z V C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
22 rr RPPP (branch)
BHI rel8 REL P (no branch)
Branch Complementary Branch
- . Comment
Mnemonic Ppcode Test NMnemonic Opcode Test
(R)> (M) (R)= (M)
or or
BHI 22 (B) > (A) BLS 23 (B) < (A) Unsigned
Clz=0 clz=1
(R)> (M) (R)=(M)
or or
BGT 2E (B) > (A) BLE 2F (B) < (A) Signed
ZI(NOV)=0 ZI(NOV)=1

@ MOTOROLA 317

Core User Guide — S12CPU15UG V1.2

B H S Branch if Higher or Same B H S
(same as BCC)

Operation

CCR
Effects

Code and
CPU
Cycles

318

If C = 0, then (PC) + $0002 + r&l PC

BHS can be used to branch after subtracting or comparing unsigned values. After CMPA,
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occurs

if the CPU register value is greater than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is greater than or equal to the value in A. BHS is not for
branching after instructions that do not affect the C bit, such as increment, decrement, load,
store, test, clear, or complement.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

S X H | N Z V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
24 rr RPPP (branch)
BHS rel8 REL P (no branch)
Branch Complementary Branch
. . Comment
Mnemonic |Opcode Test Mnemonic Qpcode Test
(R) = (M) (R) < (M)
or or
BHS/BCC 24 (B) = (A) BLO/BCS 25 (B) < (A) Unsigned
CcC=0 C=1
(R)y=(M) (R)<(M)
or or
BGE 2C (B) = (A) BLT 2D (B) < (A) Signed
NOV=0 NOV=1

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

BITA Bt Test A BITA

Operation (A) * (M)
or
(A) ® imm

Performs a logical AND of either the value in M or an immediate value with the value in
A. CCR bhits reflect the result. The values in A and M do not change.

CCR

Effects S X H I N Z V C
CT-T-T-T=]=]e]]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Code and

CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)
BITA #0pr8i IMM 85 i P
BITA opr8a DIR 95 dd rPf
BITA oprl6a EXT B5 hh i rPO
BITA oprx0_xysppc IDX A5 xb rPf
BITA oprx9,xysppc IDX1 A5 xb ff rPO
BITA oprx16,xysppc IDX2 A5 xb ee ff frPP
BITA [D,xysppc] [D,IDX] A5 xb fifrPf
BITA [oprx16,xysppc] [IDX2] A5 xb ee ff fIPrPf

@ MOTOROLA 319

Core User Guide — S12CPU15UG V1.2

BITB BITB

Operation (B)* (M)
or
(B) ® imm

Performs a logical AND of either the value in M or an immediate value with the value in
B. CCR bhits reflect the result. The values in B and M do not change.

CCR
Effects S X H I N Z V C
| -[-[-[-Tafafo]-|
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
BITB #0pr8i IMM CSii P
BITB opr8a DIR D5dd rPf
BITB opri6a EXT F5hhll rPO
BITB oprx0_xysppc IDX E5 xb rPf
BITB oprx9,xysppc IDX1 E5 xb ff rPO
BITB oprx16,xysppc IDX2 E5 xb ee ff frPP
BITB [D,xysppc] [D,IDX] E5 xb fifrPf
BITB [oprx16,xysppc] [IDX2] E5 xb ee ff fIPrPf
320

@ MOTOROLA

BLE

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

BLE

Branch if Less Than or Equal to Zero

IfZ | (N O V) = 1, then (PC) + $0002 + r&l PC

BLE can be used to branch after subtracting or comparing signed two’s complement values.
After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the
branch occurs if the CPU register value is less than or equal to the value in M. After CBA

or SBA, the branch occurs if the value in B is less than or equal to the value in A.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of

object code in the instruction.

S X H I N zZ V C
Address ;
Source Form Mode Object Code CPU Cycles
2F rr PPP (branch)
BLE rel8 REL P (no branch)
Branch Complementary Branch
: - Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
(R) = (M) (R)> (M)
or or
BLE 2F (B) < (A) BGT 2E (B) > (A) Signed
Z|(NOV)=1 ZI(NOV)=0
(R) = (M) (R) > (M)
or or
BLS 23 (B) < (A) BHI 22 (B) > (A) Unsigned

321

Core User Guide — S12CPU15UG V1.2

BLO

Operation

CCR
Effects

Code and
CPU
Cycles

322

Branch if Lower B LO
(same as BCS)
If C =1, then (PC) + $0002 + rEl PC

BLO can be used to branch after subtracting or comparing unsigned values. After CMPA,
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occurs

if the CPU register value is less than the value in M. After CBA or SBA, the branch occurs

if the value in B is less than the value in A. BLO is not for branching after instructions that

do not affect the C bit, such as increment, decrement, load, store, test, clear, or complement.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (—128 to 127) from the address following the last byte of
object code in the instruction.

S X H I N zZ V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
251r RPP (branch)
BLO rel8 REL P (no branch)
Branch Complementary Branch
: : Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
(R) <(M) (R) = (M)
or or
BLO/BCS 25 (B) < (A) BHS/BCC 24 (B) = (A) Unsigned
c=1 C=0
(R)<(M) (R) = (M)
or or
BLT 2D (B) < (A) BGE 2C (B) = (A) Signed
NOV=1 NOV=0

@ MOTOROLA

BLS

Operation

Core User Guide — S12CPU15UG V1.2

Branch if Lower or Same

If C | Z =1, then (PC) + $0002 + r@al PC

BLS

BLS can be used to branch after subtracting or comparing unsigned values. After CMPA,
CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occurs

if the CPU register value is less than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is less than or equal to the value in A. BLS is not for
branching after instructions that do not affect the C bit, such as increment, decrement, load,
store, test, clear, or complement.

object code in the instruction.

CCR
Effects

Code and

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of

CPU
Cycles

Source Form

Address
Mode

Machine
Code (Hex)

CPU Cycles

BLS rel8

REL

23 rr

RPP (branch)
P (no branch)

Branch

Complementary Branch

Mnemonic

Opcode

Test

N

inemonic O

pcode

Test

Comment

BLS

23

(R) < (M)
or
(B) = (A)

BHI

cl|z=1

22

(R) > (M)
or
(B)>(A)

Cl|z=0

Unsigned

@ MOTOROLA

BLE

2F

(R) < (M)
or
(B) = (A)

BGT

ZI(NOV)=1

2E

(R) > (M)
or
(B)>(A)

ZI(NOV)=0

Signed

323

Core User Guide — S12CPU15UG V1.2

BLT

Operation

CCR
Effects

Code and
CPU
Cycles

324

Branch if Less Than Zero B LT

IfN OV =1, then (PC) + $0002 + r&l PC

BLT can be used to branch after subtracting or comparing signed two’s complement values.
After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB, SUBA, SUBB, or SUBD, the
branch occurs if the CPU register value is less than the value in M. After CBA or SBA, the
branch occurs if the value in B is less than the value in A.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

S X H I N zZ V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
2D rr PPP (branch)
BLT rel8 REL P (no branch)
Branch Complementary Branch
: . Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
(R) <(M) (R) = (M)
or or
BLT 2D (B) < (A) BGE 2C (B) = (A) Signed
NOV=1 NOV=0
(R) <(M) (R) = (M)
or or
BLO/BCS 25 (B) < (A) BHS/BCC 24 (B) = (A) Unsigned
c=1 C=0

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

BMI Branch if Minus BMI

Operation If N =1, then (PC) + $0002 + rél PC
Tests the N bit and branches if N = 1.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

CCR
Effects S X H I N zZ V C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
2B rr PPP (branch)
BMI rel8 REL P (no branch)
Branch Complementary Branch
: . Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
Negative Positive
BMI 2B BPL 2A Simple
N=1 N=0

@ MOTOROLA 325

Core User Guide — S12CPU15UG V1.2

B N E Branch if Not Equal to Zero B N E

Operation If Z =0, then (PC) + $0002 + rel PC
Tests the Z bit and branches if Z = 0.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

CCR
Effects S X H I N zZ V C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
26 rr RPP (branch)
BNE rel8 REL P (no branch)
Branch Complementary Branch
: . Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
(R) # (M) (R) = (M) _
or or Signed,
simple
Z=0 Z=1

326 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

B P L Branch if Plus B P L

Operation If N =0, then (PC) + $0002 + rél PC
Tests the N bit and branches if N = 0.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

CCR
Effects S X H I N zZ V C
Code and
CPU Address Machine
Source Form Source Form
Cycles Mode Code (Hex)
2A 1T PPP (branch)
BPL rel8 REL P (no branch)
Branch Complementary Branch
: . Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
Positive Negative
BPL 2A BMI 2B Simple
N=0 N=1

@ MOTOROLA 327

Core User Guide — S12CPU15UG V1.2

BRA Sranch Anays BRA

Operation (PC) + $0002 + rell PC
Branches unconditionally.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

Execution time is longer when a conditional branch is taken than when it is not taken,
because the instruction queue must be refilled before execution resumes at the new address.
Since the BRA branch condition is always satisfied, the branch is always taken, and the
instruction queue must always be refilled.

CCR
Effects S X H I N Z V C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
BRA rel8 REL 20 rr RPP
Branch Complementary Branch
. . Comment
Mnemonic |Opcode Test Mnemonic Qpcode Test
BRA 20 Always BRN 21 Never Simple

328 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

B R C L R Branch if Bit(s) Clear B R C L R

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

If (M) * (mask byte) = 0, then (P@)$0002 + rel] PC

Performs a logical AND of the value in M and the mask value supplied with the instruction.
Branches if all the Os in M correspond to 1s in the mask byte.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (—128 to 127) from the address following the last byte of
object code in the instruction.

S X H I N Z V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
BRCLR opr8a, msk8, rel8 DIR 4F dd mm rr rPPP
BRCLR opri6a, msk8, rel8 EXT 1IFhhllmmrr rfPPP
BRCLR oprx0_xysppc, msk8, rel8 IDX OF xb mm rr rPPP
BRCLR oprx9,xysppc, msk8, rel8 IDX1 OF xb ff mm rr rfPPP
BRCLR oprx16,xysppc, msk8, rel8 IDX2 OF xb ee ff mm rr PrfPPP

329

Core User Guide — S12CPU15UG V1.2

BRN Branch Never BRN

Operation (PC) + $000Z1 PC

Never branches. BRN is effectively a 2-byte NOP that requires one cycle. BRN is included
in the instruction set to provide a complement to the BRA instruction. BRN is useful during
program debug to negate the effect of another branch instruction without disturbing the
offset byte. A complement for BRA is also useful in compiler implementations.

Execution time is longer when a conditional branch is taken than when it is not, because
the instruction queue must be refilled before execution resumes at the new address. Since
the BRN branch condition is never satisfied, the branch is never taken, and only a single
program fetch is needed to update the instruction queue.

CCR
Effects S X H I N Z VvV C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
BRN rel8 REL 21 rr H
Branch Complementary Branch
: : Comment
Mnemonic [Opcode Test Mnemonic Qpcode Test
BRN 21 Never BRA 20 Always |Simple

330 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

BRSET Sranch Bi(s)Se BRSET

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

If (M) » (mask byte) = 0, then (PC) + $0002 +[elPC

Performs a logical AND of the value of and the mask value supplied with the instruction.
Branches if all the ones M correspond to ones in the mask byte.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (—128 to 127) from the address following the last byte of
object code in the instruction.

S X H I N Z V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
BRSET opr8a, msk8, rel8 DIR 4E dd mm rr rPPP
BRSET oprl6a, msk8, rel8 EXT 1E hh Il mmrr rfPPP
BRSET oprx0_xysppc, msk8, rel8 IDX OE xb mm rr rPPP
BRSET oprx9,xysppc, msk8, rel8 IDX1 OE xb ff mm rr rfPPP
BRSET oprx16,xysppc, msk8, rel8 IDX2 OE xb ee ff mm rr PrfPPP

331

Core User Guide — S12CPU15UG V1.2

BSET BSET

Set Bit(s) in M

Operation (M) | (mask byte)1 M
Performs a logical OR of the value in M and a mask byte contained in the instruction. Puts
the result in M. Bits in M that correspond to 1s in the mask are set. No other bits in M
change.
CCR
Effects S X H I N Z VvV C
-[-]-[-Talafo]-]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
BSET opr8a, msk8 DIR 4C dd mm rPwO
BSET oprl6a, msk8 EXT 1C hh I mm rPwP
BSET oprx0_xysppc, msk8 IDX 0C xb mm rPwO
BSET oprx9,xysppc, msk8 IDX1 0C xb ff mm rPwP
BSET oprx16,xysppc, msk8 IDX2 0C xb ee ff mm frPwPO
332

@ MOTOROLA

BSR

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

(SP) — $0002] SP

Core User Guide — S12CPU15UG V1.2

BSR

Branch to Subroutine

RTNH:RTNL 0 MSP.MSP +1
(PC) + $0002 + rell PC

Sets up conditions to return to normal program flow, then transfers control to a subroutine.
Uses the address of the instruction after the BSR as a return address.

Decrements the SP by two, to allow the two bytes of the return address to be stacked.

Stacks the return address (the SP points to the high byte of the return address).

Branches to a location determined by the branch offset.

Subroutines are normally terminated with an RTS instruction, which restores the return

address from the stack.

S X H | N Z V C
- f-1-T-T-1-1-1-]
Source Form Aﬁ/ldorgzs Clc\)/lc?ed(]li—?gx) CPU Cycles
BSR rel8 REL 07 rr SPPP

333

Core User Guide — S12CPU15UG V1.2

BVC

Operation

CCR
Effects

Code and
CPU
Cycles

334

Branch if V Clear BVC

If V = 0, then (PC) + $0002 + rél PC

Tests the V bit and branches if V = 0. BVC causes a branch when a previous operation on
two’s complement binary values does not cause an overflow. That is, when BVC follows a
two’s complement operation, a branch occurs when the result of the operation is valid.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of
object code in the instruction.

S X H | N Z V C
Address Machine

Source Form Mode Code (Hex) CPU Cycles

28 1r RPPP (branch)

BVC rel8 REL P (no branch)

Branch Complementary Branch
. . Comment
Mnemonic |Opcode Test Mnemonic Qpcode Test
BRN 21 Never BRA 20 Always |Simple

@ MOTOROLA

BVS

Operation

CCR
Effects

Code and
CPU
Cycles

Branch if V Set

If V = 1, then (PC) + $0002 + rél PC

Tests the V bit and branchesM = 1. BVS causes a branch when a previous operation on

Core User Guide — S12CPU15UG V1.2

BVS

two’s complement values causes an overflow. That is, when BVS follows a two’s
complement operation, a branch occurs when the result of the operation is invalid.

Rel is an 8-bit two’s complement offset for branching forward or backward in memory.
Branching range is $80 to $7F (-128 to 127) from the address following the last byte of

object code in the instruction.

S X H | N Z V C
Address Machine

Source Form Mode Code (Hex) CPU Cycles

29 1r RPPP (branch)

BVS rel8 REL P (no branch)

Branch Complementary Branch
- - Comment
Mnemonic |Opcode Test Mnemonic Qpcode Test
No overflow Overflow
BVS 29 BVC 28 Simple
V=1 V=1

@ MOTOROLA

335

Core User Guide — S12CPU15UG V1.2

CA L L Call Subroutine in Expanded Memory CA L L

Operation

CCR
Effects

Code and
CPU
Cycles

336

(SP) — $00021 SP
RTNH:RTNL 0 MSP.MSP +1
(SP) — $00011 SP
(PPAGE)J Mgp

new page valuél PPAGE
Subroutine address PC

Sets up conditions to return to normal program flow, then transfers control to a subroutine
in expanded memory. Uses the address of the instruction following the CALL as a return
address. For code compatibility, CALL also executes correctly in devices that do not have
expanded memory capability.

Decrements SP by two, allowing the two return address bytes to be stacked.
Stacks the return address; SP points to the high byte of the return address.
Decrements SP by one, allowing the current PPAGE value to be stacked.
Stacks the value in PPAGE.

Writes a new page value supplied by the instruction to PPAGE.

Transfers control to the subroutine.

In indexed-indirect modes, the subroutine address and PPAGE value are fetched in the
order M high byte, M low byte, and new PPAGE value.

Expanded-memory subroutines must be terminated by an RTC instruction, which restores
the return address and PPAGE value from the stack.

S X H I N Z V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
CALL opri6a, page EXT 4A hhll pg gnSsPPP
CALL oprx0_xysppc, page IDX 4B xb pg gnSsPPP
CALL oprx9,xysppc, page IDX1 4B xb ff pg gnSsPPP
CALL oprx16,xysppc, page IDX2 4B xb ee ff pg fgnSsPPP
CALL [D,xysppc] [D,IDX] 4B xb flignSsPPP
CALL [0prx16,xysppc] [IDX2] 14B xb ee ff flignSsPPP

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

CBA Compare B 10 A CBA

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

(A) - (B)

Compares the value in A with the value in B. Condition code bits affected by the
comparison can be used for conditional branches. The values in A and B do not change.

S X H I N zZ V C
-[-]-[-Talalala]

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 « B7 « R7 | A7 » B7 « R7; set if the operation produces a two's complement overflow; cleared otherwise
C: A7+ B7 | B7 « R7 | R7 | A7, set if there is a borrow from the MSB of the result; cleared otherwise

Address Machine
Source Form Mode Code (Hex) CPU Cycles
CBA INH 18 17 00

337

Core User Guide — S12CPU15UG V1.2

C L C (same a;:,lAesgC::C #3FE) C L C

Operation 00 C bit
Clears the C bit. CLC assembles as ANDCC #$FE.

CLC can be used to initialize the C bit prior to a shift or rotate instruction affecting the C bit.

CCR
Effects S X H I N Z V C
HEEEEREERE
C: Cleared
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
CLC IMM 10 FE P
338

@ MOTOROLA

CLI

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Clear | (: LI
(same as ANDCC #$EF)

00 I bit
Clears the | bit. CLI assembles as ANDCC #$EF.

Clearing the | bit enables interrupts. There is a one-cycle bus clock delay in the clearing
mechanism. If interrupts were previously disabled, the next instruction after a CLI is
always executed, even if there was an interrupt pending prior to execution of the CLI
instruction.

S X H I N zZ V C
-[-T-fefl-[-[-T-]
I: Cleared
Source Form A(lil/ldorg(sas Cg/l(;iec?li—Tgx) CPU Cycles
CLI IMM 10 EF P

339

Core User Guide — S12CPU15UG V1.2

CLR

CLR

Clear M
Operation $000 M
Clears all bits in M.
CCR
Effects S X H I N Z V C
[-l-[-]-Jof1]ofo]
N: Cleared
Z: Set
V: Cleared
C: Cleared
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
CLR opri6a EXT 79 hh i PwO
CLR oprx0_xysppc IDX 69 xb Pw
CLR oprx9,xysppc IDX1 69 xb ff PwO
CLR oprx16,xysppc IDX2 69 xb ee ff PwP
CLR [D,xysppc] [D,IDX] 69 xb Plfw
CLR [oprx16,xysppc] [IDX2] 69 xb ee ff PIPwW
340

@ MOTOROLA

CLRA

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

$000 A

Clears all bits in A.

S X H I N Z

Clear A

v C

- l-l-[-Jofz]fofo]

N: Cleared
Z. Set

V: Cleared
C: Cleared

Core User Guide — S12CPU15UG V1.2

CLRA

Address Machine
Source Form Mode Code (Hex) CPU Cycles
CLRA INH 87 (@]

341

Core User Guide — S12CPU15UG V1.2

CLRB

CLRB

Clear B

Operation $000 B

Clears all bits in B.
CCR
Effects S X H I N Z V C

- -f-l-Tofs]o]o]

N: Cleared

Z: Set

V: Cleared

C: Cleared
Code and
CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)

CLRB INH C7 (@]
342

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

CLV

‘ LV Clear V
(same as ANDCC #$FD)

Operation 00 V bit
Clears the V bit. CLV assembles as ANDCC #$FD.

CCR
Effects S X H I N Z V C

-l-f-1-]-T-Te[-]

V: Cleared
Code and
CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)

CLv IMM 10 FD

@ MOTOROLA

343

Core User Guide — S12CPU15UG V1.2

CMPA Compare A CMPA

Operation (A) — (M)
or
(A) —imm

Compares the value in A to either the value in M or an immediate value. CCR bits reflect
the result. The values in A and M do not change.

CCR
Effects S X H I N Z V C
[-[-[-[-Tafafa]a]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: A7 « M7 « R7 | A7 » M7 « R7; set if the operation produces a two’s complement overflow; cleared
otherwise
C: A7 « M7 | M7 « R7 | R7 » A7; set if there is a borrow from the MSB of the result; cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
M Hex
Cycles ode Code (Hex)
CMPA #0pr8i IMM 8lLii P
CMPA opr8a DIR 91 dd rPf
CMPA oprl6a EXT B1 hhll rPO
CMPA oprx0_xysppc IDX Al xb rPf
CMPA oprx9,xysppc IDX1 Al xb ff rPO
CMPA 0prx16,xysppc IDX2 Al xb ee ff frPP
CMPA [D,xysppc] [DIDX] A1 xb fifrPf
CMPA [0prx16,xysppc] [IDX2] Al xb ee ff fIPrPf

344 @ MOTOROLA

CMPB

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

CMPB

Compare B
(B)-(M)
or
(B) —imm

Compares the value in B to either the value in M or an immediate value. CCR bits reflect
the result. The values in B and M do not change.

S X H I N zZ V C
-[-]-[-Talalala]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise

V: B7 « M7 « R7 | B7 » M7 « R7; set if the operation produces a two’'s complement overflow; cleared
otherwise

C: B7 » M7 | M7 « R7 | R7 « B7; set if there is a borrow from the MSB of the result; cleared otherwise

Source Form A(lil/ldorg(sas Cg/l(;iec?ll—Tgx) CPU Cycles
CMPB #opr8i IMM Clii P
CMPB opr8a DIR D1 dd rPf
CMPB oprié6a EXT F1hhll rPO
CMPB oprx0_xysppc IDX El xb rPf
CMPB oprx9,xysppc IDX1 E1 xb ff rPO
CMPB 0prx16,xysppc IDX2 E1 xb ee ff frPP
CMPB [D,xysppc] [DIDX] |E1 xb fifrPf
CMPB [oprx16,xysppc] [IDX2] E1 xb ee ff fIPrPf

345

Core User Guide — S12CPU15UG V1.2

COM Complment COM

Operation (M) = $FF — (M) M

Replaces the value in M with its one’s complement. Immediately after a COM operation
on unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can be expected to
perform consistently. After operation on two’s complement values, all signed branches are

available.
CCR
Effects S X H I N Z V C
-l -fefafofr]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared
C: Set for M6800 compatibility
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
COM opri6a EXT 71 hhll rPwO
COM 0prx0_xysppc IDX 61 xb rPw
COM oprx9,xysppc IDX1 61 xb ff rPwO
COM oprx16,xysppc IDX2 61 xb ee ff frPwP
COM [D,xysppc] [D,IDX] 61 xb flfrPw
COM [oprx16,xysppc] [IDX2] 61 xb ee ff fIPrPw

346 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

COMA Complrnent A COMA

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

(A) = $FF - (A)O A

Replaces the value in A with its one’s complement. Immediately after a COM operation on
unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can be expected to
perform consistently. After operation on two’s complement values, all signed branches are
available.

S X H I N Z V C
-[-1-[-[afalo]u]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise

V: Cleared

C: Set for M6800 compatibility

Address Machine
Source Form Mode Code (Hex) CPU Cycles
COMA INH 41 (@]

347

Core User Guide — S12CPU15UG V1.2

COMNMB Complement B

Operation

CCR
Effects

Code and
CPU
Cycles

348

(B) =$FF-(B)J B

COMB

Replaces the value in B with its one’s complement. Each bit of B is complemented.

Immediately after a COM operation on unsigned values, only the BEQ, BNE, LBEQ, and

LBNE branches can be expected to perform consistently. After operation on two’s

complement values, all signed branches are available.

S X H I N Z V C
-[-1-[-[afalo]u]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise

V: Cleared

C: Set for M6800 compatibility

Address Machine
Source Form Mode Code (Hex) CPU Cycles
COMB INH 51 (@]

@ MOTOROLA

CPD

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

CPD

Compare D

(A):(B) — (M):(M + 1)
or
(A:B) —imm

Compares the value in D to either the value in M:M + 1 or an immediate value. CCR bits
reflect the result. The values in D and M:M + 1 do not change.

S X H I N Z V C
-[-1-[-[afala]a]

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15« M15« R15| D15« M15 « R15; set if the operation produces a two’'s complement overflow; cleared
otherwise

C: D15+ M15 | M15 « R15 | R15 « D15; set if the absolute value of (M:M + 1) is larger than the absolute value
of (D); cleared otherwise

Source Form Aﬁ/ldorgzs C'(\)/l(?g(ng) CPU Cycles
CPD #opri6i IMM 8C jj kk PO
CPD opr8a DIR 9C dd RPf
CPD opri6a EXT BC hh I RPO
CPD oprx0_xysppc IDX AC xb RPf
CPD oprx9,xysppc IDX1 AC xb ff RPO
CPD oprx16,xysppc IDX2 AC xb ee ff fRPP
CPD [D,xysppc] [DIDX] |AC xb fIfRPf
CPD [oprx16,xysppc] [IDX2] AC xb ee ff fIPRPf

349

Core User Guide — S12CPU15UG V1.2

CPS

Operation

CCR
Effects

Code and
CPU
Cycles

350

Compare SP

CPS

(SP) — (M):(M + 1)
or
(SP) —imm

Compares the value in SP to either the value in M:M + 1 or an immediate value. CCR bits
reflect the result. The values in SP and M:M + 1 do not change.

S X H I N Z V C
-[-1-[-[afala]a]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise

V: SP15+ M15 « R15 | SP15 « M15 « R15; set if the operation produces a two’s complement overflow;
cleared otherwise

C: SP15+« M15 | M15 « R15 | R15 « SP15; set if the absolute value of (M:M + 1) is larger than the absolute
value of (SP); cleared otherwise

Source Form Aﬁ/ldorgzs CI(\)Ac?eCk(]II—Teex) CPU Cycles
CPS #0pr16i IMM 8F jj kk PO
CPS opr8a DIR 9F dd RPf
CPS opri6a EXT BF hh i RPO
CPS oprx0_xysppc IDX AF xb RPf
CPS oprx9,xysppc IDX1 AF xb ff RPO
CPS oprx16,xysppc IDX2 AF xb ee ff fRPP
CPS [D,xysppc] [D,IDX] | AF xb fIfRPf
CPS [oprx16,xysppc] [IDX2] AFE xb ee ff fIPRPf

@ MOTOROLA

CPX

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

CPX

Compare X

(X) — (M):(M + 1)
or
(X) —imm

Compares the value in X to either the value in M:M + 1 or an immediate value. CCR bits
reflect the result. The values in X and M:M + 1 do not change.

S X H I N Z V C
-[-1-[-[afala]a]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise

V: X15+ M15 « R15 | X15 « M15 « R15; set if the operation produces a two’s complement overflow; cleared
otherwise

C: X15+« M15 | M15 « R15 | R15 « X15; set if the absolute value of (M:M + 1) is larger than the absolute value
of (X); cleared otherwise

Source Form Aﬁ/ldorgzs CI(\)Ac?eCk(]II—Teex) CPU Cycles
CPX #opr16i IMM 8E jj kk PO
CPX opr8a DIR 9E dd RPf
CPX oprl6a EXT BE hh i RPO
CPX oprx0_xysppc IDX AE xb RPf
CPX oprx9,xysppc IDX1 AE xb ff RPO
CPX oprx16,xysppc IDX2 AE xb ee ff fRPP
CPX [D,xysppc] [D,IDX] |AE xb fIfRPf
CPX [oprx16,xysppc] [IDX2] AE xb ee ff fIPRPf

351

Core User Guide — S12CPU15UG V1.2

CPY

Operation

CCR
Effects

Code and
CPU
Cycles

352

Compare Y

CPY

(Y) - (M):(M + 1)
or
(Y) —imm

Compares the value in Y to either the value in M:M + 1 or an immediate value. CCR bits
reflect the result. The values in Y and M:M + 1 do not change.

S X H I N Z V C
-[-1-[-[afala]a]

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: Y15+ M15+ R15 | Y15 « M15 « R15; set if the operation produces a two’'s complement overflow; cleared
otherwise

C: Y15+ M15|M15« R15 | R15 « Y15; set if the absolute value of (M:M + 1) is larger than the absolute value
of (Y); cleared otherwise

Source Form Aﬁ/ldorgzs CI(\)Ac?eCk(]II—Teex) CPU Cycles
CPY #opr16i IMM 8D jj kk PO
CPY oprsa DIR 9D dd RPf
CPY opri6a EXT BD hh I RPO
CPY oprx0_xysppc IDX AD xb RPf
CPY oprx9,xysppc IDX1 AD xb ff RPO
CPY oprx16,xysppc IDX2 AD xb ee ff fRPP
CPY [D,xysppc] [D,IDX] |AD xb fIfRPf
CPY [oprx16,xysppc] [IDX2] AD xb ee ff fIPRPf

@ MOTOROLA

DAA

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User

Decimal Adjust A for BCD

Guide — S12CPU15UG V1.2

DAA

DAA adjusts the value in A and the state of the C bit to represent the correct
binary-coded-decimal (BCD) sum and the associated carry when a BCD calculation is
performed. To execute DAA, the value in A, the state of the C bit, and the state of the H bit
must all be the result of performing an ABA, ADD, or ADC on BCD operands, with or

without an initial carry.

The table below shows DAA operation for all legal combinations of input operands. The
first four columns represent the results of ABA, ADC, or ADD operations on BCD
operands. The correction factor in the fifth column is added to the accumulator to restore
the result of an operation on two BCD operands to a valid BCD value and to set or clear the
C bit. All values are in hexadecimal.

C Value |A[7:6:5:4] Value H Value A[3:2:1:0] Value Coprrection Corrected C bit
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
0 A-F 0 0-9 60 1
0 9-F 0 A-F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
S X H | N Z Vv C
- l-l-afaf-]a
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
C: Represents BCD carry
Address Machine
Source Form Mode Code (Hex) CPU Cycles
DAA INH 18 07 OfO

353

Core User Guide — S12CPU15UG V1.2

D B EQ Decrement and Branch if Equal to Zero D B EQ

Operation

CCR
Effects

Code and
CPU
Cycles

354

(counter) — 10 counter
If (counter) =0, then (PC) + $0003 + fel PC

Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative
destination if the counter register reaches zero. Rel is a 9-bit two’s complement offset for
branching forward or backward in memory. Branching range is $100 to $0FF (—256 to
+255) from the address following the last byte of object code in the instruction.

S X H I N Z V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
REL 04 1brr PPP (branch)
DBEQ abdxysp, rel9 (9-bit) PPO (no branch)
Loop Primitive Postbyte (Ib) Coding
Source 1 Object Counter
Form Postbyte Code Register Offset
DBEQ A, rel9 0000 X000 04 00 rr A
DBEQ B, rel9 0000 X001 0401 rr B
DBEQ D, rel9 0000 X100 04 04 rr D Positive
DBEQ X, rel9 0000 X101 04 05 rr X
DBEQYY, rel9 0000 X110 04 06 rr Y
DBEQ SP, rel9 0000 X111 04 07 rr SP
DBEQ A, rel9 0001 X000 04 10 rr A
DBEQ B, rel9 0001 X001 0411rr B
DBEQ D, rel9 0001 X100 04 14 rr D Negative
DBEQ X, rel9 0001 X101 04 15 rr X 9
DBEQYY, rel9 0001 X110 04 16 rr Y
DBEQ SP, rel9 0001 X111 04 17 rr SP
NOTES:

1. Bits 7:6:5 select DBEQ or DBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select
the counter register.

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

D B N E Decrement and Branch if Not Equal to Zero D B N E

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

(counter) — 10 counter
If (counter) not = 0, then (PC) + $0003 + relPC

Subtracts one from the counter register A, B, D, X, Y, or SP. Branches to a relative
destination if the counter register does not reach zero. Rel is a 9-bit two’s complement
offset for branching forward or backward in memory. Branching range is $100 to $0FF
(—256 to +255) from the address following the last byte of object code in the instruction.

S X H I N Z V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
REL 04 1brr PPP (branch)
DBNE abdxysp, rel9 (9-bit) PPO (no branch)
Loop Primitive Postbyte (Ib) Coding
Source 1 Object Counter
Form Postbyte Code Register Offset
DBNE A, rel9 0010 X000 0420 rr A
DBNE B, rel9 0010 X001 0421 rr B
DBNE D, rel9 0010 X100 04 24 rr D Positive
DBNE X, rel9 0010 X101 04 25 rr X
DBNE Y, rel9 0010 X110 04 26 1t Y
DBNE SP, rel9 0010 X111 04 27 1t sSP
DBNE A, rel9 0011 X000 04 30 rr A
DBNE B, rel9 0011 X001 04 31rr B
DBNE D, rel9 0011 X100 04 34 rr D Negative
DBNE X, rel9 0011 X101 04 35 It X 9
DBNE Y, rel9 0011 X110 04 36 It Y
DBNE SP, rel9 0011 X111 04 37 1t SpP
NOTES:

1. Bits 7:6:5 select DBEQ or DBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select
the counter register.

355

Core User Guide — S12CPU15UG V1.2

DEC Decrement DEC

Operation (M) —$010 M

Subtracts one from the value in M. The N, Z, and V bits are set or cleared by the operation.
The C bitis not affected by the operation, allowing the DEC instruction to be used as a loop
counter in multiple-precision computations.

CCR
Effects S X H I N Z VvV C
[-[-[-[-Jafalaf-]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Set if operation produces a two’s complement overflow (if and only if (M) was $80 before the operation);
cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
DEC oprl6a EXT 73 hhli rPwO
DEC oprx0_xysppc IDX 63 xb rPw
DEC oprx9,xysppc IDX1 63 xb ff rPwO
DEC oprx16,xysppc IDX2 63 xb ee ff frPwP
DEC [D,xysppc] [D,IDX] 63 xb flfrPw
DEC [oprx16,xysppc] [IDX2] 63 xb ee ff fIPrPw
356

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

DECA Decrement DECA

Operation (A)—$010 A

Subtracts one from the value in A. The N, Z, and V bits are set or cleared by the operation.
The C bitis not affected by the operation, allowing the DEC instruction to be used as a loop
counter in multiple-precision computations.

CCR
Effects S X H I N Z V C
-l -l-1-1a]s]a]-]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Set if operation produces a two’s complement overflow (if and only if (A) was $80 before the operation);
cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
Mode Code (He
Cycles (Hex)
DECA INH 43 (@]

@ MOTOROLA 357

Core User Guide — S12CPU15UG V1.2

DECB Decrements DECB

Operation (B) —$010 B

Subtracts one from the value in B. The N, Z, and V bits are set or cleared by the operation.
The C bitis not affected by the operation, allowing the DEC instruction to be used as a loop
counter in multiple-precision computations.

CCR
Effects S X H I N zZ VvV C
[-l-[-[-Tajafa]-|
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Set if operation produces a two’s complement overflow (if and only if (B) was $80 before the operation);
cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
M Hex
Cycles ode Code (Hex)
DECB INH 53 0]
358

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

DES ot DES
(same as LEAS -1,SP)
Operation (SP) — $00011 SP

Subtracts one from SP. DES assembles as LEAS —1,SP. DES does not affect condition code
bits as DEX and DEY do.

CCR
Effects S X H | N Z V C
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
DES IDX 1B 9F Pf

@ MOTOROLA 359

Core User Guide — S12CPU15UG V1.2

DEX pecrement X DEX

Operation (X)) —$00010 X

Subtracts one from X. The Z bit reflects the result. The LEAX —1,X instruction does the
same thing as DEX, but without affecting the Z bit.

CCR
Effects S X H I N Z V C

-l -]-]-]al-]-]

Z: Set if result is $0000; cleared otherwise
Code and
CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)

DEX INH 09 (@]

360 @ MOTOROLA

Core User Guide — S12CPU15UG V1.2

DEY ecrement ¥ DEY

Operation (Y) —$00010 Y

Subtracts one from Y. The Z bit reflects the result. The LEAY —1,Y instruction does the
same thing as DEY, but without affecting the Z bit.

CCR
Effects S X H I N Z V C

-l -]-]-]al-]-]

Z: Set if result is $0000; cleared otherwise
Code and
CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)

DEY INH 03 (@]

@ MOTOROLA 361

Core User Guide — S12CPU15UG V1.2

E D IV Extended Divide, Unsigned E D IV

Operation (Y):(D) = (X) O Y; remainderd D

Divides a 32-bit unsigned dividend by a 16-bit divisor, producing a 16-bit unsigned
guotient and an unsigned 16-bit remainder. All operands and results are located in CPU
registers. Division by zero has no effect, except that the states of the N, Z, and V bits are

undefined.
CCR
Effects S X H I N Z V C
[-l-l-1-lafafa]a]
N: Set if MSB of result is set; cleared otherwise; undefined after overflow or division by 0
Z: Set if result is $0000; cleared otherwise; undefined after overflow or division by 0
V: Set if the result is greater than $FFFF; cleared otherwise; undefined after division by 0
C: Set if divisor is $0000; cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
EDIV INH 11 ffffffffO
362

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

E D IVS Extended Divide, Signed E D IVS

Operation (Y):(D) = (X) O Y; remainderd D

Divides a signed 32-bit dividend by a 16-bit signed divisor, producing a signed 16-bit
guotient and a signed 16-bit remainder. All operands and results are located in CPU
registers. Division by zero has no effect, except that the C bit is set and the states of the N,
Z, and V bits are undefined.

CCR
Effects S X H I N Z V C
[-l-l-1-lafafa]a]
N: Set if MSB of result is set; cleared otherwise; undefined after overflow or division by 0
Z: Set if result is $0000; cleared otherwise; undefined after overflow or division by 0
V: Set if the result is greater than $7FFF or less than $8000; cleared otherwise; undefined after division by 0
C: Set if divisor is $0000; cleared otherwise; indicates division by 0
Code and
CPU Address Machine
Source Form CPU Cycles
Mode Code (Hex
Cycles (Hex)
EDIVS INH 18 14 OffffffffffO

@ MOTOROLA 363

Core User Guide — S12CPU15UG V1.2

E I\/I AC S Extended Multiply and Accumulate, E M AC S
Signed

Operation (Mx):(Mx + 1) X (My):(My +)+ (M):M+1):M+2):M+3)0 M+ 1 M+2:M+3

Multiplies two 16-bit values. Adds the 32-bit product to the value in a 32-bit accumulator

in memory. EMACS is a signed integer operation. All operands and results are located in
memory. X must point to the high byte of the first source operand, and Y must point to the
high byte of the second source operand. An extended address supplied with the instruction
must point to the most significant byte of the 32-bit result.

CCR
Effects S X H | N Z V C
[-[-[-]-Jafa]afa]
N: Set if MSB of result, R31, is set; cleared otherwise
Z: Set if result is $00000000; cleared otherwise
V: M31 ¢ [31 + R31 | M31 « 131 » R31; set if result is greater than $7FFFFFFF (+ overflow) or less than
$80000000 (- underflow); indicates two’s complement overflow
C: M15+ 115|115 « R15 | R15 « M15; set if there is a carry from bit 15 of the result, R15; cleared otherwise;
indicates a carry from low word to high word of the result
Code and
CPU Source Form Af\j/ldorgzs c'(\)ﬂ(?ec?ﬂfx) CPU Cycles
Cycles
EMACS opri6at Special 18 12 hh ll ORROfffRRIWWP
NOTES:
1. oprl6ais an extended address specification. Both X and Y point to source operands.
364

@ MOTOROLA

EMAXD

MAX [(D), (M):(M + 1)] O D

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Extended Maximum in D

EMAXD

Subtracts an unsigned 16-bit value in M:M + 1 from an unsigned 16-bit value in D to

determine which is larger. Puts the larger value in D. If the values are equal, the Z bit is set.
If the value in M:M + 1 is larger, the C bit is set when the value in M:M + 1 replaces the

value in D. If the value in D is larger, the C bit is cleared.

EMAXD accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate finding the

largest value in a list of values.

S X H 1 N

Zz V C

[--f-[-Jafafafa]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15+« M15« R15 | D15 « M15 « R15; set if the operation produces a two's complement overflow; cleared

otherwise

C: D15« M15 | M15 « R15 | R15 » D15; set if (M):(M + 1) is larger than (D); cleared otherwise
Condition code bits reflect internal subtraction: R = (D) — (M):(M + 1).

Source Form A(lilﬂdggzs Clé)/lc?ec?lljlgx) CPU Cycles
EMAXD oprx0_xysppc IDX 18 1A xb ORPf
EMAXD oprx9,xysppc IDX1 18 1A xb ff ORPO
EMAXD oprx16,xysppc IDX2 18 1A xb ee ff OfRPP
EMAXD [D,xysppc] [D,IDX] 18 1A xb OfIfRPf
EMAXD [oprx16,xysppc] [IDX2] 18 1A xb ee ff OfIPRPf

365

Core User Guide — S12CPU15UG V1.2

EMAXM scended vaimuminm EMAXM

Operation MAXI[(D), M):M+1)] 0 MM +1

Subtracts an unsigned 16-bit value in M:M + 1 from an unsigned 16-bit value in D to
determine which is larger. Puts the larger value in M:M + 1. If the values are equal, the Z
bit is set. If the value in M:M + 1 is larger, the C bit is set. If the value in D is larger, the C
bit is cleared when the value in D replaces the value in M:M + 1.

EMAXM accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate controlling
the values in a list of values.

CCR
Effects s X H I N Z V C
- l-l-]-Ja]afa]a]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15« M15« R15| D15« M15 « R15; set if the operation produces a two’'s complement overflow; cleared
otherwise
C: D15« M15 | M15 « R15 | R15 « D15; set if (M):(M + 1) is larger than (D); cleared otherwise
Condition code bits reflect internal subtraction: R = (D) — (M):(M + 1).
Code and
CPU Address Machine
Source Form CPU Cycles
Cycles Mode Code (Hex)
EMAXM oprx0_xysppc IDX 18 1E xb ORPW
EMAXM oprx9,xysppc IDX1 18 1E xb ff ORPWO
EMAXM oprx16,xysppc IDX2 18 1E xb ee ff OfRPWP
EMAXM [D,xysppc] [D,IDX] 18 1E xb OfIfRPW
EMAXM [oprx16,xysppc] [IDX2] 18 1E xb ee ff OfIPRPW
366

@ MOTOROLA

EMIND

MIN [(D), (M):(M + 1)] O D

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

Extended Minimum in D

EMIND

Subtracts an unsigned 16-bit value in M:M + 1 from an unsigned 16-bit value in D to

determine which is larger. Puts the smaller value in D. If the values are equal, the Z bit is
set. If the value in M:M + 1 is larger, the C bit is set. If the value in D is larger, the C bitis

cleared when the value in M:M + 1 replaces the value in D.

EMIND accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate finding the

smallest value in a list of values.

S X H 1 N

Zz V C

[--f-[-Jafafafa]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15+« M15« R15 | D15 « M15 « R15; set if the operation produces a two's complement overflow; cleared

otherwise

C: D15« M15 | M15 « R15 | R15 » D15; set if (M):(M + 1) is larger than (D); cleared otherwise
Condition code bits reflect internal subtraction: R = (D) — (M):(M + 1).

Source Form A(lilﬂdggzs Clé)/lc?ec?lljlgx) CPU Cycles
EMIND oprx0_xysppc IDX 18 1B xb ORPf
EMIND oprx9,xysppc IDX1 18 1B xb ff ORPO
EMIND oprx16,xysppc IDX2 18 1B xb ee ff OfRPP
EMIND [D,xysppc] [D,IDX] 18 1B xb OfIfRPf
EMIND [0prx16,xysppc] [IDX2] 18 1B xb ee ff OfIPRPf

367

Core User Guide — S12CPU15UG V1.2

EMINM Extended Minimur in M EMINM

Operation

CCR
Effects

Code and
CPU
Cycles

368

MIN [(D), (M):(M + 1)] O M:M + 1

Subtracts an unsigned 16-bit value in M:M + 1 from an unsigned 16-bit value in D to
determine which is larger. Puts the smaller value in M:M + 1. If the values are equal, the Z
bit is set. If the value in M:M + 1 is larger, the C bit is set when the value in D replaces the
value in M:M + 1. If the value in D is larger, the C bit is cleared.

EMINM accesses memory with indexed addressing modes for flexibility in specifying
operand addresses. Autoincrement and autodecrement functions can facilitate finding the
smallest value in a list of values.

S X H I N Z V C
[-1-1-[-[afa]ala]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise

V: D15+« M15« R15 | D15 « M15 « R15; set if the operation produces a two's complement overflow; cleared
otherwise

C: D15« M15 | M15 « R15 | R15 » D15; set if (M):(M + 1) is larger than (D); cleared otherwise
Condition code bits reflect internal subtraction: R = (D) — (M):(M + 1).

Source Form A(lilﬂdggzs Clé)/lc?ec?lljlgx) CPU Cycles
EMINM oprx0_xysppc IDX 18 1F xb ORPW
EMINM oprx9,xysppc IDX1 18 1F xb ff ORPWO
EMINM oprx16,xysppc IDX2 18 1F xb ee ff OfRPWP
EMINM [D,xysppc] [D,IDX] 18 1F xb OfIfRPW
EMINM [oprx16,xysppc] [IDX2] 18 1F xb ee ff OfIPRPW

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

E M U L Extended Multiply, Unsigned E M U L

Operation (D) x(Y) O Y:D

Multiplies an unsigned 16-bit value in D by an unsigned 16-bit value in Y. Puts the high
16-bits of the unsigned 32-bit result in Y and the low 16-bits of the result in D.

The C bit can be used to round the low 16 bits of the result.

CCR
Effects S X H I N Z V C

-l -l-1-lafa]-]a]

N: Set if the MSB of the result is set; cleared otherwise

Z: Set if result is $00000000; cleared otherwise

C: Set if bit 15 of the result is set; cleared otherwise
Code and
CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)

EMUL INH 13 ffoO

W) mororora 369

Core User Guide — S12CPU15UG V1.2

EMULS eceneamupy, signes EMULS

Operation (D) x(Y) O Y:D

Multiplies a signed 16-bit value in D by a signed 16-bit value in Y. Puts the high 16 bits of
the 32-bit signed result in Y and the low 16 bits of the result in D.

The C bit can be used to round the low 16 bits of the result.

CCR
Effects S X H I N Z V C
-l -l-1-lafa]-]a]
N: Set if the MSB of the result is set; cleared otherwise
Z: Set if result is $00000000; cleared otherwise
C: Set if bit 15 of the result is set; cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
M Hex
Cycles ode Code (Hex)
18 13 OfO
EMULS INH Offo 1
NOTES:
1. EMULS has an extra free cycle if it is followed by another page two instruction.
370

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

EORA Exclusive OR A EORA

Operation (A)O M)O A
or
(A) Oimm0O A

Performs a logical exclusive OR of the value in A and either the value in M or an immediate
value. Puts the result in A.

CCR

Effects S X H I N Z V C
FT-T-T-TeTeTe]-]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Code and

CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)
EORA #opr8i IMM 88 i P
EORA opr8a DIR 98 dd rPf
EORA oprl6a EXT B8 hh I rPO
EORA 0prx0_xysppc IDX A8 xb rPf
EORA oprx9,xysppc IDX1 A8 xb ff rPO
EORA oprx16,xysppc IDX2 A8 xb ee ff frPP
EORA [D,xysppc] [D,IDX] A8 xb fifrPf
EORA [0oprx16,xysppc] [IDX2] A8 xb ee ff fIPrPf

@ MOTOROLA 371

Core User Guide — S12CPU15UG V1.2

EORB Exclusive OR B ith M EORB

Operation (B)L (M)O B
or
(B)Jimm0O B

Performs a logical exclusive OR of the value in B and either the value in M or an immediate
value. Puts the result in B.

CCR

Effects S X H I N Z V C
[-l-[-]-]afalo]-]
N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Cleared

Code and

CPU Address Machine

Source Form CPU Cycles

Cycles Mode Code (Hex)
EORB #opr8i IMM C8ii P
EORB opr8a DIR D8 dd rPf
EORB opri6a EXT F8 hh I rPO
EORB oprx0_xysppc IDX E8 xb rPf
EORB oprx9,xysppc IDX1 E8 xb ff rPO
EORB oprx16,xysppc IDX2 E8 xb ee ff frPP
EORB [D,xysppc] [D,IDX] E8 xb fifrPf
EORB [oprx16,xysppc] [IDX2] ES xb ee ff fIPrPf

372

@ MOTOROLA

ETB

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

L Extended Table Lookup and Interpolate ET B L

M:M+1D)+[B)x(M+2):(M+3)—(M):(M+121)]0d0 D

Linearly interpolates and stores in D one of 256 values between a pair of data entries, Y1
and Y2, in a lookup table. Data entries represent y coordinates of line segment endpoints.
Table entries and the interpolated results are 16-bit values.

Y2 Before executing ETBL, point an indexing register at the Y1 value
closest to but less than or equal to the Y value to interpolate. Point to
Y1 using any indexed addressing mode except indirect, 9-bit offset,

YL and 16-bit offset. The next table entry after Y1 is Y2. Load B with a
binary fraction (radix point to the left of the MSB) representing the
Y1 HP.
MY v, ratio:
(XL — X1) = (X2 — X1)
where

Xl=Yland X2=Y2
XL is the x coordinate of the value to interpolate

The 16-bit unrounded result, YL, is calculated using the expression:
YL=Y1+[(B) x(Y2-Y1)]

where

Y1 = 16-bit data entry pointed to by effective address

Y2 = 16-bit data entry pointed to by the effective address plus two

The 24-bit intermediate value (B)(Y2 — Y1) has a radix point between bits 7 and 8.

S X H I N Z V C
[-1-1-[-[afa]-]a]

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
C: Set if result can be rounded up; cleared otherwise

Address Machine
Source Form Mode Code (Hex) CPU Cycles
ETBL oprx0_xysppc IDX 18 3F xb ORR(fffffP

373

Core User Guide — S12CPU15UG V1.2

EX G Exchange Register Contents EXG

Operation

CCR
Effects

Code and
CPU
Cycles

374

(rl) = (r2) when rl and r2 are the same size
$00:(r1)0 (r2) when rl is 8 bits and r2 is 16 bits
(rl) < (r2) whenrlis 16 bits and r2 is 8 bits

See the table on the next page.

Exchanges the values between a source register A, B, CCR, D, X, Y, or SP and a destination
register A, B, CCR, D, X, Y, or SP. Exchanges involving TMP2 and TMP3 are reserved for
Motorola use.

S X H I N Z V C
-l-l-1=T-T-1-1-]
or

S X H I N Z V
[a]ofafafafajalal

CCR bits affected only when the CCR is the destination register. The X bit cannot change from 0 to 1.
Software can leave the X bit set, leave it cleared, or change it from 1 to 0, but X can only be set by a reset or
by recognition of an XIRQ interrupt.

Address Machine
Source Form Mode Code (Hex) CPU Cycles
EXG abcdxysp,abcdxysp INH B7 eb P

@ MOTOROLA

EXG

Core User Guide — S12CPU15UG V1.2

Exchange Register Contents
(continued)

EXG

Exchange Postbyte (eb) Coding

Source Object Source Object

Form Postbyte Code Exchange Form Postbyte Code Exchange
EXG AA 1000 X000 [B780 [A=A EXG B,A 1100 X000 |B7 CO |BOA, ADB
EXG A,B 1000 X001 |B781 |A=B EXG B,B 1100 X001 |[B7 C1 |BOB, $FFOA
EXG A,CCR 1000 X010 |B782 |A=CCR EXG B,CCR (1100 X010 |B7C2 |BO CCR, $FF:CCROD
EXG A, TMP2 1000 X011 [B783 |$00:A0TMP2, TMP2 0 A EXG D,TMP2 |1100 X011 |B7C3 |D=TMP2
EXG A,D 1000 X100 |B7 84 [$00:A0D EXG D,D 1100 X100 [B7C4 |[D<D
EXG A, X 1000 X101 [B785 [$00:AD X, X OA EXG D,X 1100 X101 [B7C5 |DeX
EXG A,Y 1000 X110 [B786 [$00:A0Y, Y, OA EXG D,Y 1100 X110 |[B7C6 |D=Y
EXG A,SP 1000 X111 (B7 87 |$00:A0 SP, SP,0 A EXG D,SP 1100 X111 |B7C7 |[D-SP
EXG B,A 1001 X000 [B790 |[B=A EXG X,A 1101 X000 [B7 DO |XLOA, $00:A0 X
EXG B,B 1001 X001 |[B791 |B<B EXG X,B 1101 X001 |B7 D1 |X, OB, $FF:BO X
EXG B,CCR 1001 X010 |B792 |[B=CCR EXG X,CCR [1101 X010 [B7 D2 |X, O CCR, $FF:CCRO X
EXG B, TMP2 1001 X011 |B7 93 |$00:BUTMP2, TMP2, 1B EXG X, TMP2 [1101 X011 |B7D3 |x . TMP2
EXG B,D 1001 X100 (B7 94 |$00:BOD EXG X,D 1101 X100 |[B7D4 |x.p
EXG B,X 1001 X101 [B795 |$00:BOX, X, UB EXG X,X 1101 X101 [B7D5 |[x.x
EXG B,Y 1001 X110 [B796 |$00:BOY, Y, OB EXG X,Y 1101 X110 [B7D6 |x .Yy
EXG B,SP 1001 X111 |B7 97 |$00:B0 SP, SP,0 B EXG X,SP 1101 X111 [B7D7 |x.sp
EXG CCR,A 1010 X000 |B7 A0 |CCR=A EXG Y,A 1110 X000 |B7E0 |YLOA $00:AOY
EXG CCR,B 1010 X001 [B7 A1 |CCR=B EXG Y,B 1110 X001 |B7E1 |Y, OB, $FF:BOY
EXG CCR,CCR [1010 X010 |[B7 A2 |CCR=CCR EXG Y,CCR [1110 X010 |[B7E2 |Y, 0 CCR, $FF:CCRO Y
EXG CCR,TMP2 [1010 X011 |B7 A3 |$00:CCRUTMP2, TMP2 0 CCR |EXG v, TMP2 [1110 X011 [B7E3 |y . TMP2
EXG CCR,D 1010 X100 |B7 A4 |$00:CCROD EXG Y,D 1110 X100 |[B7E4 |y.pD
EXG CCR,X 1010 X101 [B7 A5 |$00:CCRO X, X, 0 CCR EXG Y,X 1110 X101 [B7E5 |y.X
EXG CCR,Y 1010 X110 [B7 A6 |$00:CCROY, Y, O CCR EXG Y,Y 1110 X110 [B7E6 |y.v
EXG CCR,SP 1010 X111 [B7 A7 |$00:CCRO SP, SP, 0 CCR EXG Y,SP 1110 X111 |B7E7 |y.sp
EXG TMP3,A 1011 X000 (B7BO |TMP3_ 0 A, $00:A0 TMP3 EXG SPA 1111 X000 |B7 FO |SPLO A, $00:A0 SP
EXG TMP3,B 1011 X001 |B7B1 |TMP3,0 B, $FF:BO TMP3 EXG SPB 1111 X001 |B7F1 |SP.O B, $FF:BO SP
EXG TMP3,CCR |1011 X010 |B7 B2 |TMP3,0 CCR, $FF:CCRO TMP3 |[EXG SPCCR (1111 X010 |B7F2 |SP, 0 CCR, $FF:CCR0O SP
EXG TMP3,TMP2 (1011 X011 [B7B3 [TMP3 - TMP2 EXG SPTMP2(1111 X011 [B7F3 |gp. TMP2
EXG TMP3,D 1011 X100 [B7B4 |TMP3-D EXG SPD 1111 X100 [B7F4 |sp.D
EXG TMP3,X 1011 X101 [B7B5 |TMP3< X EXG SPX 1111 X101 [B7F5 |[gp. X
EXG TMP3,Y 1011 X110 [B7B6 |[TMP3 <Y EXG SPY 1111 X110 [B7F6 |[gp.y
EXG TMP3,SP |1011 X111 |B7B7 |TMp3.SP EXG SPSP [1111 X111 [B7F7 |gp.gp

@ MOTOROLA

375

Core User Guide — S12CPU15UG V1.2

F D I V Fractional Divide F D I V

Operation (D) = (X) O X, remainder]d D

Divides an unsigned 16-bit numerator in D by an unsigned 16-bit denominator in X. Puts
the unsigned 16-bit quotient in X and the unsigned 16-bit remainder in D. If both the
numerator and the denominator are assumed to have radix points in the same positions, the
radix point of the quotient is to the left of bit 15. The numerator must be less than the
denominator. In the case of overflow (denominator is less than or equal to the numerator)
or division by 0, the quotient is set to $FFFF and the remainder is indeterminate.

FDIV is equivalent to multiplying the numerator b’;ﬁand then performing 32 x 16-bit
integer division. The result is interpreted as a binary-weighted fraction, which resulted
from the division of a 16-bit integer by a larger 16-bit integer. A result of $0001
corresponds to 0.000015, and $FFFF corresponds to 0.9998. The remainder of an IDIV
instruction can be resolved into a binary-weighted fraction by an FDIV instruction. The
remainder of an FDIV instruction can be resolved into the next 16 bits of binary-weighted
fraction by another FDIV instruction.

CCR
Effects S X H | N Z VvV C
-l-l-1-1-]a]a]a]
Z: Set if quotient is $0000; cleared otherwise
V: Set if the denominator X is less than or equal to the numerator D; cleared otherwise
C: X15 ¢ X14 ¢ X13+ X12+ ... X3¢ X2 « X1 * X0O; set if denominator is $0000; cleared otherwise
Code and
CPU Address Machine
Source Form CPU Cycles
Mode Code (He
Cycles (Hex)
FDIV INH 1811 OffffffffffO
376

@ MOTOROLA

Core User Guide — S12CPU15UG V1.2

I B E Q Increment and Branch if Equal to Zero I B EQ

Operation

CCR
Effects

Code and
CPU
Cycles

@ MOTOROLA

(counter) + 11 counter
If (counter) =0, then (PC) + $0003 + fel PC

Adds one to the counter register A, B, D, X, Y, or SP. Branches to a relative destination if
the counter register reaches zero. Rel is a 9-bit two’s complement offset for branching
forward or backward in memory. Branching range is $100 to $0FF (—256 to +255) from the
address following the last byte of object code in the instruction.

S X H | N Z V C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
04 1brr PPP (branch)
IBEQ abdxysp, rel9 REL PPO (no branch)

Loop Primitive Postbyte (Ib) Coding
Source 1 Object Counter
Form Postbyte Code Register Offset
IBEQ A, rel9 1000 X000 04 80 rr A
IBEQ B, rel9 1000 X001 04 81 rr B
IBEQ D, rel9 1000 X100 04 84 rr D Positive
IBEQ X, rel9 1000 X101 04 85 rr X
IBEQ Y, rel9 1000 X110 04 86 It Y
IBEQ SP, rel9 1000 X111 04 87 rr SP
IBEQ A, rel9 1001 X000 04 90 rr A
IBEQ B, rel9 1001 X001 0491 1r B
IBEQ D, rel9 1001 X100 04 94 rr D Neative
IBEQ X, rel9 1001 X101 04 95 rr X 9
IBEQ Y, rel9 1001 X110 04 96 It Y
IBEQ SP, rel9 1001 X111 04 97 rr SP
NOTES:

1. Bits 7:6:5 select IBEQ or IBNE; bit 4 is the offset sign bit: bit 3 is not used; bits 2:1:0 select the

counter register.

377

Core User Guide — S12CPU15UG V1.2

IBNE

(counter) + 11 counter

Operation

CCR
Effects

Code and
CPU
Cycles

378

Increment and Branch if Not Equal to Zero

If (counter)z 0, then (PC) + $0003 + rel PC

Adds one to the counter register A, B, D, X, Y, or SP. Branches to a relative destination if

IBNE

the counter register does not reach zero.Rel is a 9-bit two’s complement offset for

branching forward or backward in memory. Branching range is $100 to $0FF (—256 to

+255) from the address following the last byte of object code in the instruction.

S X H 1 N v C
Address Machine
Source Form Mode Code (Hex) CPU Cycles
04 1brr PPP (branch)
IBNE abdxysp, rel9 REL PPO (no branch)

Loop Primitive Postbyte (Ib) Coding
Source 1 Object Counter
Form Postbyte Code Register Offset
IBNE A, rel9 1010 X000 04 AO 17 A
IBNE B, rel9 1010 X001 04 Al rr B
IBNE D, rel9 1010 X100 04 Adrr D Positive
IBNE X, rel9 1010 X101 04 A5 rr X
IBNE Y, rel9 1010 X110 04 A6 It \4
IBNE SP, rel9 1010 X11