

Experiment #1

Part A

Date Performed: Nov 25, 1999

Purpose: Gain an understanding of the peripheral addressing on the CME11E9-EVBU

development board for use in a PAL22V10 .PLD file for programming an address
decoder chip.

Procedure: Enter the following program, compile and load to the CME11E9-EVBU development

board and then run the program. Hook the channel A of the scope to 0CS and the other

lead to each of the following in turn A3, A2, A1, A0 and WR (Trigger off of channel A)
and record each waveform.

TOP: STAA $B58F
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 JMP TOP

Results: The following waveforms were obtained:

 Data in file: addr-fluke-1.xls

Conclusions: For the write to address $B58F us the logic equation

3&2&1&0&)0(&)(AAAACSNOTWRNOTAdr =

A3

A2

A1

A0

CS0

RW

Experiment #1
Part B

Date Performed: Nov 25, 1999

Purpose: Gain an understanding of the peripheral addressing on the CME11E9-EVBU

development board.

Procedure: Enter the following program, compile and load to the CME11E9-EVBU development

board and then run the program. Hook the channel A of the scope to 0CS and the other

lead to each of the following in turn A3, A2, A1, A0 and WR (Trigger off of channel A)
and record each waveform.

TOP: LDAA $B58F
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 NOP
 JMP TOP

Results: Using an oscilloscope , the following waveforms were obtained:

Data in file: addr-fluke-1.xls
*note: RW was always HIGH

Conclusions: To read from address $B58F us the logic equation

3&2&1&0&)0(& AAAACSNOTWRAdr =

A3

A2

A1

A0

CS0

RW

Experiment #2

Date Performed: Nov 26, 1999

Purpose: Gain an understanding of the Peripheral addressing on the CME11E9-EVBU

development board.

Procedure: Enter the following program, compile and load to the CME11E9-EVBU development

board and then run the program.

TOP: LDAA $B58F
 STAA $2420
 JMP TOP

While the program is running record the following: A0..A15, 0CS , WR , AS, P, E

using 0CS to trigger.

Results: Using an oscilloscope , the following waveforms were obtained:

Data in file: addr-fluke-2.xls

Conclusions: As show with the vertical line in the graph above, A0..A15 contain the address $B58F

during the LDAA $B58F instruction, R/!W is High, P is LOW and E is High. This
produces a LOW on CS0.

Addressing for lines A15..A7 is taken care of by ATF16V8B on Axiom Board (with P as
the output. P is then used along with A4..A6, AS, and E to produce CS0 using the
74HC138 again on the axiom board.

!CS0
E

R/!W

P
A15
A14
A13
A12
A11
A10
A9
A8
A7

A2
A3
A4
A5
A6

A1

Experiment #3

Date Performed: Nov 27, 1999

Purpose: Gain an understanding of the Peripheral addressing on the CME11E9-EVBU

development board. Especially the difference between pins R/W (Bus_port pin 35) and
/WR (Bus_port pin 25).

Procedure: Enter the following program, compile and load to the CME11E9-EVBU development

board and then run the program.

Top: LDAA $B580
 STAA $B580
 JMP Top

While the program is running record the following: /WR, R/W, E and AS (use 0CS to
trigger).

Results: Using an oscilloscope , the following waveforms were obtained:

Data in file: fluke-3.xls

Conclusions: By referencing the schematic of the Development board, it is noted that the R/W signal is

coming directly from the 68HC11, while the /WR is coming from U2. /WR seems to be
used as a write enable for the EEPROM and therefore should NOT be used for the
addressing of the Expanded I/O Card. R/W should be used for Expanded I/O Card
addressing [BUS_PORT PIN 35].

NOTE: Up till this point all tests used the WRONG PIN for the R/W signal (IE they used the

/WR pin [Bus_port pin 25]).

/WR

R/W

E

AS

Experiment #4

Date Performed: Nov 27, 1999

Background: In the documentation of the CMD11E9-EVBU development board’s BUS-Port, CS6 and

CS7 are shown without a leading / (like CS0..CS5). This should indicate that these are
active high, but other parts of the documentation (mainly the schematic) contradict this.

Also CS7 is also used for the LCD port and it is unclear if the addresses for that port
($B5F0..$B5F1) overlap onto CS7.

Purpose: Verify that 0CS .. 7CS are all ACTIVE LOW and see if addressing the LCD port

changes the state of CS7.

Procedure: Enter the following program, compile and load to the CME11E9-EVBU development

board and then run the program.

Top: LDAA $B580
 LDAA $B590
 LDAA $B5A0
 LDAA $B5B0
 LDAA $B5C0
 LDAA $B5D0
 LDAA $B5E0
 LDAA $B5F0
 JMP Top

While the program is running record the following: 0CS .. 7CS using 0CS to trigger.

Results: Using an oscilloscope , the following waveforms were obtained:

Data in file: fluke-3.xls

Conclusions: This proves that all the CS lines ARE ACTIVE LOW and that address $B5F0 does effect

CS7.

CS0

CS7

CS6

CS5

CS4

CS3

CS2

CS1

Experiment #5

Date Performed: Nov 29, 1999

Purpose: To determine the current draw of a 22V10, and to see if there is a difference in current

draw by a programmed vs unprogrammed PAL.

This experiment will also verify the CMEADDR PLD file for IO0..IO4

Procedure: Erase PAL and then hook up power and measure current.

Program PAL with CMEADDR (Shown below)

Name CMEADDR ;
PartNo 00 ;
Date 11/23/1999 ;
Revision 01 ;
Designer Dan Kohn ;
Company ;
Assembly None ;
Location ;
Device p22v10 ;

/* ************************ INPUT PINS **************************/
PIN 2 = RW ; /* R/!W from Bus_Port */
PIN 3 = CSn ; /* CSn from Bus_Port */
PIN 4 = A0 ; /* A0 from Bus_Port */
PIN 5 = A1 ; /* A1 From Bus_Port */
PIN 6 = A2 ; /* A2 from Bus_Port */
PIN 7 = A3 ; /* A3 from Bus_Port */

/* *********************** OUTPUT PINS **************************/
PIN 23 = IO0 ; /* See Descriptions */
PIN 22 = IO1 ; /* Below */
PIN 21 = IO2 ;
PIN 20 = IO3 ;
/************ INPUT AND OUTPUT PORT ADDRESSING LOGIC ************/

IO0 = !CSn & RW & !A3 & !A2 & !A1 & !A0 ; /* Input Port 1 */

IO1 = !CSn & RW & !A3 & !A2 & !A1 & A0 ; /* Input Port 2 */

IO2 = !(!CSn & !RW & !A3 & !A2 & A1 & !A0) ; /* Output Port */

IO3 = !(!CSn & !RW & !A3 & !A2 & A1 & A0) ; /* Motor Port */

Then connect to CME11E9 board (A0..A3, CS0, RW, V, GND) and program the board as
follows:

Top: LDAA $B580
 LDAA $B581
 SDAA $B582
 SDAA $B583
 JMP Top

Experiment #5 Cont.

Once again read current draw. Also record each output of the PAL. (IO0..IO3)

Results: Measuring the unprogrammed IC the current draw was 31.0mA. The programmed IC

drew 48.6mA.

Data in file: fluke-4.xls

Conclusions: Programming the PAL DOES change the current draw of the IC

 The CODE for the PAL is correct for the Input ports, output port and motor control port

(that is it matches the required signal as stated in the CET400 report)

IO0

IO1

IO2

IO3

Experiment #6

Date Performed: Jan 3,2000

Purpose: To test Output circuit (up to but not including the TIP120s).

Procedure: Hook up the Address PAL and a 74HC374 as per the Expanded IO circuit diagram.

Connect LED's (Low-Current Red Led's - Radio Shack Cat No. 276-044) to outputs.

 1) Using Buffalo's mm (modify Memory) command send various bit patterns to the

correct address (B582) and verify the correct bit LED pattern appears.

 2) Write a sample C program that modifies the bits.

Results. Found an error in the circuit diagram, the addressing IC's input pins start at pin 2 NOT
 Pin 1.

Once corrected the following were the results:

1) As expected the LED's showed the bit pattern as expected. The only unexpected result
is that the Buffalo monitor returns a ROM message (because when it checks to see if the
value is updated in memory | see WRITE() routine of Buffalo)

2) Program LED.C does turns on the corner led's one at a time (lines 0,3,4,7) using a TOI
ISR to hold the LED's on for a viewable length of time.

Here is the majority of the code:

interrupt toi()
{
 sys_clk++;
 pwm_clk++;
 step_clk++;
 bit_set(REG_BASE+TFLG2,0x80);
}

main()
{
 dummy = 1;
 d_int();
 poke (0xD1,toi);
 bit_set(REG_BASE+TFLG2,0x80);
 bit_set(REG_BASE+TMSK2,0x80);
 e_int();
 sys_clk = 0;
 while(dummy = 1)
 {
 if (sys_clk == 10) {pokeb (0xb582,0x1);}
 if (sys_clk == 15) {pokeb (0xb582,0x8);}
 if (sys_clk == 20) {pokeb (0xb582,0x10);}
 if (sys_clk == 25) {pokeb (0xb582,0x80); sys_clk = 0;}
 }
}

Program worked well with no unexpected results.

 Experiment #7

Date Performed: Jan 9,2000

Purpose: To test Input circuit.

Procedure: Hook up the Address PAL and a 74HC244 as per the Expanded IO circuit diagram.

Connect a DIP switch with one side of the switch going to +5v, the other to a 10K
resistor going to gnd. Connect the inputs of the 74HC244 to the node between the resistor
and DIP switch.

1) Using Buffalo's d (Memory dump) command see the value stored in the address
(b580).

2) Add to LED test program, a part that reads the input switches and adjusts the LED
flashing accordingly.

Results: 1) Found an error in the circuit diagram, the input and output pins are reversed on the

circuit diagrams in the report! Refer to Appendix H.

 After above problem was corrected the results were still not as expected. Not just the

value of B580 change. Instead the range B580..B5FF all changed to match the bit pattern
on the Dip switches.

Found an error in the circuit/PLD programming. The 244 needs an active high signal,
not active low as in the report (again see Appendix H). Will correct the PLD code and try
again

Experiment #7b

Date Performed: Jan 10,2000

Results: 1) After fixing the PLD code (CMEADD.PLD Rev. 2.0- added !(…) to IO0 and IO1)

the experiment was performed again and worked correctly. This time no unexpected
results.

 2) I created the program LED-SW.C which contains the following section:

 temp = peekb(0xb580) ;
 num = temp / 4;
 if (num != old) {sys_clk = 0;}
 old=num;
 if (sys_clk == num) {pokeb (0xb582,0x1);}
 if (sys_clk == num*2) {pokeb (0xb582,0x8);}
 if (sys_clk == num*3) {pokeb (0xb582,0x10);}
 if (sys_clk == num*4) {pokeb (0xb582,0x80); sys_clk = 0;}

 As expected the rate of led flashing changes when switches are changed.

This proves that the new address chip is functional and that the Input and Output circuits
are working and that they do NOT interfere with each other.

 Experiment #8

Date Performed: Jan 17,2000

Purpose: To test motor control PAL.

Procedure: Hook up the Addressing PAL, 1 input circuit and one motor control circuit (using LED to

indicate output states).

 Timing (using the Roll Over Interupt - TOI for timing signal wich is slow enough to be

seen). Program Motor-1.C is written so that the input switches can be used to change the
state of the control nibble. The DC Motor and Clock inputs have to be moved to change
the motor from DC to stepper motor control.

Results: Found a few minor errors in the table showing the bit setup for various stepper motor

states. The correct states are as follows:

SS HT Mode
0 0 Half Step
0 1 Half Step
1 0 Single Step
1 1 High Torque

All other stepper motor functions worked as predicted.

When testing the DC motor part, it was found that the logic originally used was in error.
Each logic statement was outputed to a .d variable (orriginally both the DC and stepper
motor both used the clock on pin 1, this was changed because of possilble dammage by
Stepper outputs going to an H bridge and possible problems with PWM clocks) But
when the conversion was done, the .d's were not dropped. The .d was removed (ver 4.1 of
PLD) and the chip re-tested and the chip then worked as predicted in DC mode (stepper
mode was also retested with no change in the original results.

Experiment #9

Date Performed: Jan 20,2000

Purpose: Testing of C Software module for DC/Stepper motor control.

Comments: Software worked surprisingly well considering the changes made from previous testing

software.

The biggest problem to overcome was the conversion of the array (were the data for each
motor is stored) to an output to the motor port. Since an array is stored as words, and each
motor uses a nibble for control.

Things Learned: Unlike most C's, small C uses & and | for AND and OR (most C's use && and ||). Small
C's compiler does NOT catch these errors during the compile!

Idea for extra Expanded I/O Board Capabilities:

Since I have spare inputs on the PLD chip, by adding a new input, it is possible to make a
third mode that would take the DIRECTION, ON, HIGHTORQUE and SINGLESTEP
inputs and directly control the 4 transistors. The 5th transistor can be connected directly to
the PWM signal input for even more flexibility.

New software library short descriptions:

 MOTOR.C Motor control functions for both DC and stepper motors

 DEBUG.C Debug functions (including memory dump)

 B-VECTOR.H Definitions of Buffalo monitor vector table.

 DEFINE.H C Definitions and ASM Equates for 68HC11 registers.

One Last Note: During this testing it was noted that under certain circumstances (load new code while in

stepper motor mode with the coils on but the clock signal NOT active), the PLD's output
would change. Investigating, noise (of up to 2v) was found on the clock line. This is
probably due to the prototyping (relatively long wires on a digital signal line), but there is
no way of telling for sure.

Further investigation is needed!

Experiment #10

Date Performed: Jan 24,2000

Purpose: To investigate "noise" problem found in experiment #9 and find a possible solution.

Step 1: Determine if the "noise" is being caused by the power supply by replacing the power

supply with a 12v battery.

Conclusion: Problem still exists with No change in noise.

Step 2: Determine if the noise is being induced by the PLD by placing a filter cap. by the IC.

 Conclusion: Problem still exists with NO change in noise.

Step 3: Determine if the noise is induced voltage (60Hz).

Conclusion: Scoped noise, 60Hz detected by relatively small vs rest of noise signal.

Step 4: Tried to shield the clock wire (which is relatively long) by wrapping it with second wire

grounded at one end.

 Conclusion: Problem still exists with No change in noise.

Step 5: Tried placing a inverter (smitt Trigger - 1/6 74HCT14) in line with signal before PLD.

 Conclusion: Change in operation, but still encountering some noise. Problem

reduced significantly.

 It is possible that the remaining noise is because the signal was inverted (leaving it at a

high state when the clock signal is turned off.

Step 6: Put a second inverter in line with the first.

 Conclusion: Operation is now as predicted with no unclocked steps encountered.

 It is still unclear weather the inverters will have to be added to the final assembly or if the

problem can be corrected by IC / Trace placement. Still need to experiment further, but
this proves that the initial design is operational.

Experiment #11

Date Performed: Feb 6,2000

Purpose: To test D to A circuit.

Procedure: Hook up the DtoA circuit (including the addressing IC) as show in the CET400 report.

Hook VrefA to VrefC to +5v and AGND to ground.

 Hook up a scope to the outputs of two channels.

 1) Using the Buffalo monitor commands, change the address of the channels that are

hooked to the scope and B588 (this address has to be written to so that the DAC Latch
line goes low and transfers the latched data to the dac for output).

 When B588 is written to, the scope should show the new volatages on the output lines.

 2) Enter the following Small C code, compile and load into the CME11E9 board:

#code 0x2400
#data 0x2000
#stack 0x1f00

#include <startup.c>
#include <define.h>
#include <debug.c>

unsigned int temp;

main()
{
 for(temp=0;temp<=255;temp++)
 {
 pokeb(0xb584,temp+1);
 pokeb(0xb585,temp+1);
 pokeb(0xb588,1);
 show(0x2001);
 }
showc('*');
crlf();
crlf();
}

 Put the scope on outputs A and B and set it up for one trace on trigger. Run the program

and record the results.

Results:
 1) The circuit acted as predicted in the CET400 report. As with previous experiments, the

Buffalo monitor returns a ROM message when the addresses are written to, but the data
does get transferred out as a new analog value after the B588 address is written to. The
output corresponds to the following formula:

VrefsentbyteVout *)255/_(=

 2) Using the above program, the results were again as expected. Both outputs A and B
were the same, and both showed a ramp as the software counted from 0 to 254. The
output remained at near +5v when the program stopped execution. The following graph is
the waveform produced:

